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An overview of Open MPI development
= There’s too much detail for 2 hours

This is not a comprehensive guide!

= You still need to go explore

= You still need to go read code

= You still need to go try things
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MPI Goals
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MPI goals

High-level network API
= Abstracts away the underlying transport
= Simple things are simple

API designed to be “friendly” to high
performance networks
= Ultra low latency (nanoseconds matter)
= Rapid ascent to wire-rate bandwidth

alialn
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MPI goals

Typically used in High Performance
Computing (HPC) environments

= Has a bias for large compute jobs

But:
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= “‘HPC” definition is evolving
= MPI starting to be used outside of HPC
= ...because MPI is a good network IPC API

CISCO
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Open MPI Version Numbers
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Versioning scheme

Scheme: <major>.<minor>.<release>
Open MPI has 2 concurrent release series
= <minor> = odd: “Feature series”

= <minor> = even: “Super stable series”

Both are tested and QA’ed

= Main difference between the two is time

= “Stable” series are mature, time-tested

alialn
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Branch goals

Trunk: active development

= “Mostly stable”

<minor> = odd: feature series (branches)
= New features added / removed

= Controlled commits

<minor> = even: stable series (branches)
= Bug fixes only — no new features

= Controlled commits

alaln
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Feature / stable series

Development
Branch to create

Feature series

v1.5.2

v1.7/v1.8 Transition to super stable

branch

ABI

stable Entire branch will be ABI stable
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v1.5 New features,
v1.5.1 enhancements

v1.6 ,
v1.6.1 }Bug fixes only

Version control

Main Open MPI repository is Subversion
= Hosted by Indiana University (thank you IU!)
= https://svn.open-mpi.org/svn/ompi

.

INDIANA UNIVERSITY
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...but you can use others
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Many Open MPI devs use Mercurial or Git
= ...and still stay in sync with SVN

Excellent for internal development

OMPI Combo OMPI Mercurial

SVN Y~ SVN checkout + £~ % (or Git)
Mercurial (or Git) clone

repository

alaln
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Using Mercurial (or Git)

v n n v v N n
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svn co https://svn.open-mpi.org/svn/ompi/trunk

ompi-svn-combo
cd ompi-svn-combo
hg init
cp contrib/hg/.hgignore .
hg add
./contrib/hg/build-hgignore.pl
hg commit —m “Initial SVN rXXXX version”
cd ..

hg clone ompi-svn-combo my-work-clone

alaln
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Pull down new SVN commits

$ cd ompi-svn-combo
$ hg up

repo
$ svn up ‘ svn up

- Merge and resolve any conflicts

$ ./contrib/hg/build-hgignore.pl SN +
Mercurial

$ hg addremove

$ hg commit -m “Up to SVN rXXXX”
‘ hg pull

$ cd ../my-work-clone

December 2012 cisco

$ hg pull
Push up Mercurial commits

$ cd my-work-clone SVN repo
..do work..

$ hg commit t svn commit
$ hg push
$ cd ../ompi-svn-combo SVN +
Mercurial
$ hg up
- Merge and resolve any conflicts t
$ svn commit hg push
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Using Mercurial (or Git)

Only use the combo for pushing / pulling!
= Do development work in clones

See more details on the Open MPI wiki:
https://svn.open-mpi.org/trac/ompi/wiki

alaln
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Building / Installing Open MPI
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Distribution tarballs

Built / installed very much like many other
open source packages

$ ./configure —prefix=$HOME/ompi ..
$ make —j 8 install

alialn
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Filesystem time

Build machine must be time-synchronized
with the file server

= |f building on a local filesystem, non-issue
= |f building on a network filesystem, check this
WARNING:

= |f not synced, strange build errors will occur

alaln
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Suggestions where to install

Install somewhere under SHOME

= No root permissions necessary

Install on a networked filesystem

= Available on all servers

Install to a directory by itself

= Easy to get a clean, fresh installation

$ rm —rf SHOME/ompi; make install

" "
December 2012 cisco z

Build features

Parallel builds fully supported
$ make —j 8 all

VPATH builds fully supported

S mkdir build

S cd build

$ ../configure .. && make —j 8 ..
Common make targets supported

= all, install, uninstall, clean, distclean, dist,
check, ...etc.

" "
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Building

Generally only need compilers and “make”
Defaults to gcc, but can use others
./configure CC=icc CXX=icpc FC=ifort ..
Many different configure options available

./configure --help

Recommend building on a fast (local) disk

December 2012 cisco %

Sidenote: save your output!

