2

Open MPI: Overview / Architecture

Jeff Squyres

1IN
CISCO

Thank you, Greenplum!

GREENPLUM.

A DIVISION OF EMC

ccccc

An overview of Open MPI development
= There’s too much detail for 2 hours

This is not a comprehensive guide!

= You still need to go explore

= You still need to go read code

= You still need to go try things

December 2012

Overview

Overview of MPI

Version Numbers

Building / Installing Open MPI
Open MPI Code Architecture
Run-Time Parameters
Common Code Highlights
Hardware Locality (“hwloc”)

December2012 seco

2

MPI Goals

alaln
December 2012 cisco S

MPI goals

High-level network API
= Abstracts away the underlying transport
= Simple things are simple

API designed to be “friendly” to high
performance networks
= Ultra low latency (nanoseconds matter)
= Rapid ascent to wire-rate bandwidth

alialn
December 2012 cisco 6

MPI goals

Typically used in High Performance
Computing (HPC) environments

= Has a bias for large compute jobs

But:

December 2012

= “‘HPC” definition is evolving
= MPI starting to be used outside of HPC
= ...because MPI is a good network IPC API

CISCO

2

Open MPI Version Numbers

December 2012

' L
CISCO

Versioning scheme

Scheme: <major>.<minor>.<release>
Open MPI has 2 concurrent release series
= <minor> = odd: “Feature series”

= <minor> = even: “Super stable series”

Both are tested and QA’ed

= Main difference between the two is time

= “Stable” series are mature, time-tested

alialn
December 2012 cisco

Branch goals

Trunk: active development

= “Mostly stable”

<minor> = odd: feature series (branches)
= New features added / removed

= Controlled commits

<minor> = even: stable series (branches)
= Bug fixes only — no new features

= Controlled commits

alaln
December 2012 cisco

Feature / stable series

Development
Branch to create

Feature series

v1.5.2

v1.7/v1.8 Transition to super stable

branch

ABI

stable Entire branch will be ABI stable

December 2012 cisco

v1.5 New features,
v1.5.1 enhancements

v1.6 ,
v1.6.1 }Bug fixes only

Version control

Main Open MPI repository is Subversion
= Hosted by Indiana University (thank you IU!)
= https://svn.open-mpi.org/svn/ompi

.

INDIANA UNIVERSITY

alaln
December 2012 cisco

...but you can use others

December 2012

Many Open MPI devs use Mercurial or Git
= ...and still stay in sync with SVN

Excellent for internal development

OMPI Combo OMPI Mercurial

SVN Y~ SVN checkout + £~ % (or Git)
Mercurial (or Git) clone

repository

alaln
cisco

Using Mercurial (or Git)

v n n v v N n

December 2012

svn co https://svn.open-mpi.org/svn/ompi/trunk

ompi-svn-combo
cd ompi-svn-combo
hg init
cp contrib/hg/.hgignore .
hg add
./contrib/hg/build-hgignore.pl
hg commit —m “Initial SVN rXXXX version”
cd ..

hg clone ompi-svn-combo my-work-clone

alaln
cisco

Pull down new SVN commits

$ cd ompi-svn-combo
$ hg up

repo
$ svn up ‘ svn up

- Merge and resolve any conflicts

$./contrib/hg/build-hgignore.pl SN +
Mercurial

$ hg addremove

$ hg commit -m “Up to SVN rXXXX”
‘ hg pull

$ cd ../my-work-clone

December 2012 cisco

$ hg pull
Push up Mercurial commits

$ cd my-work-clone SVN repo
..do work..

$ hg commit t svn commit
$ hg push
$ cd ../ompi-svn-combo SVN +
Mercurial
$ hg up
- Merge and resolve any conflicts t
$ svn commit hg push

December 2012 cisco

Using Mercurial (or Git)

Only use the combo for pushing / pulling!
= Do development work in clones

See more details on the Open MPI wiki:
https://svn.open-mpi.org/trac/ompi/wiki

alaln
December20t2 cleco R

—
Building / Installing Open MPI

alaln
December20t2 cleco 8

Distribution tarballs

Built / installed very much like many other
open source packages

$./configure —prefix=$HOME/ompi ..
$ make —j 8 install

alialn
December 2012 cisco

Filesystem time

Build machine must be time-synchronized
with the file server

= |f building on a local filesystem, non-issue
= |f building on a network filesystem, check this
WARNING:

= |f not synced, strange build errors will occur

alaln
December 2012 cisco

20

10

Suggestions where to install

Install somewhere under SHOME

= No root permissions necessary

Install on a networked filesystem

= Available on all servers

Install to a directory by itself

= Easy to get a clean, fresh installation

$ rm —rf SHOME/ompi; make install

" "
December 2012 cisco z

Build features

Parallel builds fully supported
$ make —j 8 all

VPATH builds fully supported

S mkdir build

S cd build

$../configure .. && make —j 8 ..
Common make targets supported

= all, install, uninstall, clean, distclean, dist,
check, ...etc.

