Hardware Locality (hwloc)
2.13.0rc1

Generated by Doxygen 1.15.0

1 Hardware Locality

1.1 Table of Contents e e e

1.2hwloc OVEIVIEW e e e e e e e e

1.3 Command-line Examples

1.4 Programming Interface L e e
1.4.1 Portability
1.42 APIExample

1.5Questionsand Bugs e e e e e e
1.6 History / Credits e e e e e e

2 Installation

2.1 Basic Installation L L e e e

2.2 Optional Dependencies e e

23 Installing froma Gitclone e

3 Compiling software on top of hwloc's C API

3.1 Compiling
3.2 Compiling

ontop of hwloc's CAPIwithGNUMake
ontop of hwloc's C APIwithCMake i

4 Terms and Definitions

4.1 Objects

42Indexesand Sets L L e e e e e

4.3 Hierarchy,

Treeand Levels e e e

5 Command-Line Tools

5.1 Istopo and Istopo-no-graphics L
5.2hwloc-bind e

5.3 hwloc-calc e e

5.4 hwloc-info
5.5 hwloc-dist
5.6 hwloc-ps

(11

5.7 hwloc-annotate e

5.8 hwloc-diff,

hwloc-patch and hwloc-compress-dir L

5.9 hwloc-dump-hwdata e

5.10 hwloc-gather-topology and hwloc-gather-cpuid L

6 Environment Variables

6.1 Environment variables for changing the source of topology information

6.2 Environment variables for tweaking topology objects Lo o

6.3 Environment variables for tweaking hwloc heuristics Lo o

6.4 Environment variables for changing allowed resources oo

11
11
11
12

13
13
13

15
15
16
16

19
19
19
19
20
20
20
20
20
20
21

Generated by Doxygen

6.5 Environment variables for controlling components and plugins L. 27
6.6 Environment variables for changing the verbosity oL 27

7 CPU and Memory Binding Overview 29
7.1 Binding Policies and Portability 29
7.2 Joint CPU and Memory Binding (ornot) e 29
7.3 Current Memory Binding Policy 30

8 1/0 Devices 31
8.1 Enabling and requirements L 31
8.21/00bjeCts e e e 31
8.30S deviCES e 32
8.4 PCldevicesand bridges e 33
8.5 Consulting I/O devicesand binding 33
8.8 Examples e 33

9 Miscellaneous objects 37
9.1 Misc objects added by hwloc e 37
9.2 Annotating topologies with Misc objects 37

10 Object attributes 39
10.1 Normal attributes e 39
10.2 Customstring infos L L e 40
10.2.1 Operating System Information L 40

10.2.2 hwloc Information 40

10.2.3 Hardware Platform Information 41

10.2.4 CPU Information e 42

10.2.5 0S Device Information L 43

10.2.5.1 GPU and Coprocessor OS Device Information 43

10.2.5.2 Other OS Device Information 45

10.2.6 Other Object-specific Information 46

10.2.7 User-Given Information L 48

11 Topology Attributes: Distances, Memory Attributes and CPU Kinds 49
11 Distances L e 49
11.2 Memory Attributes L e 50
113 CPUKINGAS e 50

12 Heterogeneous Memory 53
12.1 Memory Tiers and Defaultnodes 53
12.2 Using Heterogeneous Memory from the command-line 54

Generated by Doxygen

12.3 Using Heterogeneous Memory fromthe CAPI
12.3.1 Iterating over the list of (heterogeneous) NUMA nodes

12.3.2 Iterating over local (heterogeneous) NUMA nodes

13 Importing and exporting topologies from/to XML files
13.1 libxml2 and minimalistic XML backends

13.2 XML import error management L e e e e e e

14 Synthetic topologies
14.1 Synthetic description string L e e
14.2 Loading a synthetictopology e e e e e
14.3 Exporting a topology as a syntheticstring

15 Interoperability With Other Software

16 Thread Safety

17 Components and plugins
17.1 Components enabled by default L
17.2 Selecting which componentstouse e e
17.3 Loading components from pluginso

17.4 Existing components and plugins L e e e

18 Embedding hwloc in Other Software
18.1 Using hwloc's M4 Embedding Capabilities
18.2 Example Embedding hwloc L

19 Frequently Asked Questions (FAQ)
19.1 CONCEPLS o o o e e

19.1.1 1 only need binding, or the number of cores, why should luse hwloc ?

19.1.8 What happens if my topology is asymmetric?
19.1.9 What happens to my topology if | disable symmetric multithreading, hyper-threading, etc. in the

19.2.1 | do not want hwloc to rediscover my enormous machine topology every time | rerun a process . .

55
55
55

57
57
58

59
59
60
60

61

63

65
65
65
66
66

69
69
70

73
73
73
73
74
74

. 75

75
75
76

77
77
78

Generated by Doxygen

19.2.2 How many topologies may l use in my program? 78
19.2.3 How to avoid memory waste when manipulating multiple similar topologies? 78
19.2.4 How do | annotate the topology with private notes? 79
19.2.5 How do | create a custom heterogeneous and asymmetric topology? 79
19.3Caveats e e 80
19.3.1 Why is Istopo slow? e 80
19.3.2 Does hwloc require privileged access? 80
19.3.3 What should | do when hwloc reports "operating system" warnings? 81
19.3.4 Why does Valgrind complain about hwloc memory leaks? 81

19.4 Platform-specific L e e e e 82
19.4.1 How do | enable ROCm SMI and select which versiontouse? 82
19.4.2 How do | enable CUDA and select which CUDA versiontouse? 82
19.4.3 How do | find the local HBM NUMA node on heterogeneous memory systems? 82
19.4.4 Why do | need hwloc-dump-hwdata for memory on Intel Xeon Phi processor? 83
19.4.5 How do | build hwloc for BlueGene/Q? 83
19.4.6 How do | build hwloc for Windows? 83
19.4.7 How to get useful topology information on NetBSD? 84
19.4.8 Why does binding fail on AIX? 84

19.5 Compatibility between hwloc versions e 84
19.5.1 How do | handle APl changes? e 84
19.5.2 What is the difference between API and library version numbers? 84
19.5.3 How do I handle ABl breaks? 0 e 85
19.5.4 Are XML topology files compatible between hwloc releases? 85
19.5.5 Are synthetic strings compatible between hwloc releases? 85
19.5.6 Is it possible to share a shared-memory topology between different hwloc releases? 85

20 Upgrading to the hwloc 2.0 API 87
20.1 New Organization of NUMA nodes and Memory it it 87
20.1.1 Memory children L 87
20.1.2 Examples L 87
20.1.3NUMA level anddepth e 88
20.1.4 Finding Local NUMA nodes and looking at Childrenand Parents 88

20.2 4 Kinds of Objects and Children e 89
20.2.1 /O and Misc children L e 89
20.2.2Kindsof objects e 89
20.3HWLOC_OBJ_CACHE replaced e e e s e e e e 90
20.4 allowed_cpuset and allowed_nodeset only in the maintopology 90
20.5 Object depths are now signed int 90
20.6 Memory attributes become NUMANode-specific 90

Generated by Doxygen

20.7 Topology configuration changes 90
20.8 XML changes e e e e 91
20.9 Distances APl totally rewritten L 91
20.10 Return values of functions L L 91
20.11 Misc APl changes o e e 92
20.12 APlremovals and deprecationso e e e e 92

21 Topic Index 93
211 TOPICS . . o o e e e 93

22 Directory Hierarchy 95
22.1 Directories e e e 95

23 Data Structure Index 97
231 Data Structures e e 97

24 Topic Documentation 99
241 Errorreporting inthe APl o L L 99
24.2 APIVEISION . . . o e e 99
24.2.1 Detailed Description e e e 99

24.2.2 Macro Definition Documentation L 99

24221 HWLOC_API_VERSION e 99

24222 HWLOC_COMPONENT_ABI e e e e 99

24.2.3 Function Documentation L 100

24.2.3.1 hwloc_get_api_version() 100

24.3 Object Sets (hwloc_cpuset_t and hwloc_nodeset t) 100
24.3.1 Detailed Description L e 100

24.3.2 Typedef Documentation e e 100

24321 hwloc_const_cpuset_t 100
24.3.2.2hwloc_const nodeset t 100

24323 hwloc_cpuset_t L 100

24324 hwloc_nodeset t e 101

244 ObjeCt TYPES . . . o o o o e e 101
24.41 Detailed Description e 101

24.4.2 Macro Definition Documentation L L L 101

24421 HWLOC_TYPE_UNORDERED ittt 101

24.4.3 Typedef Documentation e e e 102

24.43.1 hwloc_obj_bridge_type t L 102
24.43.2hwloc_obj_cache type t 102

24433 hwloc_obj_osdev_type t 102

24.4.4 Enumeration Type Documentation L 102

Generated by Doxygen

24.4.4.1 hwloc_obj_bridge_type_e 102

24442 hwloc_obj_cache type e L 102
24443 hwloc_obj_osdev_type_e e 102
2444 4 hwloc_obj_type t 103