Highly recommend saving all output

= You never know if you’ll need to examine
something later

$ ./configure .. 2>&1 | tee config.out
$ make —j 8 2>&1 | tee make.out
$ make install 2>&l1 | tee install.out

December 2012 cisco
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Common configure options

—--disable-dlopen

= Slurp plugins into main libs
--enable-mpirun-prefix-by-default
= Helps when using ssh

Disable building optional parts of OMPI
* ——disable-mpi-cxx

= ——disable-mpi-fortran

* ——disable-vt

--enable-mpi-java: Java MPI bindings

alialn
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Common configure options

Tell configure non-default locations:

* ——with-<PACKAGE>=DIR (general form)

* ——with-jdk-dir=DIR

" ——with-verbs=DIR

" ——with-valgrind=DIR

General philosophy:

= |f configure finds X, build OMPI support for it

= |f configure does not find X, skip it

= |f you ask for X and OMPI does not find it, error

alaln
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Platform files

Roll up lots of configure options in a file
= Simple text file with one option per line:
enable mpi java=yes

enable_vt=no

with verbs=/usr/local/ofed

Specify via --with-platform:
$ ./configure —with-platform=\

greenplum/mrplus/linux

alialn
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Developer builds

Require more tools / setup

SVN trunk currently requires (Dec. 2012):
= Autoconf 2.69

= Automake 1.12.2

= Libtool 2.4.2

= Flex 2.5.35 (2.5.35 strongly recommended)
Why?

= Old Autotools versions have bugs

= OMPI uses new Au’cllc?tlools features

aln
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Don’t have recent enough

Autotools?

Easy to obtain and install

= Download from fip.gnu.org
$ ./configure --prefix=$HOME/gnu
S make install

WARNINGS:

= You may need to install recent GNU m4, too
Recent Autoconf versions require recent GNU m4
= |nstall all the tools into a single prefix

= Do not overwrite system-installed Autotools!

alialn
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Developer builds

Make sure Autotools are in your $PATH

Run . /autogen.pl in OMPI top directory
= More on this script later

Now . /configure and make just like
distribution tarballs

alialn
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Developer builds

Much debugging is enabled by default

= Auto-activated if . /configure
sees .svn, .hg, or .git directory

= Results in lower performance
= ...but (much) easier to debug
To create an optimized build, either:
= Build from a distribution tarball, or
= Do a VPATH build, or
= Configure --with-platform=optimized

alialn
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The role of autogen.pl

Prepares the tree and runs the Autotools
= Takes a minute or three to run
= You do not need to run it every build

Generally only need to run autogen.pl:
= |f you change VERSION

= |f you change configure.ac

= |f you change any *.m4 file

= If svn up changes any of these files

alaln
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The role of configure

Tests system and prepares to build
= Configures all plugins and subsystems
= May take multiple minutes to run
= You do not need to run it every build
Generally only need to run configure:
= |f you re-run autogen.pl
= |f you add / remove a framework or plugin

alialn
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The role of make

Generates a small number of source files
= Flex parsers

= Fortran modules

Auto-generate C header dependencies

= |f you edit a C .h file, a top-level make will
rebuild everything that includes that .h file

Build and install Open MPI

alaln
December 2012 cisco
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Where to run make

Top-level directory

Top-level project directories

= Only sometimes — more on this later
Individual plugin directories

= This saves a /ot of time

Popular targets:

= all, install

December2012  seco

What gets installed

What users need to compile/run MPI apps
Libraries, plugins, MPI header files

= E.g., mpi.h, mpif.h, mpi.mod, mpi_f08.mod
Text config and help files

Man pages

Open MPI utility executables

= E.g., mpicc, mpirun, etc.

December2012  seco

18



What does not get installed

NO: Autoconf-generated config.h files
NO: component header files

NQO: project core header files

NQO: libtool convenience libraries

- If itisn’t needed to compile / run MPI
apps, it does not get installed

alialn
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Open MPI Code Architecture
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Included 3" party packages

Dy

Hardware Locality (hwloc)

= Server topology / locality information
libevent

= File descriptor, timer, signal event engine
libltdl (part of GNU Libtool)

= Portable “dlopen”, “dlsym”, etc.
VampirTrace

= Optional MPI trace library

=2 All are configured /,huilt as part of OMPI

Code breakdown

Vast majority of code base is C

= A few Flex (.I) files that generate C

Lots of m4 / sh / Autoconf / Automake
= Configure / build system only

A few others

= MPI Fortran, C++, Java bindings
Top-level APIs only; mostly call C underneath

= Soon: Perl/Python to generate Fortran code

December 2012 cisco
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Code breakdown from ohloh.net

Language LOC Percent

C: 572,312 74.0%
C++: 58,566 7.6%
Autoconf: 48,923 6.3%
Shell script: 30,520 3.9%
Fortran: 23,121 3.0%
Automake: 12,829 1.7%

December2012  seco

Code style guidelines

4 space tabs

= Spaces, not tabs

Curly braces on first line of the block
sif(a<b){...