" "
December 2012 cisco 2

11

Building

Generally only need compilers and “make”
Defaults to gcc, but can use others
./configure CC=icc CXX=icpc FC=ifort ..
Many different configure options available

./configure --help

Recommend building on a fast (local) disk

December 2012 cisco %

Sidenote: save your output!

Highly recommend saving all output

= You never know if you’ll need to examine
something later

$./configure .. 2>&1 | tee config.out
$ make —j 8 2>&1 | tee make.out
$ make install 2>&l1 | tee install.out

December 2012 cisco

24

12

Common configure options

—--disable-dlopen

= Slurp plugins into main libs
--enable-mpirun-prefix-by-default
= Helps when using ssh

Disable building optional parts of OMPI
* ——disable-mpi-cxx

= ——disable-mpi-fortran

* ——disable-vt

--enable-mpi-java: Java MPI bindings

alialn
December 2012 cisco

25

Common configure options

Tell configure non-default locations:

* ——with-<PACKAGE>=DIR (general form)

* ——with-jdk-dir=DIR

" ——with-verbs=DIR

" ——with-valgrind=DIR

General philosophy:

= |f configure finds X, build OMPI support for it

= |f configure does not find X, skip it

= |f you ask for X and OMPI does not find it, error

alaln
December 2012 cisco

26

13

Platform files

Roll up lots of configure options in a file
= Simple text file with one option per line:
enable mpi java=yes

enable_vt=no

with verbs=/usr/local/ofed

Specify via --with-platform:
$./configure —with-platform=\

greenplum/mrplus/linux

alialn
December 2012 cisco

27

Developer builds

Require more tools / setup

SVN trunk currently requires (Dec. 2012):
= Autoconf 2.69

= Automake 1.12.2

= Libtool 2.4.2

= Flex 2.5.35 (2.5.35 strongly recommended)
Why?

= Old Autotools versions have bugs

= OMPI uses new Au’cllc?tlools features

aln
December 2012 cisco

28

14

Don’t have recent enough

Autotools?

Easy to obtain and install

= Download from fip.gnu.org
$./configure --prefix=$HOME/gnu
S make install

WARNINGS:

= You may need to install recent GNU m4, too
Recent Autoconf versions require recent GNU m4
= |nstall all the tools into a single prefix

= Do not overwrite system-installed Autotools!

alialn
December 2012 cisco 2

Developer builds

Make sure Autotools are in your $PATH

Run . /autogen.pl in OMPI top directory
= More on this script later

Now . /configure and make just like
distribution tarballs

alialn
December 2012 cisco 30

15

Developer builds

Much debugging is enabled by default

= Auto-activated if . /configure
sees .svn, .hg, or .git directory

= Results in lower performance
= ...but (much) easier to debug
To create an optimized build, either:
= Build from a distribution tarball, or
= Do a VPATH build, or
= Configure --with-platform=optimized

alialn
December 2012 cisco Ed

The role of autogen.pl

Prepares the tree and runs the Autotools
= Takes a minute or three to run
= You do not need to run it every build

Generally only need to run autogen.pl:
= |f you change VERSION

= |f you change configure.ac

= |f you change any *.m4 file

= If svn up changes any of these files

alaln
December 2012 cisco 32

16

The role of configure

Tests system and prepares to build
= Configures all plugins and subsystems
= May take multiple minutes to run
= You do not need to run it every build
Generally only need to run configure:
= |f you re-run autogen.pl
= |f you add / remove a framework or plugin

alialn
December 2012 cisco

33

The role of make

Generates a small number of source files
= Flex parsers

= Fortran modules

Auto-generate C header dependencies

= |f you edit a C .h file, a top-level make will
rebuild everything that includes that .h file

Build and install Open MPI

alaln
December 2012 cisco

34

17

Where to run make

Top-level directory

Top-level project directories

= Only sometimes — more on this later
Individual plugin directories

= This saves a /ot of time

Popular targets:

= all, install

December2012 seco

What gets installed

What users need to compile/run MPI apps
Libraries, plugins, MPI header files

= E.g., mpi.h, mpif.h, mpi.mod, mpi_f08.mod
Text config and help files

Man pages

Open MPI utility executables

= E.g., mpicc, mpirun, etc.