24.4.5 Function Documentation L L e e 105
24.4.5.1 hwloc_compare_types()« . o 105

24.5 Object Structure and Attributes L L 105
24.5.1 Detailed Description e 105
2452 Typedef Documentation e 105
24521 hwloc_obj t 105

24.6 Topology Creation and Destruction 106
24.6.1 Detailed Description L e e 106
24.6.2 Typedef Documentation e e e 106
24.6.2.1 hwloc_topology_t e 106

24.6.3 Function Documentation L 106
24.6.3.1 hwloc_topology_abi_check() 106
24.6.3.2 hwloc_topology_check() 106
24.6.3.3 hwloc_topology_destroy() o 107
24.6.3.4 hwloc_topology_dup()« o 107
24.6.3.5 hwloc_topology_init() 107
24.6.3.6 hwloc_topology load() o 108

24.7 Object levels, depths and types L L e 108
24.7.1 Detailed Description L e 109
24.7.2 Enumeration Type Documentation L 109
24.7.2.1 hwloc_get_type_depth_e 109

24.7.3 Function Documentation 109
24.7.3.1 hwloc_get_depth_type()« . o o 109
24.7.3.2 hwloc_get_memory_parents_depth()o 109
24.7.3.3 hwloc_get_nbobjs_by_depth() 110
24.7.3.4 hwloc_get_nbobjs_by_type() 110
24.7.3.5 hwloc_get_next_ obj_by depth() 110
24.7.3.6 hwloc_get_next_obj by type() 110
24.7.3.7 hwloc_get_obj_by depth() 111
24.7.3.8 hwloc_get_obj_by type() 111
24.7.3.9 hwloc_get_root_obj() L 111
24.7.3.10 hwloc_get_type depth() 111
24.7.3.11 hwloc_get_type_or_above _depth() 112
24.7.3.12 hwloc_get_type or_below depth().o 112
24.7.3.13 hwloc_topology_get_depth() 112

Generated by Doxygen

vii

24.8 Converting between Object Types and Attributes, and Strings 113
24.8.1 Detailed Description e e 113
24.8.2 Function Documentation 113

24.8.2.1 hwloc_obj_attr_snprintf() 113
24.8.2.2 hwloc_obj_type_snprintf() L 113
24.8.2.3 hwloc_obj_type_string() o 114
24.8.2.4 hwloc_type_sscanf() L 114
24.8.2.5 hwloc_type_sscanf_as_depth() L 114

24.9 Consulting and Adding Info Attributes 115
24.9.1 Detailed Description e e 115
24.9.2 Function Documentation L L e e 115

249.2.1 hwloc_obj_add_info() e 115
24.9.2.2 hwloc_obj_get_info_by name() 115
24.9.23 hwloc_obj_set_subtype() 116

2410 CPUDbINAING e e 116
24.10.1 Detailed Description e e e e e 117
24.10.2 Enumeration Type Documentation 117

24.10.2.1 hwloc_cpubind_flags_t 117
24.10.3 Function Documentation L L e e 118
24.10.3.1 hwloc_get_cpubind() 118
24.10.3.2 hwloc_get_last_cpu_location()o 118
24.10.3.3 hwloc_get_proc_cpubind() 119
24.10.3.4 hwloc_get_proc_last_cpu_location()o 119
24.10.3.5 hwloc_get_thread_cpubind() 120
24.10.3.6 hwloc_set_cpubind() 120
24.10.3.7 hwloc_set_proc_cpubind() L 120
24.10.3.8 hwloc_set_thread cpubind() 121

2411 Memory binding L e e 121
24.11.1 Detailed Description e e 122
24.11.2 Enumeration Type Documentation 122

24.11.2.1 hwloc_membind_flags_t 122
24.11.2.2 hwloc_membind_policy t 123
24.11.3 Function Documentation L e e 124
24.11.8.1 hwloc_alloc() 124
2411.32 hwloc_alloc_membind() 124
24.11.3.3 hwloc_alloc_membind_policy() 125
241134 hwloc_free() e e e e 125
24.11.3.5 hwloc_get_area_membind() 125
24.11.3.6 hwloc_get_area_memlocation()o 126

Generated by Doxygen

viii

24.11.3.7 hwloc_get_ membind() 126
24.11.3.8 hwloc_get_proc_membind() 127
24.11.3.9 hwloc_set_area_membind() e 127
24.11.3.10 hwloc_set_membind() L 128
24.11.3.11 hwloc_set_proc_membind() 128

24.12 Changing the Source of Topology Discovery 129
24.12.1 Detailed Description e e 129
24.12.2 Enumeration Type Documentation L 129
24.12.2.1 hwloc_topology_components_flag_. e 129

24.12.3 Function Documentation L L e e 129
24.12.3.1 hwloc_topology_set_components() oo 129
24.12.3.2 hwloc_topology_set_pid() 130
24.12.3.3 hwloc_topology_set_synthetic()o 130
24.12.3.4 hwloc_topology_set_ xml() 131
24.12.3.5 hwloc_topology_set_xmlbuffer() 131

24.13 Topology Detection Configurationand Query L 132
24.13.1 Detailed Description 132
24.13.2 Enumeration Type Documentation 132
24.13.2.1 hwloc_topology_flags_e 132
24.13.2.2 hwloc_type_filter_e L 137
24.13.3 Function Documentation e 138
24.13.3.1 hwloc_topology_get_flags() o L 138
24.13.3.2 hwloc_topology_get_support() o o o 138
24.13.3.3 hwloc_topology_get_type_filter() 139
24.13.3.4 hwloc_topology_get_userdata() L 139
24.13.3.5 hwloc_topology_is_thissystem() 139
24.13.3.6 hwloc_topology_set_all_types filter() 140
24.13.3.7 hwloc_topology_set_cache_types_filter() 140
24.13.3.8 hwloc_topology_set_flags() 140
24.13.3.9 hwloc_topology_set_icache_types filter(), 140
24.13.3.10 hwloc_topology_set_io_types_filter()o 141
24.13.3.11 hwloc_topology_set_type filter() L 141
24.13.3.12 hwloc_topology_set userdata() L. 141

24.14 Modifying aloaded Topology L 141
24.14.1 Detailed Description e 142
24.14.2 Enumeration Type Documentation L 142
241421 hwloc_allow_flags_e 142
241422 hwloc_restrict_flags_e L 142
24.14.3 Function Documentation L L e e 143

Generated by Doxygen

24.14.3.1 hwloc_obj_add_other obj_sets(), 143

24.14.3.2 hwloc_topology_alloc_group_object() o 143

24.14.3.3 hwloc_topology_allow() 143

24.14.3.4 hwloc_topology_free_group_object() 144

24.14.3.5 hwloc_topology_insert_group_object() 144

24.14.3.6 hwloc_topology_insert_misc_object() L. 145

24.14.3.7 hwloc_topology_refresh() 145

24.14.3.8 hwloc_topology_restrict() 146

2415Kinds of object Type L e 146
24.15.1 Detailed Description e e e e 146
24.15.2 Function Documentation L e 146
24.15.2.1 hwloc_obj_type is_cache() 146

24.15.2.2 hwloc_obj_type_is_dcache() 147

24.15.2.3 hwloc_obj_type_is_icache() 147

241524 hwloc_obj_type is_io() o 147

24.15.2.5 hwloc_obj_type_is_memory() 147

24.15.2.6 hwloc_obj_type_is_normal() 147

2416 Finding Objects inside a CPU set 148
24.16.1 Detailed Description e e e 148
24.16.2 Function Documentation L e 148
24.16.2.1 hwloc_get_first_largest_obj_inside_cpuset(), 148

24.16.2.2 hwloc_get_largest_objs_inside_cpuset() 148

24.16.2.3 hwloc_get_nbobjs_inside_cpuset_by depth() 149

24.16.2.4 hwloc_get_nbobjs_inside_cpuset_by type()o 149

24.16.2.5 hwloc_get_next_obj_inside_cpuset by depth() 149

24.16.2.6 hwloc_get_next_obj_inside_cpuset by type() 150

24.16.2.7 hwloc_get_obj_index_inside_cpuset() 150

24.16.2.8 hwloc_get_obj_inside_cpuset_by depth() 150

24.16.2.9 hwloc_get_obj_inside_cpuset_by_type() oL 151

2417 Finding Objects covering atleast CPU set 151
24.17.1 Detailed Description L 151
24.17.2 Function Documentation L 151
24.17.2.1 hwloc_get_child_covering_cpuset() oo 151

24.17.2.2 hwloc_get_next_obj_covering_cpuset_by depth() 152

24.17.2.3 hwloc_get_next_obj_covering_cpuset by type() 152

24.17.2.4 hwloc_get_obj_covering_cpuset() L 153

24.18 Looking at Ancestor and Child Objects 153
24.18.1 Detailed Description e e e 153
24.18.2 Function Documentation L L e e 153

Generated by Doxygen

24.18.2.1 hwloc_get_ancestor_obj_by depth() 153

24.18.2.2 hwloc_get_ancestor_obj by type() Lo 153

24.18.2.3 hwloc_get_common_ancestor_obj()o 154

24.18.24 hwloc_get next_child() 154

24.18.2.5 hwloc_obj_is_in_subtree() L 154

24.19 Looking at Cache Objects o e 155
24.19.1 Detailed Description L e e e 155
24.19.2 Function Documentation L e 155
24.19.2.1 hwloc_get_cache_covering_cpuset() 155