Preprocessor macros in all upper case

Not many other style rules enforced
= Too much religious debate; not worth it

December2012  seco
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Defensive programming

All blocks use curly braces

= Even one-line blocks

Constants on the left side of ==

= if (NULL == foo){ ...

Functions with no arguments are (void)
No C++-style comments in C code

= No GCC extensions except in GCC-only code
No C++ code in libraries
= Discouraged in components

CISCO 43
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Defensive programming

Always define preprocessor macros

= Define logicals to 0 or 1 (vs. define or not
define)

= Use “#if FOO”, not “#ifdef FOO”

= Gives compiler assistance for mistakes

Not possible for some generated macros
= Autoconf and friends

alaln
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Name conventions

No CamelCase

Use multi-word names
= (Usually) Use full words, not abbreviations
= Separated by underscores
orte plm base receive process msg()
opal hwloc base get local cpuset()
Yes, they’re long
= But you know exactly what and where they are

alialn
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Name conventions

Type names follow the prefix rule
(described later)

Most structs are typedef'ed

typedef struct ompi foo t { ..} ompi foo t
Typically use the typedef name

= Type names generally end in _t

= Function pointer typedefs end in _fn_t

alaln
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#include statements

System files are in <>

= Most should be protected with macros
#if HAVE UNISTD H
#include <unistd.h>
#endif

OMPI files in “”

= Always use full pathname
#include “opal/mca/base.h”
#include “ompi/group/group.h”

alaln
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Header files

Always protect with preprocessor macros
#ifndef THIS HEADER FILE NAME H
#define THIS HEADER FILE NAME H

/* ..contents of header file.. */
#endif

Only access external symbols through their
header files

= Do not “extern” external variables in .c files

= Do not prototype external functions in .c files

alaln
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Compiler warnings

Fix warnings on all platforms, compilers
Default GCC developer build

= Maximum pickyness

Exceptions granted where warnings cannot
be avoided, such as:

= OpenFabrics header files

* Flex-generated code

alialn
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Project architecture view

MPI application MPI APl is the

only publicly-
Open MPI (OMPI) project la, <" exported API

Open MPI Run-Time Environment (ORTE) project layer

Open Portability Access Layer (OPAL) pr=i

Each’project touches
] lower layers for
Operating syster  ,ptimization purposes

Hardware

alialn
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Projects (layers)

OMPI (pronounced: oom-pee)
= Public MPI API
= Back-end MPI semantics and supporting logic

ORTE (pronounced: or-tay)
= No knowledge of MPI
= Parallel run-time system
Launch, monitor individual processes
Group individual processes into “jobs”
= Forward stdin / stdout / stderr

alialn
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Projects

OPAL (pronounced: o-pull)

= Single-process semantics only
= Portable OS-level functionality
= Basic utilities (linked lists, etc.)

alaln
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Project separation

Each project is a separate library

libopen-rte
libopen-pal

alaln
December20t2  cleco 5

Downward only!
= Violations punished by the linker

libompi
.

libopen-rte

libopen-pal

alaln
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Plugin architecture

Each project is structured similarly:

= Main / core code

= Components (a.k.a. “plugins”)

= Frameworks

Plugins are a fundamental design decision

= Governed by the Modular Component
Architecture (MCA)

alialn
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MCA architecture view

MPI application
MPI API

Modular Component Architecture (MCA)

Framework Framework Framework

alaln
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Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
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MPI application

December 2012

Project architectural view
(for comparison)

Open MPI (OMPI) project layer

Open MPI Run-Time Environment (ORTE) project layer

Open Portability Access Layer (OPAL) project layer

alaln
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Merged architecture views

MPI application

Open MPI core (OPAL, ORTE, and OMPI layers)

Framework j Framework § Framework | Framework j§ Framework § Framework Framework

Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
[ comp. ]
Comp.
Comp.

December 2012 cisco
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Merged architecture views, showing
some actual frameworks and components

MPI application

Open MPI core (OPAL, ORTE, and OMPI layers)
MPI byte [MPI collctve. Process P Distributed MPI one High resltn.
transfer layerl| operations [jlaunch&mon.f interfaces filesystem [ sided opns. timers
(btl) (coll) (pIm) (if) (dfs) (osc) (timer)

shmem

windows
oned
pt2pt
" rima ]
linux

December 2012 cisco i

Why components (plugins)?