December2012 seco

18

What does not get installed

NO: Autoconf-generated config.h files
NO: component header files

NQO: project core header files

NQO: libtool convenience libraries

- If itisn’t needed to compile / run MPI
apps, it does not get installed

alialn
December20t2 cleco U

—
Open MPI Code Architecture

alialn
December20t2 cleco %8

19

Included 3" party packages

Dy

Hardware Locality (hwloc)

= Server topology / locality information
libevent

= File descriptor, timer, signal event engine
libltdl (part of GNU Libtool)

= Portable “dlopen”, “dlsym”, etc.
VampirTrace

= Optional MPI trace library

=2 All are configured /,huilt as part of OMPI

Code breakdown

Vast majority of code base is C

= A few Flex (.I) files that generate C

Lots of m4 / sh / Autoconf / Automake
= Configure / build system only

A few others

= MPI Fortran, C++, Java bindings
Top-level APIs only; mostly call C underneath

= Soon: Perl/Python to generate Fortran code

December 2012 cisco

40

20

Code breakdown from ohloh.net

Language LOC Percent

C: 572,312 74.0%
C++: 58,566 7.6%
Autoconf: 48,923 6.3%
Shell script: 30,520 3.9%
Fortran: 23,121 3.0%
Automake: 12,829 1.7%

December2012 seco

Code style guidelines

4 space tabs

= Spaces, not tabs

Curly braces on first line of the block
sif(a<b){...

Preprocessor macros in all upper case

Not many other style rules enforced
= Too much religious debate; not worth it

December2012 seco

21

Defensive programming

All blocks use curly braces

= Even one-line blocks

Constants on the left side of ==

= if (NULL == foo){ ...

Functions with no arguments are (void)
No C++-style comments in C code

= No GCC extensions except in GCC-only code
No C++ code in libraries
= Discouraged in components

CISCO 43

December 2012

Defensive programming

Always define preprocessor macros

= Define logicals to 0 or 1 (vs. define or not
define)

= Use “#if FOO”, not “#ifdef FOO”

= Gives compiler assistance for mistakes

Not possible for some generated macros
= Autoconf and friends

alaln
December 2012 cisco 4

22

Name conventions

No CamelCase

Use multi-word names
= (Usually) Use full words, not abbreviations
= Separated by underscores
orte plm base receive process msg()
opal hwloc base get local cpuset()
Yes, they’re long
= But you know exactly what and where they are

alialn
December 2012 cisco

45

Name conventions

Type names follow the prefix rule
(described later)

Most structs are typedef'ed

typedef struct ompi foo t { ..} ompi foo t
Typically use the typedef name

= Type names generally end in _t

= Function pointer typedefs end in _fn_t

alaln
December 2012 cisco

46

23

#include statements

System files are in <>

= Most should be protected with macros
#if HAVE UNISTD H
#include <unistd.h>
#endif

OMPI files in “”

= Always use full pathname
#include “opal/mca/base.h”
#include “ompi/group/group.h”

alaln
December 2012 cisco 4

Header files

Always protect with preprocessor macros
#ifndef THIS HEADER FILE NAME H
#define THIS HEADER FILE NAME H

/* ..contents of header file.. */
#endif

Only access external symbols through their
header files

= Do not “extern” external variables in .c files

= Do not prototype external functions in .c files

alaln
December 2012 cisco 48

24

Compiler warnings

Fix warnings on all platforms, compilers
Default GCC developer build

= Maximum pickyness

Exceptions granted where warnings cannot
be avoided, such as:

= OpenFabrics header files

* Flex-generated code

alialn
December 2012 cisco 49

Project architecture view

MPI application MPI APl is the

only publicly-
Open MPI (OMPI) project la, <" exported API

Open MPI Run-Time Environment (ORTE) project layer

Open Portability Access Layer (OPAL) pr=i

Each’project touches
] lower layers for
Operating syster ,ptimization purposes

Hardware

alialn
December 2012 cisco %0

25

Projects (layers)

OMPI (pronounced: oom-pee)
= Public MPI API
= Back-end MPI semantics and supporting logic

ORTE (pronounced: or-tay)
= No knowledge of MPI
= Parallel run-time system
Launch, monitor individual processes
Group individual processes into “jobs”
= Forward stdin / stdout / stderr

alialn
December 2012 cisco 5

Projects

OPAL (pronounced: o-pull)

= Single-process semantics only
= Portable OS-level functionality
= Basic utilities (linked lists, etc.)

alaln
December 2012 cisco 52

26

Project separation

Each project is a separate library

libopen-rte
libopen-pal

alaln
December20t2 cleco 5

Downward only!
= Violations punished by the linker

libompi
.

libopen-rte

libopen-pal

alaln
December20t2 cleco kad

27

Plugin architecture

Each project is structured similarly:

= Main / core code

= Components (a.k.a. “plugins”)

= Frameworks

Plugins are a fundamental design decision

= Governed by the Modular Component
Architecture (MCA)

alialn
December 2012 cisco

55

MCA architecture view

MPI application
MPI API

Modular Component Architecture (MCA)

Framework Framework Framework

alaln
December 2012 cisco

Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.

56

28

MPI application

December 2012

Project architectural view
(for comparison)

Open MPI (OMPI) project layer

Open MPI Run-Time Environment (ORTE) project layer

Open Portability Access Layer (OPAL) project layer

alaln
cisco

57

Merged architecture views

MPI application

Open MPI core (OPAL, ORTE, and OMPI layers)

Framework j Framework § Framework | Framework j§ Framework § Framework Framework

Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
[comp.]
Comp.
Comp.