24.19.2.2 hwloc_get_cache_type depth() o 155

24.19.2.3 hwloc_get_shared_cache_covering_obj() 155

24.20 Finding objects, miscellaneous helpers L 156
24.20.1 Detailed Description e e 156
24.20.2 Function Documentation L L e e 156
24.20.2.1 hwloc_bitmap_singlify_per_core() 156

24.20.2.2 hwloc_get_closest_objs() 156

24.20.2.3 hwloc_get_numanode_obj by _os_index() oL 157

24.20.2.4 hwloc_get_obj_below_array_by type() 157

24.20.2.5 hwloc_get_obj_below_by type() 157

24.20.2.6 hwloc_get_obj_with_same_locality() oo 158

24.20.2.7 hwloc_get_pu_obj by os_index() 158

24.21 Distributing items over atopology 159
24.21.1 Detailed Description e e 159
24.21.2 Enumeration Type Documentation L 159
24.21.21 hwloc_distrib_flags_e 159

24.21.3 Function Documentation L 159
242131 hwloc_distrib() 159

24.22 CPU and node sets of entire topologies L 160
24.22.1 Detailed Description e e 160
24.22.2 Function Documentation L e e 160
24.22.2.1 hwloc_topology_get_allowed_cpuset() 160

24.22.2.2 hwloc_topology _get_allowed_nodeset(), 160

24.22.2.3 hwloc_topology_get_complete_cpuset() 161

24.22.2.4 hwloc_topology_get_complete_nodeset() 161

24.22.2.5 hwloc_topology_get_topology_cpuset() 161

24.22.2.6 hwloc_topology_get_topology_nodeset() 162

24.23 Converting between CPU setsandnode sets 162
24.23.1 Detailed Description e e e 162
24.23.2 Function Documentation L L e 162

Generated by Doxygen

xi

24.23.2.1 hwloc_cpuset_from_nodeset()o 162
24.23.2.2 hwloc_cpuset_to_nodeset() o 163

2424 Finding /O objects L e e 163
24.24 1 Detailed Description e e e e e 163
24.24.2 Function Documentation L L e e 163
24.24.21 hwloc_bridge_covers_pcibus() oL 163
242422 hwloc_get next_bridge() 163
242423 hwloc_get next_osdev() 164
242424 hwloc_get next_pcidev() 164
24.24.2.5 hwloc_get_non_io_ancestor obj() Lo Lo 164
24.24.2.6 hwloc_get_pcidev_by busid() 165
24.24.2.7 hwloc_get_pcidev_by busidstring() oo 165

2425 The bitmap APl e 165
24.25.1 Detailed Description 166
24.25.2 Macro Definition Documentation L 167
24.25.2.1 hwloc_bitmap_foreach_begin oo o 167
24.25.2.2 hwloc_bitmap_foreach_end 167
24.25.3 Typedef Documentation L 167
24.253.1 hwloc_bitmap_t. 167
24.25.3.2 hwloc_const_bitmap_t 167
24.25.4 Function Documentation L e 167
24.25.41 hwloc_bitmap_allbut() 167
24.25.4.2 hwloc_bitmap_alloc() 168
24.25.4.3 hwloc_bitmap_alloc_full() 168
24.25.4.4 hwloc_bitmap_and() 168
242545 hwloc_bitmap_andnot() 168
24.25.4.6 hwloc_bitmap_asprintf() 168
24.25.4.7 hwloc_bitmap_clr() o 169
24.25.4.8 hwloc_bitmap_clr_range()« . e 169
24.25.4.9 hwloc_bitmap_compare() 169
24.25.4.10 hwloc_bitmap_compare_first() oL 169
24.25.4.11 hwloc_bitmap_copy() o o 170
24.25.412 hwloc_bitmap_dup() 170
24.25.413 hwloc_bitmap_fill() 170
24.25.4.14 hwloc_bitmap_first() 170
24.25.4.15 hwloc_bitmap_first_unset() L 170
24.25.416 hwloc_bitmap_free()« 170
24.25.4.17 hwloc_bitmap_from_ith_ulong() L 171
24.25.4.18 hwloc_bitmap_from_ulong() 171

Generated by Doxygen

24.25.4.19 hwloc_bitmap_from_ulongs() L 171

24.25.4.20 hwloc_bitmap_intersects() 171
24.25.4.21 hwloc_bitmap_isequal() 171
24.25.4.22 hwloc_bitmap_isfull() 171
24.25.4.23 hwloc_bitmap_isincluded() 172
24.25.4.24 hwloc_bitmap_isset() 172
24.25.4.25 hwloc_bitmap_iszero() 172
24.25.4.26 hwloc_bitmap_last() 172
24.25.4.27 hwloc_bitmap_last_unset() 173
24.25.4.28 hwloc_bitmap_list_asprintf()o 173
24.25.4.29 hwloc_bitmap_list_snprintf() 173
24.25.4.30 hwloc_bitmap_list_sscanf() 174
24.25.4.31 hwloc_bitmap_next() 174
24.25.4.32 hwloc_bitmap_next_unset() L 174
2425433 hwloc_bitmap_not() 174
24.25.4.34 hwloc_bitmap_nr_ulongs() 175
24.25.4.35 hwloc_bitmap_only() 175
24.25.4.36 hwloc_bitmap_or() 175
24.25.4.37 hwloc_bitmap_set() 175
24.25.4.38 hwloc_bitmap_set_ith_ulong() 175
24.25.4.39 hwloc_bitmap_set range() L 175
24.25.4.40 hwloc_bitmap_singlify() 176
24.25.4.41 hwloc_bitmap_snprintf() L 176
24.25.4.42 hwloc_bitmap_sscanf() 176
24.25.4.43 hwloc_bitmap_taskset_asprintf() oo 177
24.25.4.44 hwloc_bitmap_taskset_snprintf() Lo 177
24.25.4.45 hwloc_bitmap_taskset_sscanf() 177
24.25.4.46 hwloc_bitmap_to_ith_ulong() 178
24.25.4.47 hwloc_bitmap_to_ulong() L 178
24.25.4.48 hwloc_bitmap_to_ulongs() 178
24.25.4.49 hwloc_bitmap_weight() L 178
24.25.4.50 hwloc_bitmap_xor() 178
24.25.4.51 hwloc_bitmap_zero() 178

24.26 Exporting Topologies to XML L 178
24.26.1 Detailed Description e 179
24.26.2 Enumeration Type Documentation L 179
24.26.2.1 hwloc_topology_export_xml_flags_e 179
24.26.3 Function Documentation L e e 179
24.26.3.1 hwloc_export_obj_userdata() 179

Generated by Doxygen

24.26.3.2 hwloc_export_obj_userdata_base64() L. 180

24.26.3.3 hwloc_free_xmlbuffer() 180

24.26.3.4 hwloc_topology_export_xml() 180

24.26.3.5 hwloc_topology_export_xmlbuffer() 181

24.26.3.6 hwloc_topology_set_userdata_export_callback() 181

24.26.3.7 hwloc_topology_set_userdata_import_callback() 182

24.27 Exporting Topologies to Synthetic 182
24.27.1 Detailed Description L e e 182
24.27.2 Enumeration Type Documentation L Lo 182
24.27.2.1 hwloc_topology_export_synthetic flags e 182

24.27.3 Function Documentation L L e e 183
24.27.3.1 hwloc_topology_export_synthetic() 183

24.28 Retrieve distances between objects 184
24.28.1 Detailed Description 184
24.28.2 Enumeration Type Documentation Lo 184
24.28.2.1 hwloc_distances_kind_e L 184

24.28.2.2 hwloc_distances_transform_e o o 185

24.28.3 Function Documentation 186
24.28.3.1 hwloc_distances_get() 186

24.28.3.2 hwloc_distances_get_by depth() L. 186

24.28.3.3 hwloc_distances_get by name() oo 187

24.28.3.4 hwloc_distances_get_by type() o 187

24.28.3.5 hwloc_distances_get_ name() L 187

24.28.3.6 hwloc_distances_release() 188

24.28.3.7 hwloc_distances_transform()o 188

24.29 Helpers for consulting distance matrices 188
24.29.1 Detailed Description e e e e 188
24.29.2 Function Documentation L L e e 188
24.29.2.1 hwloc_distances_obj_index() 188

24.29.2.2 hwloc_distances_obj_pair_values() oo 189

24.30 Add distances between objects L L 189
24.30.1 Detailed Description e e 189
24.30.2 Typedef Documentation e e 190
24.30.2.1 hwloc_distances_add handle_t, 190

24.30.3 Enumeration Type Documentation Lo 190
24.30.3.1 hwloc_distances_add flag. e 190

24.30.4 Function Documentation 190
24.30.4.1 hwloc_distances_add_commit() L oL 190

24.30.4.2 hwloc_distances_add create() L Lo 190

Generated by Doxygen

Xiv

24.30.4.3 hwloc_distances_add_values() 191

24.31 Remove distances between objects L 191
24.31.1 Detailed Description e e 192
24.31.2 Function Documentation L e e 192
24.31.2.1 hwloc_distances_release_remove() o oo 192