Better software engineering

= Enforce strict abstraction barriers

Small, discrete chunks of code

= Good for learning / new developers

= Easier to maintain and extend

Separate user apps from back-end libraries

= E.g., MPI apps not compiled against
libibverbs.so / libportals.so / libpbs.a

alialn
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MCA layout

MCA
= Top-level architecture for component services
* Find, load, unload components

Frameworks

= Targeted set of functionality

= Defined interfaces

= Essentially: a grouping of one type of plugins
= E.g., MPI point-to-point, high-resolution timers

alialn
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MCA layout

Components

= Code that exports a specific interface

= L oaded / unloaded at run-time (usually)
= Think “plugins”

Modules

= A component paired with resources

= E.g., “TCP” component loaded, finds 2 IP
interfaces (eth0, eth1), makes 2 TCP modules

alaln
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Merged architecture views (review)

MPI application

Open MPI core (OPAL, ORTE, and OMPI layers)

Framework § Framework f Framework | Framework | Framework J Framework Framework

alialn
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Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.

63

MCA code organization

Frameworks

= Have unique string names
Components

= Belong to exactly one framework

= Have unique string names

= Namespace is per framework

All names must be valid C variable names

alaln
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Organized by directory

<project>/mca/<framework>/<component>
= Project = opal, orte, ompi

= Framework = framework name, or “base”

= Component = component name, or “base”
Directory names must match

= Framework name

= Component name

Examples

= ompi/mca/btl/tcp, ormpli/mca/btllsm

alaln
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“Base”

Reserved name: “base”

= opal/mca/base: the MCA itself

= orte/mca/plm/base: the PLM framework
= ompi/mca/btl/base: the BTL framework
Helper functions / header files

= Common to all components in that framework

= Public data / methods to be invoked from
outside the framework

alialn
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Directory layout

top

December 2012

configure
README
NEWS
VERSION
...others...
ompi

(o]4 5}

opal

alaln
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Directory layout

OPAL
project tree

alaln
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Directory layout

backtrace
base
compress
crs

event
hwloc
...others...
timer

OPAL OPAL
project tree frameworks

alaln
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Directory layout

aix

altix

base
catamount

darwin
linux
solaris
windows

OPAL OPAL OPAL timer
project tree frameworks components

alaln
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OPAL Linux timer compoment

Makefile.am
project mca framework component

opal / mca / timer / linux

LLLNLS 7 N

AL OPAL OPAL timer OPAL linux
tree frameworks components  timer component

December 2012 CISCO
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OMPI TCP BTL component

(el configure
README
NEWS
VERSION

...others...
ompi

orte

opal

December 2012 CISCO
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OMPI TCP BTL component

attribute

class
communicator

config
...others...
mca

OMPI
project tree

alaln
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OMPI TCP BTL component

allocator
bcol

bml

o]

coll
common
crep
...others...

OMPI OMPI
project tree frameworks

alaln
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OMPI TCP BTL component

base

mXx

ofud
openib
portals
sctp
...others...
tcp

OMPI OMPI OMPI BTL

project tree frameworks components

alialn
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OMPI TCP BTL component

Makefile.am

project mca framework component

ompi / mca / btl / tcp

g

endpoint.c
...others...

P OMPI OMPI BTL OMPI TCP BTL

tree frameworks components component

alaln
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Merged architecture views (review)

MPI application

Open MPI core (OPAL, ORTE, and OMPI layers)

Framework j Framework f§ Framework | Framework j Framework § Framework Framework

a aofl ol o o a al a o al a S
- E] E|E = s £l E = €| € =
o ol oo /5] S 55 5 E|E E
o OfoO|O (&) (&) OO (&) |0 (]
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Merged architecture views

MPI application

Open MPI core (OPAL, ORTE, and OMPI layers)

MPI byte gMPI collctve. Process

Distributed MPI one High resltn.

transfer layerl| operations [launch&mon.f interfaces filesystem [ sided opns. timers
(btl) (coll) (plm) (if) (dfs) (osc) o (timer)
<
= o a g - c
o — £ = ° © £
@zl Rl <Bil | -B: sl GRE E
7] = 2 § = o Q = 3
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Header File Conventions

Framework interface defined in

= <project>/mca/<framework>/<framework>.h
= This is mandatory

Public base functions declared in

December 2012

= <project>/mca/<framework>/base/base.h
= This is common, but not mandatory

dfhefn
CISCO
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BTL framework header

ompi / mca / btl / btl.h

PVI (K< 1 [~)
...others...
tcp
OMPI OMPI OMPI BTL
project tree frameworks components

diegn
CISCO
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BTL base public header

P OMPI OMPI BTL OMPI BTL
tree frameworks components base

alialn
December 2012 cisco

81

Components

Back-end component magic

= Function pointers

= Usually compiled as dynamic shared objects
(DSQO’ s) in .so files (“plugins”)

= But can be included in libmpi (etc.)