December 2012 cisco

58

29

Merged architecture views, showing
some actual frameworks and components

MPI application

Open MPI core (OPAL, ORTE, and OMPI layers)
MPI byte [MPI collctve. Process P Distributed MPI one High resltn.
transfer layerl| operations [jlaunch&mon.f interfaces filesystem [sided opns. timers
(btl) (coll) (pIm) (if) (dfs) (osc) (timer)

shmem

windows
oned
pt2pt
" rima]
linux

December 2012 cisco i

Why components (plugins)?

Better software engineering

= Enforce strict abstraction barriers

Small, discrete chunks of code

= Good for learning / new developers

= Easier to maintain and extend

Separate user apps from back-end libraries

= E.g., MPI apps not compiled against
libibverbs.so / libportals.so / libpbs.a

alialn
December 2012 cisco 60

30

MCA layout

MCA
= Top-level architecture for component services
* Find, load, unload components

Frameworks

= Targeted set of functionality

= Defined interfaces

= Essentially: a grouping of one type of plugins
= E.g., MPI point-to-point, high-resolution timers

alialn
December 2012 cisco &

MCA layout

Components

= Code that exports a specific interface

= L oaded / unloaded at run-time (usually)
= Think “plugins”

Modules

= A component paired with resources

= E.g., “TCP” component loaded, finds 2 IP
interfaces (eth0, eth1), makes 2 TCP modules

alaln
December 2012 cisco 62

31

Merged architecture views (review)

MPI application

Open MPI core (OPAL, ORTE, and OMPI layers)

Framework § Framework f Framework | Framework | Framework J Framework Framework

alialn
December 2012 cisco

Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.

63

MCA code organization

Frameworks

= Have unique string names
Components

= Belong to exactly one framework

= Have unique string names

= Namespace is per framework

All names must be valid C variable names

alaln
December 2012 cisco

64

32

Organized by directory

<project>/mca/<framework>/<component>
= Project = opal, orte, ompi

= Framework = framework name, or “base”

= Component = component name, or “base”
Directory names must match

= Framework name

= Component name

Examples

= ompi/mca/btl/tcp, ormpli/mca/btllsm

alaln
December 2012 cisco &

“Base”

Reserved name: “base”

= opal/mca/base: the MCA itself

= orte/mca/plm/base: the PLM framework
= ompi/mca/btl/base: the BTL framework
Helper functions / header files

= Common to all components in that framework

= Public data / methods to be invoked from
outside the framework

alialn
December 2012 cisco 66

33

Directory layout

top

December 2012

configure
README
NEWS
VERSION
...others...
ompi

(o]4 5}

opal

alaln
cisco

67

December 2012

Directory layout

OPAL
project tree

alaln
cisco

68

34

Directory layout

backtrace
base
compress
crs

event
hwloc
...others...
timer

OPAL OPAL
project tree frameworks

alaln
December 2012 CISCO 69

Directory layout

aix

altix

base
catamount

darwin
linux
solaris
windows

OPAL OPAL OPAL timer
project tree frameworks components

alaln
December 2012 CISCO 0

35

OPAL Linux timer compoment

Makefile.am
project mca framework component

opal / mca / timer / linux

LLLNLS 7 N

AL OPAL OPAL timer OPAL linux
tree frameworks components timer component

December 2012 CISCO

7

OMPI TCP BTL component

(el configure
README
NEWS
VERSION

...others...
ompi

orte

opal

December 2012 CISCO

72

36

December 2012

OMPI TCP BTL component

attribute

class
communicator

config
...others...
mca

OMPI
project tree

alaln
cisco

73

December 2012

OMPI TCP BTL component

allocator
bcol

bml

o]

coll
common
crep
...others...

OMPI OMPI
project tree frameworks

alaln
cisco

74

37

OMPI TCP BTL component

base

mXx

ofud
openib
portals
sctp
...others...
tcp

OMPI OMPI OMPI BTL

project tree frameworks components

alialn
December 2012 CISCO

75

OMPI TCP BTL component

Makefile.am

project mca framework component

ompi / mca / btl / tcp

g

endpoint.c
...others...

P OMPI OMPI BTL OMPI TCP BTL

tree frameworks components component

alaln
December 2012 CISCO

76

38

Merged architecture views (review)

MPI application

Open MPI core (OPAL, ORTE, and OMPI layers)

Framework j Framework f§ Framework | Framework j Framework § Framework Framework

a aofl ol o o a al a o al a S
- E] E|E = s £l E = €| € =
o ol oo /5] S 55 5 E|E E
o OfoO|O (&) (&) OO (&) |0 (]
December 2012 ucllls.‘u:lc;. .