24.31.2.2 hwloc_distances_remove() o e 192

24.31.2.3 hwloc_distances_remove_by depth() 192

24.31.2.4 hwloc_distances_remove_by_type() Lo o 192

24.32 Comparing memory node attributes for finding where to allocateon 192
24.32.1 Detailed Description e e e e 193
24.32.2 Typedef Documentation L 194
24.32.21 hwloc_memattr id t e 194

24.32.3 Enumeration Type Documentation L 194
24.32.3.1 hwloc_local_numanode_flag_eo 194

24.32.3.2 hwloc_location_type_e 195

243233 hwloc_memattr id e 195

24.32.4 Function Documentation L L e e 196
24.32.4.1 hwloc_get_local_numanode_objs() 196

24.32.4.2 hwloc_memattr_get_best_initiator() oL 197

24.32.4.3 hwloc_memattr_get _best target()o oL 197

24.32.4.4 hwloc_memattr_get by name() 198

24.32.4.5 hwloc_memattr_get_initiators() oo 198

24.32.4.6 hwloc_memattr_get targets() L 199

24.32.4.7 hwloc_memattr_get value() 199

24.32.4.8 hwloc_topology_get_default_nodeset(), 200

24.33 Managing memory attributes L 201
24.33.1 Detailed Description e e e e 201
24.33.2 Enumeration Type Documentation 201
24.33.2.1 hwloc_memattr_flag_e L 201

24.33.3 Function Documentation L e e 201
24.33.3.1 hwloc_memattr_get flags() 201

24.33.3.2 hwloc_memattr_get name() L 202

24.33.3.3 hwloc_memattr_register() L 202

24.33.3.4 hwloc_memattr_set value() e 202

2434 Kinds of CRU COres o e 203
24.34.1 Detailed Description L e e e e 203
24.34.2 Function Documentation L 204
24.34.2.1 hwloc_cpukinds_get by cpuset() o 204

24.34.2.2 hwloc_cpukinds_get_info() 204

Generated by Doxygen

XV

24.34.2.3 hwloc_cpukinds_get nr() 204

24.34.2.4 hwloc_cpukinds_register() 205

24.35 Linux-specific helpers L e 205
24.35.1 Detailed Description e e e e 205
24.35.2 Function Documentation L L e e 206
24.35.2.1 hwloc_linux_get_tid cpubind() 206

24.35.2.2 hwloc_linux_get_tid_last_cpu_location() oL 206

24.35.2.3 hwloc_linux_read_path_as_cpumask() 206

24.35.2.4 hwloc_linux_set_tid_cpubind() 207

24.36 Interoperability with Linux libnuma unsigned longmasks 207
24.36.1 Detailed Description 207
24.36.2 Function Documentation L L 207
24.36.2.1 hwloc_cpuset_from_linux_libnuma_ulongs() 207

24.36.2.2 hwloc_cpuset_to_linux_libnuma_ulongs() oL 208

24.36.2.3 hwloc_nodeset_from_linux_libnuma_ulongs() 208

24.36.2.4 hwloc_nodeset_to_linux_libnuma_ulongs() 208

24.37 Interoperability with Linux libnuma bitmask L 209
24.37.1 Detailed Description e e 209
24.37.2 Function Documentation L L e e 209
24.37.2.1 hwloc_cpuset_from_linux_libnuma_bitmask() 209

24.37.2.2 hwloc_cpuset_to_linux_libnuma_bitmask()o L. 209

24.37.2.3 hwloc_nodeset_from_linux_libnuma_bitmask() 210

24.37.2.4 hwloc_nodeset_to_linux_libnuma_bitmask() oL, 210

24.38 Windows-specific helpers e 210
24.38.1 Detailed Description e 210
24.38.2 Function Documentation L 210
24.38.2.1 hwloc_windows_get_nr_processor_groups() « v v v v v e i e e e 210

24.38.2.2 hwloc_windows_get_processor_group_cpuset() 211

24.39 Interoperability with glibc sched affinity L 211
24.39.1 Detailed Description e e e e 211
24.39.2 Function Documentation L L L e 211
24.39.2.1 hwloc_cpuset_from_glibc_sched_affinity() 211

24.39.2.2 hwloc_cpuset_to_glibc_sched_affinity() 212

24.40 Interoperability with OpenCL e 212
24.40.1 Detailed Description e 212
24.40.2 Function Documentation L L e e 212
24.40.2.1 hwloc_opencl_get_device_cpuset() oo 212

24.40.2.2 hwloc_opencl_get_device_osdev()o 213

24.40.2.3 hwloc_opencl_get_device_osdev_by index() 213

Generated by Doxygen

Xvi

24.40.2.4 hwloc_opencl_get device_pci_busid() Lo 214

24.41 Interoperability with the CUDA Driver APl 214
24.41.1 Detailed Description e e e 214
24.41.2 Function Documentation L L e e 214
24.41.2.1 hwloc_cuda_get_device_cpuset() oo 214

24.41.2.2 hwloc_cuda_get_device_osdev() 215

24.41.2.3 hwloc_cuda_get_device_osdev_by index() 215

24.41.2.4 hwloc_cuda_get_device_pci_ids() 215

24.41.25 hwloc_cuda_get_device_pcidev() o 216

24.42 Interoperability with the CUDA Runtime APl 216
24.42.1 Detailed Description 216
24.42.2 Function Documentation L 216
24.42.21 hwloc_cudart_get_device_cpuset() o 216

24.42.2.2 hwloc_cudart_get_device_osdev_by index() 216

24.42.2.3 hwloc_cudart_get_device_pci_ids() 217

24.42.2.4 hwloc_cudart_get_device_pcidev()o 217

24.43 Interoperability with the NVIDIA Management Library 217
24.43.1 Detailed Description e e 218
24.43.2 Function Documentation L L e e 218
24.43.2.1 hwloc_nvml_get _device_cpuset() 218

24.43.2.2 hwloc_nvml_get_device_osdev() Lo o 218

24.43.2.3 hwloc_nvml_get_device_osdev_by_index() 218

24.44 Interoperability with the ROCm SMI Management Library 219
24.44 1 Detailed Description L e e e e 219
24.44.2 Function Documentation L 219
24.44.2.1 hwloc_rsmi_get _device_cpuset() 219

24.44.2.2 hwloc_rsmi_get_device_osdev() Lo 219

24.44 2.3 hwloc_rsmi_get_device_osdev_by index() 220

24 .45 Interoperability with the oneAPI Level Zero interface. oo 220
24.45.1 Detailed Description e e e 220
24.45.2 Function Documentation L L e 220
24.45.2.1 hwloc_levelzero_get_device_cpuset() o 220

24.452.2 hwloc_levelzero_get device_osdev() L. 221

24.45.2.3 hwloc_levelzero_get_sysman_device_cpuset() 221

24.45.2.4 hwloc_levelzero_get_sysman_device_osdev() 222

24.46 Interoperability with OpenGL displays o e 222
24.46.1 Detailed Description L e e 222
24.46.2 Function Documentation L e e 222
24.46.2.1 hwloc_gl_get_display_by osdev() L 222

Generated by Doxygen

24.46.2.2 hwloc_gl_get_display_osdev_by_name() 223

24.46.2.3 hwloc_gl_get_display_osdev_by_port_device() 223

24.47 Interoperability with OpenFabrics 223
24.47 1 Detailed Description e e 224
24.47.2 Function Documentation L L e e 224
24.47.21 hwloc_ibv_get_device_cpuset() 224

24.47.2.2 hwloc_ibv_get device_osdev() L Lo 224

24.47.2.3 hwloc_ibv_get _device_osdev_by name() 224

24.48 Topology differences L e 225
24.48.1 Detailed Description e e e e e 225
24.48.2 Typedef Documentation L 226
24.48.2.1 hwloc_topology_diff obj_attr type t. 226

24.48.2.2 hwloc_topology_diff t 226

24.48.2.3 hwloc_topology_diff type t 226

24.48.3 Enumeration Type Documentation Lo 226
24.48.3.1 hwloc_topology_diff _apply flags. e 226

24.48.3.2 hwloc_topology_diff obj_attr type e L. 226

24.48.3.3 hwloc_topology_diff type_ e L 227

24.48.4 Function Documentation L L e 227
24.48.4.1 hwloc_topology_diff_apply() o o 227

24.48.4.2 hwloc_topology_diff build() 227

24.48.4.3 hwloc_topology_diff_destroy() 228

24.48.4.4 hwloc_topology_diff_export_xml() 228

24.48.4.5 hwloc_topology_diff_export_xmlbuffer() 228

24.48.4.6 hwloc_topology_diff load_xml() 229

24.48.4.7 hwloc_topology_diff load_xmlbuffer() 229

24.49 Sharing topologies between processes e 229
24.49.1 Detailed Description 230
24.49.2 Function Documentation L L 230
24.49.2.1 hwloc_shmem_topology_adopt() 230