Use GNU Libtool “Itdl” library

= Portable dlopen(), disym()
= Even works on Windows
= Not GPL (!)

alaln
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Component implementations

Build system requirements:

= configure.m4

" Makefile.am

= Will not discuss these in detail today

Details of component build requirements:

https://svn.open-mpi.org/trac/ompi/wiki/
devel/CreateComponent

" "
December 2012 cisco
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Component implementations

Freedom of implementation

= As many .c and .h files as you want
= Can even have subdirectories

End result, needs to produce

mca <framework> <component>.so
= Examples

mca_btl tcp.so
mca plm rsh.so

" "
December 2012 cisco
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Each framework is unique

The MCA base is strictly defined

Each framework builds upon the base

= But definitions are framework-specific

= Every framework is different

= Depends on what the framework is for
Therefore somewhat difficult to describe

But most follow common conventions

December 2012 cisco &

Component Interface

Defined by the framework
Typically has some kind of selection function

Framework asks each component:
= “Do you want to be used with X?”
= Where “X” is relevant to the framework

Examples
= BTL: “Do you want to be used with this process?”

= Coll: “Do you want to be used with MPI
communicator X?”

December 2012 cisco %
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Component / Module Lifecycle

€ Component
% = Open DSO (if necessary)
g- = Open: per-process initialization
8 Selection = Selection: per-scope
— determination if want to use
[ = Close: per-process finalization
Initialization = Close DSO (if necessary)
° Module
g = Initialization; per-scope, if
§ Normal usage component is selected
= Normal usage
=  Finalization: per-scope cleanup
Finalization
s
§
Decembel 20— 'IC||lS.éIC;I 87

Where to run make (redux)

Top-level directory
= Makes everything
S make all
libopen-pal

libopen-rte

libmpi

alialn
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Where to run make (redux)

Top-level directory
= Makes everything $ cd opal

Top-level project 5 make all

directories libopen-pal

= Builds entire project
library

alialn
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Where to run make (redux)

Top-level directory

= Makes everything $ cd orte
Top-level project 5 make all
directories

= Builds entire project

library libopen-rte

alaln
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THIS SLIDE IS OBSOLETE!

After we recorded the video, we made changes
to the Open MPI build system that made this slide
be incorrect.

Specifically: libopen-rte does *not* include libopen-pal,
and libmpi does not include libopen-rte.

So you can “make” in in project directory, and
even “make install”.

December 2012

Where to run make (redux)

In individual component directories
= E.g.,, make all ormake install
= Saves a /ot of time

Example

$ cd ompi/mca/btl/tcp
.modify the TCP BTL..

$ make install

alaln
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More related wiki pages

The role of autogen.pl
https://svn.open-mpi.org/trac/ompi/wiki/

devel/Autogen
How to add a component

https://svn.open-mpi.org/trac/ompi/wiki/
devel/CreateComponent

How to add a framework

https://svn.open-mpi.org/trac/ompi/wiki/
devel/CreatigFramework

December2012 — o %

Framework / component
prefix rule

Public names / symbols must be prefixed

= project framework component <name> (usually)
= framework component <name>

* mca_framework component <name>
Component struct only — special case

alaln
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Framework / component

prefix rule
WARNING (historical note):

= <project> prefix was only added recently

= Many component files and symbols do not have
<project> prefix

= All new names should be project-prefixed

= Will be fixed over time

alaln
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Prefix rule examples

Public function: opal timer linux init()
Public symbol: orte plm rsh started

Filename: btl tcp component.c
= Note lack of <project> -- should be updated!

alialn
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Prefix rule rationale

All the .c> .0 files exist in a single process
= Cannot have filename collisions

= Cannot have symbol collisions (variables,
functions, or types)

Also cannot collide with user app symbols

alialn
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Prefix rule in project cores

Outside of frameworks / components

= Use <project> prefix for symbols

= Subset as appropriate
Func: ompi free list init()
Variable: orte plm base
Type: opal list t

Same rationale applies:

= Avoid symbol collisions in OMPI

= Avoid symbol collisions with MPI application

alialn
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Public vs. private symbols

Remember: this is middleware

» Only make public what you need to
OMPI defaults to private symbols
= Must declare symbols to be public

= Use “DECLSPEC” macro (per project)
ORTE_DECLSPEC bool orte plm rsh started;

Components invoked by function pointers
= Most symbols do not need to be public

alaln
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Portability

Beware of Linux / GCC-specific-isms
= Non-portable code goes in components
= Or surrounded by #if
All .c files must have code that is called

= Do not have “constants.c” with no functions

= Some linkers will drop .0’s with no callable
code (e.g., OS X)

alialn
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Run-Time Parameters

December 2012
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Tunable parameters

Philosophy: do not use constants

= Use run-time parameters instead

Referred to as “MCA parameters”

= Somewhat misleading name

= Means: service provided by the MCA base

= Does not mean that they are restricted to MCA

components or frameworks

= OPAL, ORTE, and OMPI projects have “base”

December 2012

parameters, too
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Rationale

Make everything a run-time decision
= Give every param a “sensible” default
= ...where possible

Parameters usually indicate:

= Values (e.g., short/long message size)
= Behavior (e.g., selection of algorithm)

Much easier than recompiling

alialn
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Intrinsic MCA param:

framework name

Each framework name is an MCA param
= Specifies which components to open

MCA base automatically registers it

= Comma-delimited list of component names
= Default value is empty (meaning “all”)
Inclusionary or exclusionary behavior
btl=tcp,self,sm

btl="tcp

alaln
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MCA param lookup order

“Override” value (set by API)

mpirun command line

" mpirun —mca <name> <value>
Environment variable

= setenv OMPI_MCA <name> <value>
File

" S$SHOME/.openmpi/mca-params.conf

= Sprefix/etc/openmpi-mca-params.conf

(these locations are themselves tunable)

Default value o

December 2012 cisco
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Using MCA parameters

Characteristics

= Strings and integers

= Read-only (information) and read-write
= Private and public

WARNING: Lookup is slow!

= Do not put in critical performance path
= Do lookups at beginning of scope

alaln
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MCA param examples

btl _udverbs_version

= Read-only, string version of the Verbs library
that udverbs BTL was compiled against

btl_tcp if include

= Read-write, string list of IP interfaces to use
bl

= Read-write, list of BTL components to use
orte_base_singleton

= Private, whether this process is a singleton

alaln
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Sidenote: ompi info command

Tells everything about OMPI installation

* Finds all components and all params

= Great for debugging

Can look up specific component

* ompi info --param <framework> <component
= Shows params, current values, where set from

= Can also use keyword “all”

--parsable option

December 2012 cisco
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MCA param API

See opal/mca/base/mca _base param.h
Register and lookup functions

= Several variations of each

Components register params during
component register (or open; deprecated)

* ompi info calls register/open/close on every
component that it finds (to discover
parameters)

alialn
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Prefix rule and MCA params

MCA params must be prefixed
= Does not include the project name

<framework> <component> <param name>

Examples
btl tcp mtu
coll basic_bcast crossover

Register API function takes 3 strings

= When registering in core, use:
Framework = project name
Component = “base])...;..

December 2012 cisco
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Common Code Highlights

alialn
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Init / finalize

<foo> init() to initialize something

<foo> finalize() to finalize something
Examples:

* ompi mpi init(): initializes OMPI layer, calls
= orte_init(): initializes ORTE layer, calls

= opal init(): initializes OPAL layer

Paired with ompi mpi finalize(), etc.

= Frees resources, etc.

alaln
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Init / finalize

Not just used for overall projects
Also used for individual subsystems

ompi op init()
2> ompi op finalize()
opal datatype init()
- opal datatype finalize()

alialn
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Utility code

<project>/util/*.[h,c]

E.g., OPAL has lots of compatibility code
= asprintf, gsort, basename, strncpy

Useful “add-on” code

= Manipulate argv arrays (opal/util/argv.h)

= printf debugging code (opal/util/output.h)

= Error reporting (opal/util/show_help.h)

= |P interfaces (opal/util/if.h)

alaln
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Arrays of strings

See opal/util/arg.h:opal argv_ *()
Simple functions for maintaining argv-style
arrays of strings

= Prepend / append (resize if necessary)

= Insert / remove (resize if necessary)

= Split / join

= Get length of array

= Free array (and all strings)

alaln
December 2012 cisco s

opal output() debugging code

Function to emit debugging / error
messages to stderr, stdout, file, syslog, ...
= Versions to simplify debugging output

= Stream 0 prepends host, PID

Printf-like arguments

opal output(0, “hello, world”);

opal output verbose(0, 10, “debugging..”);
OPAL OUTPUT(0, “--enable-debug only”);
OPAL_OUTPUT VERBOSE(...);

alaln
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Friendly error messages

opal/util/opal show help.[h,c]

Print friendly messages for users

= Message in text file rather than in source code
= Can use printf substitutions (%s, %d, etc.)