Merged architecture views

MPI application

Open MPI core (OPAL, ORTE, and OMPI layers)

MPI byte gMPI collctve. Process

Distributed MPI one High resltn.

transfer layerl| operations [launch&mon.f interfaces filesystem [sided opns. timers
(btl) (coll) (plm) (if) (dfs) (osc) o (timer)
<
= o a g - c
o — £ = ° © £
@zl Rl <Bil | -B: sl GRE E
7] = 2 § = o Q = 3
December 2012 "C||'s"':lc;' 78

39

Header File Conventions

Framework interface defined in

= <project>/mca/<framework>/<framework>.h
= This is mandatory

Public base functions declared in

December 2012

= <project>/mca/<framework>/base/base.h
= This is common, but not mandatory

dfhefn
CISCO

79

December 2012

BTL framework header

ompi / mca / btl / btl.h

PVI (K< 1 [~)
...others...
tcp
OMPI OMPI OMPI BTL
project tree frameworks components

diegn
CISCO

80

40

BTL base public header

P OMPI OMPI BTL OMPI BTL
tree frameworks components base

alialn
December 2012 cisco

81

Components

Back-end component magic

= Function pointers

= Usually compiled as dynamic shared objects
(DSQO’ s) in .so files (“plugins”)

= But can be included in libmpi (etc.)

Use GNU Libtool “Itdl” library

= Portable dlopen(), disym()
= Even works on Windows
= Not GPL (!)

alaln
December 2012 cisco

82

41

Component implementations

Build system requirements:

= configure.m4

" Makefile.am

= Will not discuss these in detail today

Details of component build requirements:

https://svn.open-mpi.org/trac/ompi/wiki/
devel/CreateComponent

" "
December 2012 cisco

83

Component implementations

Freedom of implementation

= As many .c and .h files as you want
= Can even have subdirectories

End result, needs to produce

mca <framework> <component>.so
= Examples

mca_btl tcp.so
mca plm rsh.so

" "
December 2012 cisco

84

42

Each framework is unique

The MCA base is strictly defined

Each framework builds upon the base

= But definitions are framework-specific

= Every framework is different

= Depends on what the framework is for
Therefore somewhat difficult to describe

But most follow common conventions

December 2012 cisco &

Component Interface

Defined by the framework
Typically has some kind of selection function

Framework asks each component:
= “Do you want to be used with X?”
= Where “X” is relevant to the framework

Examples
= BTL: “Do you want to be used with this process?”

= Coll: “Do you want to be used with MPI
communicator X?”

December 2012 cisco %

43

Component / Module Lifecycle

€ Component
% = Open DSO (if necessary)
g- = Open: per-process initialization
8 Selection = Selection: per-scope
— determination if want to use
[= Close: per-process finalization
Initialization = Close DSO (if necessary)
° Module
g = Initialization; per-scope, if
§ Normal usage component is selected
= Normal usage
= Finalization: per-scope cleanup
Finalization
s
§
Decembel 20— 'IC||lS.éIC;I 87

Where to run make (redux)

Top-level directory
= Makes everything
S make all
libopen-pal

libopen-rte

libmpi

alialn
December 2012 cisco 8

44

Where to run make (redux)

Top-level directory
= Makes everything $ cd opal

Top-level project 5 make all

directories libopen-pal

= Builds entire project
library

alialn
December 2012 cisco

89

Where to run make (redux)

Top-level directory

= Makes everything $ cd orte
Top-level project 5 make all
directories

= Builds entire project

library libopen-rte

alaln
December 2012 cisco

90

45

THIS SLIDE IS OBSOLETE!

After we recorded the video, we made changes
to the Open MPI build system that made this slide
be incorrect.

Specifically: libopen-rte does *not* include libopen-pal,
and libmpi does not include libopen-rte.

So you can “make” in in project directory, and
even “make install”.

December 2012

Where to run make (redux)

In individual component directories
= E.g.,, make all ormake install
= Saves a /ot of time

Example

$ cd ompi/mca/btl/tcp
.modify the TCP BTL..

$ make install

alaln
cisco

92

46

More related wiki pages

The role of autogen.pl
https://svn.open-mpi.org/trac/ompi/wiki/

devel/Autogen
How to add a component

https://svn.open-mpi.org/trac/ompi/wiki/
devel/CreateComponent

How to add a framework

https://svn.open-mpi.org/trac/ompi/wiki/
devel/CreatigFramework

December2012 — o %

Framework / component
prefix rule

Public names / symbols must be prefixed

= project framework component <name> (usually)
= framework component <name>

* mca_framework component <name>
Component struct only — special case

alaln
December20t2 cleco ad

47

Framework / component

prefix rule
WARNING (historical note):

= <project> prefix was only added recently

= Many component files and symbols do not have
<project> prefix

= All new names should be project-prefixed

= Will be fixed over time

alaln
December 2012 cisco 9

Prefix rule examples

Public function: opal timer linux init()
Public symbol: orte plm rsh started

Filename: btl tcp component.c
= Note lack of <project> -- should be updated!

alialn
December 2012 cisco %

48

Prefix rule rationale

All the .c> .0 files exist in a single process
= Cannot have filename collisions

= Cannot have symbol collisions (variables,
functions, or types)