24.49.2.2 hwloc_shmem_topology _get length() 230

24.49.2.3 hwloc_shmem_topology_write() 231

24.50 Components and Plugins: Discovery components and backends 231
24.50.1 Detailed Description 232
24.50.2 Typedef Documentation L 232
24.50.2.1 hwloc_disc_phase_t 232

24.50.3 Enumeration Type Documentation L 232
24.50.3.1 hwloc_disc_phase_e e e e 232

24.50.3.2 hwloc_disc_status flag_ e L 233

Generated by Doxygen

Xviii

24.50.4 Function Documentation L e 233
24.50.4.1 hwloc_backend_alloc() 233

24.50.4.2 hwloc_backend_enable() e 233

24.51 Components and Plugins: Genericcomponentso 233
24.51.1 Detailed Description e e e 233
24.51.2 Typedef Documentation L e 234
24.51.2.1 hwloc_component_type_t 234

24.51.3 Enumeration Type Documentation L 234
24.51.3.1 hwloc_component_type_e 234

24.51.4 Function Documentation L e e 234
24.51.4.1 hwloc_plugin_check_namespace() o o v i it 234

24.52 Components and Plugins: Core functions to be used by components 234
24.52.1 Detailed Description e e e e 235
24.52.2 Macro Definition Documentation L L L 235
245221 HWLOC_SHOW_ALL_ERRORS e 235

24.52.2.2 HWLOC_SHOW_CRITICAL_ERRORS oo 235

24.52.3 Function Documentation L L e e 235
24.52.3.1 hwloc__insert_object by cpuset() 235

24.52.3.2 hwloc_alloc_setup_object() 235

24.52.3.3 hwloc_hide_errors() e e e e 236

24.52.3.4 hwloc_insert_object_by_parent() 236

24.52.3.5 hwloc_obj_add_children_sets() Lo 236

24.52.3.6 hwloc_topology_reconnect() 236

24.53 Components and Plugins: Filtering objects L 237
24.53.1 Detailed Description e e e 237
24.53.2 Function Documentation L L 237
24.53.2.1 hwloc_filter_check_keep_object() 237

24.53.2.2 hwloc_filter_check_keep_object_type() oo 237

24.53.2.3 hwloc_filter_check_osdev_subtype_important() 237

24.53.2.4 hwloc_filter_check_pcidev_subtype_important() 237

24.54 Components and Plugins: helpers for PCl discovery 238
24.54.1 Detailed Description e e 238
24.54.2 Function Documentation L e e 238
24.54.2.1 hwloc_pcidisc_check_bridge_type()o 238

24.54.2.2 hwloc_pcidisc_find_bridge_buses() Lo 238

24.54.2.3 hwloc_pcidisc_find_cap() 238

24.54.2.4 hwloc_pcidisc_find_linkspeed() o 239

24.54.2.5 hwloc_pcidisc_tree_attach() 239

24.54.2.6 hwloc_pcidisc_tree_insert_by busid() oL, 239

Generated by Doxygen

Xix

24.55 Components and Plugins: finding PCI objects during other discoveries 239
24.55.1 Detailed Description e e e e 239
24.55.2 Function Documentation L L 239

24.55.2.1 hwloc_pci_find_by_busid() 239
24.55.2.2 hwloc_pci_find_parent_by busid() 240

24.56 Components and Plugins: distances 240
24.56.1 Detailed Description L e e 240
24.56.2 Typedef Documentation e 240

24.56.2.1 hwloc_backend_distances_add_handle t 240

24.56.3 Function Documentation L e e 240
24.56.3.1 hwloc_backend_distances_add_commit() 240

24.56.3.2 hwloc_backend_distances_add_create() 241

24.56.3.3 hwloc_backend_distances_add_values() 241

25 Directory Documentation 243
25.1 hwloc Directory Reference o 243
25.2.include Directory Reference e 243

26 Data Structure Documentation 245

26.1 hwloc_backend Struct Reference e 245
26.1.1 Detailed Description e 245
26.1.2 Field Documentation L 245

26.1.21disable 245
26.1.2.2dISCOVEr e 245
26.1.2.3flags e 246
26.1.2.4 get_pci_busid_cpuset L 246
26.1.2.510s_thissystem 246
26.1.2.6Pphases e e 246
26.1.2.7private_data L 246

26.2 hwloc_obj_attr_u::hwloc_bridge_attr_s Struct Reference 246
26.2.1 Detailed Description e e 247
26.2.2 Field Documentation L e e 247

26.2.2.1depth. . . . L 247
26.2.22dOMaiN e e 247
26.22.3[UNION] . . L L L 247
26.2.2.4downstream_type L 247
26.2.25([struct] [1/21 . . . o e 247
26.2.2.6 PCi [2/2] © v i e e e e e e e 247
26.2.2.7secondary_bus L 247
26.2.2.8 subordinate_bus L e e 247

Generated by Doxygen

XX

26.2.29[UNION] e 247

26.2.2.10 upstream_type L e e 247

26.3 hwloc_obj_attr_u::hwloc_cache_attr_s Struct Reference 248
26.3.1 Detailed Description e 248
26.3.2 Field Documentation 248
26.3.2.1 associativity 248
26.3.2.2depth. . . . L 248
26.3.2.31inesize L e 248

26.3.2.4SIZ8 e 248

26.3.251tYP8 248

26.4 hwloc_cl_device_pci_bus_info_khr Struct Reference Lo, 248
26.4.1 Field Documentation L e e 249
26.41.1pCi_bus . . . L e 249
26.4.1.2pCi_device e 249
26.4.1.3pci_domain 249
26.4.1.4pci_function L 249

26.5 hwloc_cl_device_topology_amd Union Reference 249
26.5.1 Field Documentation L e e 249
26.5.1.1bus L e e 249
26.5.1.2data L e 250
26.5.1.3device e 250
26.5.1.4function . . . L L L L 250
26.5.1.5[struct] 250
26.5.1.6[struct] e 250

265 1.71YPE .« v e 250
26.5.1.8UnuUSed 250

26.6 hwloc_component Struct Reference e 250
26.6.1 Detailed Description L 250
26.6.2 Field Documentation L e e e 250
26.6.2.1aD0 250
26.6.2.2data e e e e 251
26.6.2.3finalize e 251
26.6.2.41flags e 251

26.6.2.510Nit . . . L e e e e 251
26.6.2.61tYPE e 251

26.7 hwloc_disc_component Struct Reference 251
26.7.1 Detailed Description e 252
26.7.2 Field Documentation L e e e 252
26.7.21 enabled_by default 252

Generated by Doxygen

xxi

26.7.2.2excluded_phases 252
26.7.23instantiate L. 252
26.7.24NaME L L e 252
26.7.25phases e 252
26.7.2.6priority e 252

26.8 hwloc_disc_status Struct Reference e 253
26.8.1 Detailed Description e e 253
26.8.2 Field Documentation L e 253
26.8.2.1 excluded_phases 253
26.8.2.2flags 253
26.8.2.3phase 253

26.9 hwloc_distances_s Struct Reference oL 253
26.9.1 Detailed Description e e 254
26.9.2 Field Documentation L L e 254
26.9.2.1Kind . .. 254
26.9.2.2nbobjs e e e 254

26.9.2.30bDJS . .. L 254
26.9.24values e 254

26.10 hwloc_obj_attr_u::hwloc_group_attr s Struct Reference 254
26.10.1 Detailed Description e e e 255
26.10.2 Field Documentation L e e 255
26.10.2.1depth L 255
26.10.2.2dont_merge L e 255
26.10.23KiNd L 255

26.10.2.4 subkind L L e e e 255

26.11 hwloc_info_s Struct Reference e 255
26.11.1 Detailed Description e e e e 255
26.11.2 Field Documentation L e e 255
26.11.21NaMe . . . L L e 255
26.11.22value e 256

26.12 hwloc _location Struct Reference e 256
26.12.1 Detailed Description 256
26.12.2 Field Documentation e e 256
26.12.21 location L L e 256
26.12.2.21YPE e 256

26.13 hwloc _location::hwloc _location_u Union Reference 256
26.13.1 Detailed Description e e e 256
26.13.2 Field Documentation L e e 257
26.13.2.1cpuset e e 257

Generated by Doxygen

xxii

26.13.2.20bjeCt 257

26.14 hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page_type_s Struct Reference 257
26.14.1 Detailed Description e e 257
26.14.2 Field Documentation L e e 257
26.14.2.1CoUnt L e e e e e 257
26.14.2.2SiZ8 257

26.15 hwloc_obj_attr_u:hwloc_numanode_attr_s Struct Reference 257
26.15.1 Detailed Description e e e e 258
26.15.2 Field Documentation L 258
26.15.2.1 local_memory L 258
26.15.2.2page_types L e 258
26.15.2.3 page_types_len L e 258