= De-duplicates messages

Example

* opal show help(“help-mpi-btl-tcp.txt”,
“invalid minimum port”, true, “ipv4”,
default value, hostname, port num);

alaln
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Friendly error messages

Contents of help-mpi-btl-tcp.txt:
[invalid minimum port]
WARNING: An invalid value was given for the
btl tcp port min %s. Legal values are in the

range [l .. 2716-1]. This value will be

ignored; OMPI will use the default value of
%d.

Local host: %s
Value: sd

alaln
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Discover IP interfaces

See opal/util/if.hiopal if *()
STL-like iteration over OS IP interfaces

= Get info about each interface
= Name, flags, netmask, loopback, etc.

" "
December 2012 cisco
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Object system

C-style reference counting object system

“Poor man’s C++”
= Single inheritance

= Constructors / destructors associated with
each object instance

Statically or dynamically allocated objects

" "
December 2012 cisco
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Object system example

Define class in header

typedef struct ompi foo t {
ompi parent t parent;
void *first_member;

} ompi foo_ t;
OBJ_CLASS DECLARATION(ompi foo t);
ompi parent t must be a object

* Root objectis opal object t

December 2012 cisco
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Object system example

Must instantiate class descriptor in .c file

OBJ CLASS_INSTANCE (ompi foo t,
ompi parent t, foo construct,
foo destruct);

Local constructor / destructor functions
» Both take one param: pointer to the object

Constructors and destructors called
recursively up the object stack

December 2012 cisco
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Dynamic objects

Create dynamically allocated object

= |nitial reference count set to 1

ompi foo t *foo = OBJ NEW(ompi foo t);
Increase reference count

OBJ RETAIN(foo);

Decrease reference count

OBJ RELEASE(foo0);

Object destroyed and freed when reference
count hits 0

December 2012 cisco
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Static objects

Construct object

ompi foo t foo;

OBJ CONSTRUCT(&foo, ompi foo t);
Destruct object:

OBJ DESTRUCT (&fo0);

Can use OBJ RETAIN/OBJ RELEASE, but
= “Badness” if reference count hits 0

= No automatic destruction if object goes out of
scope

December 2012 cisco
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Object-based containers

Lists, free lists, hash tables, value array,
atomic LIFO list

OMPI provide additional functionality
= Shared memory fifo, red-black tree

Such OBJ-based code usually found in
<project>/class

alaln
December2012  seco

125

Linked List

opal list t is a doubly-linked list
ltem ownership transferred

= No copies like in STL

= [tem only belong to one list

Pointers to items never invalidated by
opal list functions

O(1) insert, delete, join, get size
Splice and sort routines
Large debugging performance impact

alaln
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...and others

Go explore:

" <project>/util

" <project>/class

If you find yourself writing “glue” code
= Look first in util directories

= |f not there, consider if you should put it in
util

December 2012 cisco
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5

Hardware Locality (“hwloc”)
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Hardware Locality (hwloc)

High performance computing is all about
location, Location, LOCATION!

= NUMA is now common

= Can consider network as next (several)
level(s) of locality: NUNA

Performant code must understand locality

December 2012
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Hardware Locality (hwloc)

Hwloc provides

inside-the-server | mee
to o I O I NUMANode P#0 (12GB) | I NUMANode P#1 (12GB) |
p gy Socket P#L 200 pei 140163 Socket P#0
= CLI tamsace)
P rettyprl nt L2 (256KB) L2 (256KEB! ) L2 (256KE) L2 (256KB)
JPG, PNG, PDF, .
n XML Core P#0 Core P#1 Core P#0 Core P#1
[ | C API PUP#4 PUP#6 | FEEEED PUP#5 PUP#7
Istopo(1) draws
these pictures
alaln 130
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Hwloc example

Machine (24GB)

I NUMANode P#0 (12GB) | | NUMANode P#1 (12GB) |
1,0
Socket P#1 (|, PCl 14e4:163b Socket P#0
| L3 (8192KB) | etho | L3 (8192KB) |
| L2 (256KB) | | L2 (256KB) | I L2 (256KB) | | L2 (256KB) |