Also cannot collide with user app symbols

alialn
December 2012 cisco kU

Prefix rule in project cores

Outside of frameworks / components

= Use <project> prefix for symbols

= Subset as appropriate
Func: ompi free list init()
Variable: orte plm base
Type: opal list t

Same rationale applies:

= Avoid symbol collisions in OMPI

= Avoid symbol collisions with MPI application

alialn
December 2012 cisco 9

49

Public vs. private symbols

Remember: this is middleware

» Only make public what you need to
OMPI defaults to private symbols
= Must declare symbols to be public

= Use “DECLSPEC” macro (per project)
ORTE_DECLSPEC bool orte plm rsh started;

Components invoked by function pointers
= Most symbols do not need to be public

alaln
December 2012 cisco 9

Portability

Beware of Linux / GCC-specific-isms
= Non-portable code goes in components
= Or surrounded by #if
All .c files must have code that is called

= Do not have “constants.c” with no functions

= Some linkers will drop .0’s with no callable
code (e.g., OS X)

alialn
December 2012 cisco 10

50

Run-Time Parameters

December 2012

alaln
cisco

101

Tunable parameters

Philosophy: do not use constants

= Use run-time parameters instead

Referred to as “MCA parameters”

= Somewhat misleading name

= Means: service provided by the MCA base

= Does not mean that they are restricted to MCA

components or frameworks

= OPAL, ORTE, and OMPI projects have “base”

December 2012

parameters, too

alaln
cisco

102

51

Rationale

Make everything a run-time decision
= Give every param a “sensible” default
= ...where possible

Parameters usually indicate:

= Values (e.g., short/long message size)
= Behavior (e.g., selection of algorithm)

Much easier than recompiling

alialn
December 2012 cisco

103

Intrinsic MCA param:

framework name

Each framework name is an MCA param
= Specifies which components to open

MCA base automatically registers it

= Comma-delimited list of component names
= Default value is empty (meaning “all”)
Inclusionary or exclusionary behavior
btl=tcp,self,sm

btl="tcp

alaln
December 2012 cisco

104

52

MCA param lookup order

“Override” value (set by API)

mpirun command line

" mpirun —mca <name> <value>
Environment variable

= setenv OMPI_MCA <name> <value>
File

" S$SHOME/.openmpi/mca-params.conf

= Sprefix/etc/openmpi-mca-params.conf

(these locations are themselves tunable)

Default value o

December 2012 cisco

105

Using MCA parameters

Characteristics

= Strings and integers

= Read-only (information) and read-write
= Private and public

WARNING: Lookup is slow!

= Do not put in critical performance path
= Do lookups at beginning of scope

alaln
December 2012 cisco

106

53

MCA param examples

btl _udverbs_version

= Read-only, string version of the Verbs library
that udverbs BTL was compiled against

btl_tcp if include

= Read-write, string list of IP interfaces to use
bl

= Read-write, list of BTL components to use
orte_base_singleton

= Private, whether this process is a singleton

alaln
cisco

December 2012 107

Sidenote: ompi info command

Tells everything about OMPI installation

* Finds all components and all params

= Great for debugging

Can look up specific component

* ompi info --param <framework> <component
= Shows params, current values, where set from

= Can also use keyword “all”

--parsable option

December 2012 cisco

108

MCA param API

See opal/mca/base/mca _base param.h
Register and lookup functions

= Several variations of each

Components register params during
component register (or open; deprecated)

* ompi info calls register/open/close on every
component that it finds (to discover
parameters)

alialn
December 2012 cisco

109

Prefix rule and MCA params

MCA params must be prefixed
= Does not include the project name

<framework> <component> <param name>

Examples
btl tcp mtu
coll basic_bcast crossover

Register API function takes 3 strings

= When registering in core, use:
Framework = project name
Component = “base])...;..

December 2012 cisco

110

95

Common Code Highlights

alialn
December 2012 cisco

M

Init / finalize

<foo> init() to initialize something

<foo> finalize() to finalize something
Examples:

* ompi mpi init(): initializes OMPI layer, calls
= orte_init(): initializes ORTE layer, calls

= opal init(): initializes OPAL layer

Paired with ompi mpi finalize(), etc.

= Frees resources, etc.

alaln
December 2012 cisco

12

56

Init / finalize

Not just used for overall projects
Also used for individual subsystems

ompi op init()
2> ompi op finalize()
opal datatype init()
- opal datatype finalize()

alialn
December 2012 cisco

13

Utility code

<project>/util/*.[h,c]

E.g., OPAL has lots of compatibility code
= asprintf, gsort, basename, strncpy

Useful “add-on” code

= Manipulate argv arrays (opal/util/argv.h)

= printf debugging code (opal/util/output.h)

= Error reporting (opal/util/show_help.h)

= |P interfaces (opal/util/if.h)

alaln
December 2012 cisco

14

57

Arrays of strings

See opal/util/arg.h:opal argv_ *()
Simple functions for maintaining argv-style
arrays of strings