26.16 hwloc_obj Struct Reference L e 258
26.16.1 Detailed Description L 259
26.16.2 Field Documentation L 259
26.16.2. 1 arity L e e e e 259
26.16.2.2attr e e 259
26.16.2.3children L e 259
26.16.2.4 complete_cpuset L 259
26.16.2.5 complete_nodeset 260
26.16.2.6 cpuset L e 260
26.16.2.7depth L e 260
26.16.2.8first_child L e 260
26.16.2.9gp_index e 260
26.16.2.1010nfos L e e e e 261
26.16.2.110infos_count L e e e e 261
26.16.2.12100_arity 261
26.16.2.13io_first_child. 261
26.16.2.14 last_child e 261
26.16.2.15 logical_index 261
26.16.2.16 memory_arity L e 261
26.16.2.17 memory_first child 261
26.16.2.18 misc_arity L 261
26.16.2.19 misc_first_child 261
26.16.2.20Nname L e 262
26.16.2.21 next_cousin L. e e e 262
26.16.2.22 next_sibling L 262
26.16.2.23 nodeset L L e 262
26.16.2.24 05_iNdEX L e e e e e 262

Generated by Doxygen

26.16.2.25 parent L. L e 262

26.16.2.26 Prev_COUSIN o o i e e e 262

26.16.2.27 prev_sibling 262

26.16.2.28 sibling_rank L 263

26.16.2.29 SUDBLYPE . . o o v o e e e e 263

26.16.2.30 symmetric_subtree L 263
26.16.2.31total_memory L 263
26.16.2.321YP8 . . . o o e e 263

26.16.2.33 userdata L L e 263

26.17 hwloc_obj_attr u Union Reference 263
26.17.1 Detailed Description L 264
26.17.2 Field Documentation L 264
26.17.21bridge 264
26.17.2.2cache 264
26.17.23Qr0UP L e 264
26.17.2.4numanode L e 264
26.17.2508dev e e e e 264

26.17.26 PCIAEY e 264

26.18 hwloc_obj_attr u::hwloc_osdev_attr s Struct Reference 264
26.18.1 Detailed Description e e 264
26.18.2 Field Documentation e e e 265
261821 tYPE .« . o e e e e e 265

26.19 hwloc_obj_attr_u::hwloc_pcidev_attr_s Struct Reference 265
26.19.1 Detailed Description e e e 265
26.19.2 Field Documentation L e 265
26.19.21DUS o 265
26.19.22class_id. 265
26.19.2.3dev L e e e 265
26.19.2.4device_id 265
26.19.25domain L. e 266
26.19.26fUNC e e e e 266
26.19.2.7linkspeed e 266
26.19.2.81eviSiON e 266

26.19.2.9 subdevice_id L e e e 266

26.19.2.10 subvendor_id L e e e e 266

26.19.2 11 vendor_id L L e e e 266

26.20 hwloc_topology_cpubind_support Struct Reference Lo Lo 266
26.20.1 Detailed Description L e e e 267
26.20.2 Field Documentation L e e e 267

Generated by Doxygen

xxiv

26.20.2.1 get_proc_cpubind 267

26.20.2.2 get_proc_last_cpu_location Lo 267

26.20.2.3 get_thisproc_cpubind L 267

26.20.2.4 get_thisproc_last_cpu_location Lo o 267

26.20.2.5 get_thisthread_cpubind 267

26.20.2.6 get_thisthread_last_cpu_location oo 267

26.20.2.7 get_thread_cpubind L 267

26.20.2.8 set_proc_cpubind 267

26.20.2.9 set_thisproc_cpubind 267

26.20.2.10 set_thisthread_cpubindo 268

26.20.2.11 set_thread_cpubind L 268

26.21 hwloc_topology_diff_u::hwloc_topology_diff_generic_s Struct Reference 268
26.21.1 Field Documentation L e 268
26.21. 1.0 next . . . e e e e 268
26.21.1.21YPE e 268

26.22 hwloc_topology_diff _obj_attr_u::hwloc_topology_diff_obj_attr_generic_s Struct Reference 268
26.22.1 Field Documentation L e e e e 268
26.22.1.1tyPe . . . L e 268

26.23 hwloc_topology_diff _u::hwloc_topology_diff obj_attr s Struct Reference 269
26.23.1 Field Documentation L 269
26.23.1.1diff . . L 269
26.23.1.2Nnext e e e e 269
26.23.1.30bj_depth L 269
26.23.1.40bj_index 269
26.23.1.58YPC .« . e e e e 269

26.24 hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_string_s Struct Reference 269
26.24.1 Detailed Description e e e e e 269
26.24.2 Field Documentation L e e 270
26.24.21NAME . . . L L e 270
26.24.22newvalue L e 270
26.24.2.30ldvalue e e e e 270
26.24.2.41ypE L e 270

26.25 hwloc_topology_diff_obj_attr u Union Reference 270
26.25.1 Detailed Description L 270
26.25.2 Field Documentation L 270
26.25.2.1g€NETIC e 270
26.25.2.2strinNg L e 270

262523 UINtB4 e e 271

26.26 hwloc_topology_diff _obj_attr_u::hwloc_topology_diff obj_attr_uint64_s Struct Reference 271

Generated by Doxygen

XXV

26.26.1 Detailed Description e 271
26.26.2 Field Documentation L e e 271
26.26.2.10NdEX e 271
26.26.2.2newvalue L e 271
26.26.2.30ldvalue e e e e 271
26.26.2.41YPE e 271

26.27 hwloc_topology_diff _u::hwloc_topology_diff too_complex_s Struct Reference 271
26.27.1 Field Documentation e e e 272
26.27.0.1NneXt . . L e 272
26.27.1.20bj_depth 272
26.27.1.30bj_index e e e e 272
26.27.1.418YPE . . L L 272

26.28 hwloc_topology_diff_u Union Reference Lo 272
26.28.1 Detailed Description L 272
26.28.2 Field Documentation 272
26.28.2.1 GENEIIC o e 272
26.28.2.20bj_attr L e 273
26.28.2.3100_COMPIEX e e e 273

26.29 hwloc_topology_discovery support Struct Reference, 273
26.29.1 Detailed Description e e 273
26.29.2 Field Documentation e e 273
26.29.2.1 cpukind_efficiency 273
26.29.2.2disallowed numa e e e e e e 273
26.29.2.3disallowed_pu 273
26.29.2.4NUMA e e e e e e e 273

26.29.2.5 NUMa_MEMONY v i v et e e e e e e e e e e e e 273

262926 PU. « . o i i 274

26.30 hwloc_topology_membind_support Struct Reference oo 274
26.30.1 Detailed Description 274
26.30.2 Field Documentation L e e e 274
26.30.2.1 alloc_membind e e e e 274
26.30.2.2bind_membind L e 274

26.30.2.3 firsttouch_membind 274

26.30.2.4 get_area_membind 275
26.30.2.5get_area_memlocation 275

26.30.2.6 get_proc_membind L 275

26.30.2.7 get_thisproc_membind 275

26.30.2.8 get_thisthread_membind Lo 275

26.30.2.9 interleave_membind L 275

Generated by Doxygen

XXVi

26.30.2.10 migrate_membind L 275

26.30.2.11 nexttouch_membind L 275
26.30.2.12set_area_membind e e 275

26.30.2.13 set_proc_membind L 275

26.30.2.14 set_thisproc_membind 275

26.30.2.15 set_thisthread_membind 276

26.30.2.16 weighted_interleave_membind Lo oo 276

26.31 hwloc_topology_misc_support Struct Reference o oL 276
26.31.1 Detailed Description e 276
26.31.2 Field Documentation L e e e 276
26.31.2.1 imported_support 276

26.32 hwloc_topology_support Struct Reference L 276
26.32.1 Detailed Description e e e e 276
26.32.2 Field Documentation L e e e e 277
26.32.2.1cpubind 277
26.32.2.2dISCOVEIY o o i e e e 277
26.32.2.3membind L e 277
26.32.24MISC e 277

Generated by Doxygen

Chapter 1

Hardware Locality

Portable abstraction of hierarchical architectures for high-performance
computing

1.1 Table of Contents

« Introduction

hwloc Overview

Command-line Examples

Programming Interface

Questions and Bugs
History / Credits

» Chapters

— Installation

— Compiling software on top of hwloc's C API

— Terms and Definitions

— Command-Line Tools

— Environment Variables

— CPU and Memory Binding Overview

— /O Devices

— Miscellaneous objects

— Object attributes

— Topology Attributes: Distances, Memory Attributes and CPU Kinds
— Heterogeneous Memory

— Importing and exporting topologies from/to XML files

— Synthetic topologies

Generated by Doxygen

2 Hardware Locality

Interoperability With Other Software
Thread Safety

Components and plugins

Embedding hwloc in Other Software
Frequently Asked Questions (FAQ)
Upgrading to the hwloc 2.0 API

1.2 hwloc Overview

The Hardware Locality (hwloc) software project aims at easing the process of discovering hardware resources in parallel
architectures. It offers command-line tools and a C API for consulting these resources, their locality, attributes, and
interconnection. hwloc primarily aims at helping high-performance computing (HPC) applications, but is also applicable
to any project seeking to exploit code and/or data locality on modern computing platforms.

hwloc provides command line tools and a C API to obtain the hierarchical map of key computing elements within a
node, such as: NUMA memory nodes, shared caches, processor packages, dies and cores, processing units (logical
processors or "threads") and even 1/O devices. hwloc also gathers various attributes such as cache and memory
information, and is portable across a variety of different operating systems and platforms.

hwloc primarily aims at helping high-performance computing (HPC) applications, but is also applicable to any project
seeking to exploit code and/or data locality on modern computing platforms.

hwloc supports the following operating systems:

« Linux (with knowledge of cgroups and cpusets, memory targets/initiators, etc.) on all supported hardware, includ-
ing Intel Xeon Phi, ScaleMP vSMP, and NumaScale NumaConnect.