PCI 1000:0060

| L1 (32KB) | I L1(32KB) I | L1(32KB) I I L1 (32KB) |
Core P#0 Core P#1 Core P#0 Core P#1
PCI 8086:3a20
PUP#0 PUP#2 PUP#1 PUP#3
2,0
| PCI 15b3:634a
PUP#4 PUP#6 - PUP#5 PUP#7
alaln
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Machine (64GB)
‘ NUMANode P#0 (32GB)
20 2
Socket P#0 O
‘ 13 (20M8) ‘
‘ 12 (256K8) ‘ ‘ L2 (256KB) ‘ ‘ L2 (256K8) ‘ ‘ 12 (256K8) ‘ ‘ L2 (256KB) ‘ ‘ L2 (256KB) ‘ ‘ 12 (256K8) ‘ ‘ L2 (256K8) ‘ 20
PCI 8086:1521
‘ L1d (32K8) ‘ ‘ L1d (32KB) ‘ ‘ L1d (32k8) ‘ ‘ L1d (32K8) ‘ ‘ L1d (32KB) ‘ ‘ L1d (32KB) ‘ ‘ L1d (32K8) ‘ ‘ L1d (32KB) ‘
‘ L1i (32K8) ‘ ‘ L1i (32K8) ‘ ‘ L1i (32KB) ‘ ‘ L1i (32K8) ‘ ‘ L1i (32K8) ‘ ‘ L1i (32K8) ‘ ‘ L1i (32KB) ‘ ‘ L1i (32K8) ‘
PCI 1137:0043
Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5 Core P#6 Core P#7
PU P#0 PUP#1 PUPH2 PUP#3 PU P#4 PUP#S PUP#E PU P#T
PCI 1137:0043
PUP#16 PU P#17 PUP#1B PUP#19 PU P#20 PUP#21 PU P#22 PU P#23
‘ NUMANode P#1 (32GB) ‘
4.0 40
Socket P#1 O——J—— Pci1000:005b
‘ L3 (20MB) ‘
‘ L2 (256K8) ‘ ‘ L2 (256KB) ‘ ‘ L2 (256KB) ‘ ‘ L2 (256K8) ‘ ‘ L2 (256KB) ‘ ‘ L2 (256KB) ‘ ‘ 12 (256K8) ‘ ‘ L2 (256KB) ‘
‘ L1d (32KB) ‘ ‘ L1d (32KB) ‘ ‘ L1d (32kB) ‘ ‘ L1d (32K8) ‘ ‘ L1d (32KB) ‘ ‘ L1d (32KB) ‘ ‘ L1d (32K8) ‘ ‘ L1d (32KB) ‘
‘ L1i (32K8) ‘ ‘ L1i (32K8) ‘ ‘ L1i (32KB) ‘ ‘ L1i (32KB) ‘ ‘ L1i (32K8) ‘ ‘ L1i (32K8) ‘ ‘ L1i (32KB) ‘ ‘ L1i (32K8) ‘
Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5 Core P#6 Core P#7
PU P#B PU P#9 PUP#10 PUP#11 PU P#12 PUP#13 PUPH1A PU P#15
PU P#24 PU P#25 PUP#26 PU P#27 PU P#28 PUP#29 PU P#30 PU P#31

Indexes: physical

Date: Thu Aug 2 10:07:28 2012
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Hwloc capabilities

Query topology information

= As shown in previous pictures

= C API provides tree of all that information
Memory and processor affinity

= hwloc-bind(1) much mo’ betta than numactl(1)
$ hwloc-bind socket:0.core:3 my program

hwloc_ set cpubind(..)
Works on many different Oss
= Linux, OS X, Windows, BSDs, ...etc.

alialn
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Hwloc sub-project

An official sub-project of Open MPI

= Has its own SVN repository

= Developed mainly by INRIA (France)

= A full copy of it is maintained on OMPI’'s SVN

Fully documented
= Excellent stand-alone tool (unrelated to MPI)
= Highly encourage you to check it out

alaln
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Open MPI’s use of hwloc

Wholly embeds a copy of hwloc
= Can be compiled to use external hwloc
= Embedded hwloc is certified to work properly

Used to discover server topology
= Effect processor and memory affinity
= Query cache sizes

= Query process peer locality (same socket,
NUMA node, etc.)

= Query PCI device locality

alialn
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Open MPI’s use of hwloc

...and we’re just getting started

Anticipate much more use of the hwloc API
over time

= MPI collective algorithms

= MPI shared memory point-to-point
communications

= . .etc.

alaln
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Questions?

ccccc

Thank you!
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