= Prepend / append (resize if necessary)

= Insert / remove (resize if necessary)

= Split / join

= Get length of array

= Free array (and all strings)

alaln
December 2012 cisco s

opal output() debugging code

Function to emit debugging / error
messages to stderr, stdout, file, syslog, ...
= Versions to simplify debugging output

= Stream 0 prepends host, PID

Printf-like arguments

opal output(0, “hello, world”);

opal output verbose(0, 10, “debugging..”);
OPAL OUTPUT(0, “--enable-debug only”);
OPAL_OUTPUT VERBOSE(...);

alaln
December 2012 cisco ne

58

Friendly error messages

opal/util/opal show help.[h,c]

Print friendly messages for users

= Message in text file rather than in source code
= Can use printf substitutions (%s, %d, etc.)

= De-duplicates messages

Example

* opal show help(“help-mpi-btl-tcp.txt”,
“invalid minimum port”, true, “ipv4”,
default value, hostname, port num);

alaln
December 2012 cisco il

Friendly error messages

Contents of help-mpi-btl-tcp.txt:
[invalid minimum port]
WARNING: An invalid value was given for the
btl tcp port min %s. Legal values are in the

range [l .. 2716-1]. This value will be

ignored; OMPI will use the default value of
%d.

Local host: %s
Value: sd

alaln
December 2012 cisco ne

59

Discover IP interfaces

See opal/util/if.hiopal if *()
STL-like iteration over OS IP interfaces

= Get info about each interface
= Name, flags, netmask, loopback, etc.

" "
December 2012 cisco

19

Object system

C-style reference counting object system

“Poor man’s C++”
= Single inheritance

= Constructors / destructors associated with
each object instance

Statically or dynamically allocated objects

" "
December 2012 cisco

120

60

Object system example

Define class in header

typedef struct ompi foo t {
ompi parent t parent;
void *first_member;

} ompi foo_ t;
OBJ_CLASS DECLARATION(ompi foo t);
ompi parent t must be a object

* Root objectis opal object t

December 2012 cisco

121

Object system example

Must instantiate class descriptor in .c file

OBJ CLASS_INSTANCE (ompi foo t,
ompi parent t, foo construct,
foo destruct);

Local constructor / destructor functions
» Both take one param: pointer to the object

Constructors and destructors called
recursively up the object stack

December 2012 cisco

122

61

Dynamic objects

Create dynamically allocated object

= |nitial reference count set to 1

ompi foo t *foo = OBJ NEW(ompi foo t);
Increase reference count

OBJ RETAIN(foo);

Decrease reference count

OBJ RELEASE(foo0);

Object destroyed and freed when reference
count hits 0

December 2012 cisco

123

Static objects

Construct object

ompi foo t foo;

OBJ CONSTRUCT(&foo, ompi foo t);
Destruct object:

OBJ DESTRUCT (&fo0);

Can use OBJ RETAIN/OBJ RELEASE, but
= “Badness” if reference count hits 0

= No automatic destruction if object goes out of
scope

December 2012 cisco

124

62

Object-based containers

Lists, free lists, hash tables, value array,
atomic LIFO list

OMPI provide additional functionality
= Shared memory fifo, red-black tree

Such OBJ-based code usually found in
<project>/class

alaln
December2012 seco

125

Linked List

opal list t is a doubly-linked list
ltem ownership transferred

= No copies like in STL

= [tem only belong to one list

Pointers to items never invalidated by
opal list functions

O(1) insert, delete, join, get size
Splice and sort routines
Large debugging performance impact

alaln
December2012 seco

126

63

...and others

Go explore:

" <project>/util

" <project>/class

If you find yourself writing “glue” code
= Look first in util directories

= |f not there, consider if you should put it in
util

December 2012 cisco

127

5

Hardware Locality (“hwloc”)

December 2012 cisco

128

64

Hardware Locality (hwloc)

High performance computing is all about
location, Location, LOCATION!

= NUMA is now common

= Can consider network as next (several)
level(s) of locality: NUNA

Performant code must understand locality

December 2012

alaln
cisco

129

Hardware Locality (hwloc)

Hwloc provides

inside-the-server | mee
to o I O I NUMANode P#0 (12GB) | I NUMANode P#1 (12GB) |
p gy Socket P#L 200 pei 140163 Socket P#0
= CLI tamsace)
P rettyprl nt L2 (256KB) L2 (256KEB!) L2 (256KE) L2 (256KB)
JPG, PNG, PDF, .
n XML Core P#0 Core P#1 Core P#0 Core P#1
[| C API PUP#4 PUP#6 | FEEEED PUP#5 PUP#7
Istopo(1) draws
these pictures
alaln 130

December 2012 cisco

65

Hwloc example

Machine (24GB)

I NUMANode P#0 (12GB) | | NUMANode P#1 (12GB) |
1,0
Socket P#1 (|, PCl 14e4:163b Socket P#0
| L3 (8192KB) | etho | L3 (8192KB) |
| L2 (256KB) | | L2 (256KB) | I L2 (256KB) | | L2 (256KB) |