« Solaris (with support for processor sets and logical domains)
« AIX

+ Darwin/ OS X

» FreeBSD and its variants (such as kFreeBSD/GNU)

+ NetBSD

« HP-UX

* Microsoft Windows

» IBM BlueGene/Q Compute Node Kernel (CNK)

Since it uses standard Operating System information, hwloc's support is mostly independant from the processor type
(x86, powerpc, ...) and just relies on the Operating System support. The main exception is BSD operating systems
(NetBSD, FreeBSD, etc.) because they do not provide support topology information, hence hwloc uses an x86-only
CPUID-based backend (which can be used for other OSes too, see the Components and plugins section).

To check whether hwloc works on a particular machine, just try to build itand run 1stopo or 1stopo-no-graphics.
If some things do not look right (e.g. bogus or missing cache information), see Questions and Bugs.

hwloc only reports the number of processors on unsupported operating systems; no topology information is available.
For development and debugging purposes, hwloc also offers the ability to work on "fake" topologies:

» Symmetrical tree of resources generated from a list of level arities, see Synthetic topologies.

» Remote machine simulation through the gathering of topology as XML files, see Importing and exporting topologies from/to XML file:

Generated by Doxygen

1.3 Command-line Examples 3

hwloc can display the topology in a human-readable format, either in graphical mode (X11), or by exporting in one of
several different formats, including: plain text, LaTeX tikzpicture, PDF, PNG, and FIG (see Command-line Examples
below). Note that some of the export formats require additional support libraries.

hwloc offers a programming interface for manipulating topologies and objects. It also brings a powerful CPU bitmap
API that is used to describe topology objects location on physical/logical processors. See the Programming Interface
below. It may also be used to binding applications onto certain cores or memory nodes. Several utility programs are
also provided to ease command-line manipulation of topology objects, binding of processes, and so on.

Bindings for several other languages are available from the project website.

1.3 Command-line Examples

On a 4-package 2-core machine with hyper-threading, the 1 st opo tool may show the following graphical output:

Machine
|NUMAMMEL#0P#Q |
Package L#0 Package L#1 Package L#2 Package L#3
L3 (4096KE)		L3 (4096KE)		L3 (4096KE)		L3 (4096KE)								
L2[1024KB]		L2[1924KBJ		L2[1DI4KB]		L2[1u24KB]		L2[1DI4KB]		L2[1u24KB]		L2[1024KBJ		L2[1u24KB]
L1 (16KE]		L1 {16KE)		L1 (16KE]		L1 {16KE)		L1 (16KE)		L1 {16KE)		L1 (16KE)		L1 (16KE)
Core L#0 Core L#1 Core L#2 Core L#3 Core L#4 Core L#5 Core L#B Core L#T
PU L#OD PU L#2 PU L#4 PU L#G PU L#E PU L#1D PUL#EL2 PU L#14
P#EOD P#d P#1 P#5 P2 P#E P#3 P#ET
PUL#1 PUL#3 PU L#5 PU L&#T PU L#9 PUL#11 PUL#13 PU L#15
P#B p#12 P#D P#13 P#10 P#14 P#11 P#15

Here's the equivalent output in textual form:

Machine
NUMANode L#0 (P#0)
Package L#0 + L3 L#0 (4096KB)
L2 L#0 (1024KB) + L1 L#0 (16KB) + Core L#0
PU L#0 (P#0)
PU L#1 (P#8)
L2 L#1 (1024KB) + L1 L#1 (16KB) + Core L#l
PU L#2 (P#4)
PU L#3 (P#12)
Package L#1 + L3 L#1 (4096KB)
L2 L#2 (1024KB) + L1 L#2 (16KB) + Core L#2
PU L#4 (P#1)
PU L#5 (P#9)
L2 L#3 (1024KB) + L1 L#3 (16KB) + Core L#3
PU L#6 (P#5)
PU L#7 (P#13)
Package L#2 + L3 L#2 (4096KB)
L2 L#4 (1024KB) + L1 L#4 (16KB) + Core L#4
PU L#8 (P#2)
PU L#9 (P#10)
L2 L#5 (1024KB) + L1 L#5 (16KB) + Core L#5
PU L#10 (P#6)
PU L#11 (P#14)
Package L#3 + L3 L#3 (4096KB)
L2 L#6 (1024KB) + L1 L#6 (16KB) + Core L#6
PU L#12 (P#3)
PU L#13 (P#11)
L2 L#7 (1024KB) + L1 L#7 (16KB) + Core L#7

Generated by Doxygen

https://www.open-mpi.org/projects/hwloc/#language_bindings

Hardware Locality

PU L#14
PU L#15

(P#7)
(P#15)

Note that there is also an equivalent output in XML that is meant for exporting/importing topologies but it is hardly
readable to human-beings (see Importing and exporting topologies from/to XML files for details).

On a 4-package 2-core Opteron NUMA machine (with two core cores disallowed by the administrator), the 1 st opo tool
may show the following graphical output (with ——disallowed for displaying disallowed objects):

Machine (32GE total)

Package L#0

Package L#L

Package L#2

Package L#3

| NUMANode L#0 P#0 (8190MB) |

| NUMANode L#1 P#1 (8192MB) |

| NUMAMNode L#2 P#2 (8192MB) |

| NUMAMNode L#3 P#3 (8192MB) |

| L2 (1024KB) || L2 (1024KE) |

| L2 [1024KB) || L2 (1024KB) |

| L2 (1024KE) || L2 [1024KE) |

| L2 (1024KB) || L2 (1024KE) |

| L1[64KBJ| | L1 (64KE) | | L1 (h4KB) | | L1 (B4KE) | | L1 (G4KE) | | L1 (G4KB) | | L1[64KBJ| | L1[64KBJ|
Core L#0 Core L#1 Core L#2 Core L#3 Core L#4 Core L#5 Core L#6 Core L#7
PUL#O PUL#1 PU L#2 PUL#3 PUL#E PU L#T
P#0 pP#1 p#2 P#3 P#6 p#7
Here's the equivalent output in textual form:
Machine (32GB total)
Package L#0
NUMANode L#0 (P#0 8190MB)
L2 L#0 (1024KB) + L1 L#0 (64KB) + Core L#0 + PU L#0 (P#0)
L2 L#1 (1024KB) + L1 L#1 (64KB) + Core L#1 + PU L#1 (P#1)
Package L#1
NUMANode L#1 (P#1 8192MB)
L2 L#2 (1024KB) + L1 L#2 (64KB) + Core L#2 + PU L#2 (P#2)
L2 L#3 (1024KB) + L1 L#3 (64KB) + Core L#3 + PU L#3 (P#3)
Package L#2
NUMANode L#2 (P#2 8192MB)
L2 L#4 (1024KB) + L1 L#4 (64KB) + Core L#4 + PU L#4 (P#4
L2 L#5 (1024KB) + L1 L#5 (64KB) + Core L#5 + PU L#5 (P#5)
Package L#3
NUMANode L#3 (P#3 8192MB)
L2 L#6 (1024KB) + L1 L#6 (64KB) + Core L#6 + PU L#6 (P#6)
L2 L#7 (1024KB) + L1 L#7 (64KB) + Core L#7 + PU L#7 (P#7)
On a 2-package quad-core Xeon (pre-Nehalem, with 2 dual-core dies into each package):
Machine (16GE total)
NUMAMode L#D P#0 (16GE)
Package L#0 Package L¥1
L2 (4096KE) L2 (4096KE) L2 (4096KE) L2 (4096KE)
L1(32KB) || L1(32kB) || L1i32KE) || L1 (32KE) L1(32KE) || L1i32kE) || L1(32KE) || L1(32KE)
Core L#0 Core L#1 Core L#2 Core L#3 Core L#4 Core L#S Core L#6 Core L#T
PL L#D PUL#L PL L2 P L#3 P L#4 PLY L#S PU L#E PULET
P#0 P#4 P2 P#6 P#1 P#S P#3 P#7

Here's the same output in textual form:

Generated by Doxygen

1.4 Programming Interface 5

Machine (total 16GB)
NUMANode L#0 (P#0 16GB)
Package L#0
L2 L#0 (4096KB)
L1 L#0 (32KB) + Core L#0 + PU L#0 (P#0)
L1 L#1 (32KB) + Core L#l1 + PU L#1 (P#4)
L2 L#1 (4096KB)
L1 L#2 (32KB)
L1 L#3 (32KB)
Package L#1
L2 L#2 (4096KB)
L1 L#4 (32KB)
L1 L#5 (32KB)
L2 L#3 (4096KB)
)
)

+ Core L#2 + PU L#2 (P#2)
+ Core L#3 + PU L#3 (P#6)

+ Core L#4 + PU L#4 (P#1)

+ Core L#5 + PU L#5 (P#5)

L1 L#6 (32KB
L1 L#7 (32KB

+ Core L#6 + PU L#6 (P#3)
+ Core L#7 + PU L#7 (P#7)

1.4 Programming Interface

The basic interface is available in hwloc.h. Some higher-level functions are available in hwloc/helper.h to reduce the
need to manually manipulate objects and follow links between them. Documentation for all these is provided later in this
document. Developers may also want to look at hwloc/inlines.h which contains the actual inline code of some hwloc.h
routines, and at this document, which provides good higher-level topology traversal examples.