PCI 1000:0060

| L1 (32KB) | I L1(32KB) I | L1(32KB) I I L1 (32KB) |
Core P#0 Core P#1 Core P#0 Core P#1
PCI 8086:3a20
PUP#0 PUP#2 PUP#1 PUP#3
2,0
| PCI 15b3:634a
PUP#4 PUP#6 - PUP#5 PUP#7
alaln
December 2012 Cisco =
Machine (64GB)
‘ NUMANode P#0 (32GB)
20 2
Socket P#0 O
‘ 13 (20M8) ‘
‘ 12 (256K8) ‘ ‘ L2 (256KB) ‘ ‘ L2 (256K8) ‘ ‘ 12 (256K8) ‘ ‘ L2 (256KB) ‘ ‘ L2 (256KB) ‘ ‘ 12 (256K8) ‘ ‘ L2 (256K8) ‘ 20
PCI 8086:1521
‘ L1d (32K8) ‘ ‘ L1d (32KB) ‘ ‘ L1d (32k8) ‘ ‘ L1d (32K8) ‘ ‘ L1d (32KB) ‘ ‘ L1d (32KB) ‘ ‘ L1d (32K8) ‘ ‘ L1d (32KB) ‘
‘ L1i (32K8) ‘ ‘ L1i (32K8) ‘ ‘ L1i (32KB) ‘ ‘ L1i (32K8) ‘ ‘ L1i (32K8) ‘ ‘ L1i (32K8) ‘ ‘ L1i (32KB) ‘ ‘ L1i (32K8) ‘
PCI 1137:0043
Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5 Core P#6 Core P#7
PU P#0 PUP#1 PUPH2 PUP#3 PU P#4 PUP#S PUP#E PU P#T
PCI 1137:0043
PUP#16 PU P#17 PUP#1B PUP#19 PU P#20 PUP#21 PU P#22 PU P#23
‘ NUMANode P#1 (32GB) ‘
4.0 40
Socket P#1 O——J—— Pci1000:005b
‘ L3 (20MB) ‘
‘ L2 (256K8) ‘ ‘ L2 (256KB) ‘ ‘ L2 (256KB) ‘ ‘ L2 (256K8) ‘ ‘ L2 (256KB) ‘ ‘ L2 (256KB) ‘ ‘ 12 (256K8) ‘ ‘ L2 (256KB) ‘
‘ L1d (32KB) ‘ ‘ L1d (32KB) ‘ ‘ L1d (32kB) ‘ ‘ L1d (32K8) ‘ ‘ L1d (32KB) ‘ ‘ L1d (32KB) ‘ ‘ L1d (32K8) ‘ ‘ L1d (32KB) ‘
‘ L1i (32K8) ‘ ‘ L1i (32K8) ‘ ‘ L1i (32KB) ‘ ‘ L1i (32KB) ‘ ‘ L1i (32K8) ‘ ‘ L1i (32K8) ‘ ‘ L1i (32KB) ‘ ‘ L1i (32K8) ‘
Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5 Core P#6 Core P#7
PU P#B PU P#9 PUP#10 PUP#11 PU P#12 PUP#13 PUPH1A PU P#15
PU P#24 PU P#25 PUP#26 PU P#27 PU P#28 PUP#29 PU P#30 PU P#31

Indexes: physical

Date: Thu Aug 2 10:07:28 2012

66

Hwloc capabilities

Query topology information

= As shown in previous pictures

= C API provides tree of all that information
Memory and processor affinity

= hwloc-bind(1) much mo’ betta than numactl(1)
$ hwloc-bind socket:0.core:3 my program

hwloc_ set cpubind(..)
Works on many different Oss
= Linux, OS X, Windows, BSDs, ...etc.

alialn
December 2012 cisco

133

Hwloc sub-project

An official sub-project of Open MPI

= Has its own SVN repository

= Developed mainly by INRIA (France)

= A full copy of it is maintained on OMPI’'s SVN

Fully documented
= Excellent stand-alone tool (unrelated to MPI)
= Highly encourage you to check it out

alaln
December 2012 cisco

134

67

Open MPI’s use of hwloc

Wholly embeds a copy of hwloc
= Can be compiled to use external hwloc
= Embedded hwloc is certified to work properly

Used to discover server topology
= Effect processor and memory affinity
= Query cache sizes

= Query process peer locality (same socket,
NUMA node, etc.)

= Query PCI device locality

alialn
December 2012 cisco

135

Open MPI’s use of hwloc

...and we’re just getting started

Anticipate much more use of the hwloc API
over time

= MPI collective algorithms

= MPI shared memory point-to-point
communications

= . .etc.

alaln
December 2012 cisco

136

68

=

Questions?

ccccc

Thank you!

e @

CISCO GREENPLUM.

IIIIIIIIIIIII

I¢L~