To precisely define the vocabulary used by hwloc, a Terms and Definitions section is available and should probably be
read first.

Each hwloc object contains a cpuset describing the list of processing units that it contains. These bitmaps may be used
for CPU binding and Memory binding. hwloc offers an extensive bitmap manipulation interface in hwloc/bitmap.h.
Moreover, hwloc also comes with additional helpers for interoperability with several commonly used environments. See
the Interoperability With Other Software section for details.

The complete API documentation is available in a full set of HTML pages, man pages, and self-contained PDF files
(formatted for both both US letter and A4 formats) in the source tarball in doc/doxygen-doc/.

NOTE: If you are building the documentation from a Git clone, you will need to have Doxygen and pdflatex installed —
the documentation will be built during the normal "make" process. The documentation is installed during "make install"
to $prefix/share/doc/hwloc/ and your systems default man page tree (under $prefix, of course).

1.41 Portability

Operating System have varying support for CPU and memory binding, e.g. while some Operating Systems provide
interfaces for all kinds of CPU and memory bindings, some others provide only interfaces for a limited number of kinds
of CPU and memory binding, and some do not provide any binding interface at all. Hwloc's binding functions would
then simply return the ENOSYS error (Function not implemented), meaning that the underlying Operating System does
not provide any interface for them. CPU binding and Memory binding provide more information on which hwloc binding
functions should be preferred because interfaces for them are usually available on the supported Operating Systems.
Similarly, the ability of reporting topology information varies from one platform to another. As shown in
Command-line Examples, hwloc can obtain information on a wide variety of hardware topologies. However, some
platforms and/or operating system versions will only report a subset of this information. For example, on an PPC64-
based system with 8 cores (each with 2 hardware threads) running a default 2.6.18-based kernel from RHEL 5.4,
hwloc is only able to glean information about NUMA nodes and processor units (PUs). No information about caches,
packages, or cores is available.

Here's the graphical output from Istopo on this platform when Simultaneous Multi-Threading (SMT) is enabled:

Machine (61GE total)

Groupd Groupl
| NUMANode L#0 (30GE) | | NUMANode L#1 (31GE) |
| PU L#O | PUL#1 | PU L#2 | PU L#3 | PU Li#4 | PUL#ES | PU L#6 | PU L#T7 | | PU L#8 | PU L#D | PU L#10D | PUL#11 | PU L#12 | PUL#13 | PUL#14 | PUL#15 |

Generated by Doxygen

6 Hardware Locality

And here's the graphical output from Istopo on this platform when SMT is disabled:

Machine (61GE total)

Groupl Groupd
| NUMANode L#0 (3DGE) | | NUMANMode L#1 (31GE) |
|PUL#OlPUL#llPUL#ZlPUL#}l |PUL#4|PUL#5|PUL#SlPUL#?l

Notice that hwloc only sees half the PUs when SMT is disabled. PU L#6, for example, seems to change location from
NUMA node #0 to #1. In reality, no PUs "moved" — they were simply re-numbered when hwloc only saw half as many
(see also Logical index in Indexes and Sets). Hence, PU L#6 in the SMT-disabled picture probably corresponds to PU
L#12 in the SMT-enabled picture.

This same "PUs have disappeared" effect can be seen on other platforms — even platforms / OSs that provide much
more information than the above PPC64 system. This is an unfortunate side-effect of how operating systems report
information to hwloc.

Note that upgrading the Linux kernel on the same PPC64 system mentioned above to 2.6.34, hwloc is able to discover
all the topology information. The following picture shows the entire topology layout when SMT is enabled:

Machine (61GB total)

Group0 Groupl
| NUMANode L#0 (30GB) | | NUMANode L #1 (31GE) |
Package L#0 Package L#1 Package L#2 Package L#3
L3 (32ZMB)		L3 (32ZMB)		L3 (32MB)		L3 (32MB)								
L2 (4096KE)		L2 (4096KE)		L2 (4096KB)		L2 (4096KB)								
L1{64KE)		L1 (B4KEB)		L1{64KE)		L1 (B4KEB)		L1 (B4KEB)		L1 (64KEB)		L1 (B4KEB)		L1 (B4KEB)
Core LED Core L#1 Core L#2 Core L#3 Core L#4 Core L#5 Core L¥#6 Core L#7														
PUL#D	PUL#L		PU L#2	PUL#3		PUL#4	PUL#5		PU L#6	PU L#T		PUL#E	PUL#%	

Developers using the hwloc APl or XML output for portable applications should therefore be extremely careful to not
make any assumptions about the structure of data that is returned. For example, per the above reported PPC topology,
it is not safe to assume that PUs will always be descendants of cores.

Additionally, future hardware may insert new topology elements that are not available in this version of hwloc. Long-lived
applications that are meant to span multiple different hardware platforms should also be careful about making structure
assumptions. For example, a new element may someday exist between a core and a PU.

1.4.2 API Example

The following small C example (available in the source tree as “doc/examples/hwloc-hello.c") prints the topology of the
machine and performs some thread and memory binding. More examples are available in the doc/examples/ directory
of the source tree.

/*

* SPDX-License-Identifier: BSD-3-Clause

Copyright © 2009-2016 Inria. All rights reserved.

Copyright © 2009-2011 Université Bordeaux

Copyright © 2009-2010 Cisco Systems, Inc. All rights reserved.
See COPYING in top-level directory.

Example hwloc API program.

See other examples under doc/examples/ in the source tree
for more details.

hwloc-hello.c
/

R T

#include "hwloc.h"
#include <errno.h>
#include <stdio.h>

#include <string.h>

static void print_children (hwloc_topology_t topology, hwloc_obj_t obj,

Generated by Doxygen

1.4 Programming Interface

int depth)

char type[32], attr([1024];
unsigned 1i;

hwloc_obj_type_snprintf (type, sizeof (type), obj, 0);
printf ("%$xs%s", 2«depth, "", type);
if (obj->os_index != (unsigned) -1)

printf ("#%u", obj->os_index);
hwloc_obj_attr_snprintf (attr, sizeof (attr), obj, " ", 0);
if (xattr)

printf (" (%s)", attr);
printf("\n");
for (1 = 0; 1 < obj->arity; i++) {

print_children (topology, obj->children([i], depth + 1);

int main (void)

int depth;

unsigned i, n;

unsigned long size;

int levels;

char string[128];

int topodepth;

void =m;

hwloc_topology_t topology;
hwloc_cpuset_t cpuset;
hwloc_obj_t obj;

/* Allocate and initialize topology object. =/
hwloc_topology_init (&topology) ;

/* ... Optionally, put detection configuration here to ignore
some objects types, define a synthetic topology, etc....

The default is to detect all the objects of the machine that
the caller is allowed to access. See Configure Topology
Detection. */

/* Perform the topology detection. =/
hwloc_topology_load(topology) ;

/* Optionally, get some additional topology information
in case we need the topology depth later. =/
topodepth = hwloc_topology_get_depth (topology) ;

/*‘k****‘k*‘k**
* First example:
* Walk the topology with an array style, from level 0 (always
* the system level) to the lowest level (always the proc level).
***/
for (depth = 0; depth < topodepth; depth++) {
printf ("«x* Objects at level %d\n", depth);
for (1 = 0; 1 < hwloc_get_nbobjs_by_depth(topology, depth);
i++) |
hwloc_obj_type_snprintf (string, sizeof (string),
hwloc_get_obj_by_depth(topology, depth, i), 0);
printf ("Index %u: %s\n", i, string);

}

/***
* Second example:
*+ Walk the topology with a tree style.
*********k***************k******k***************k****************/

printf ("++x Printing overall tree\n");

print_children (topology, hwloc_get_root_obj(topology), 0);

/***
«+ Third example:
« Print the number of packages.
***/

depth = hwloc_get_type_depth (topology, HWLOC_OBJ_PACKAGE) ;

if (depth == HWLOC_TYPE_DEPTH_UNKNOWN) {
printf ("++x The number of packages is unknown\n");
} else {

printf ("s+x %u package (s)\n",
hwloc_get_nbobjs_by_depth (topology, depth));

Generated by Doxygen

8 Hardware Locality

}

/***
* Fourth example:
« Compute the amount of cache that the first logical processor
* has above it.
***/
levels = 0;
size = 0;
for (obj = hwloc_get_obj_by_ type (topology, HWLOC_OBJ_PU, 0);
obj;
obj = obj->parent)
if (hwloc_obj_type_is_cache (obj->type)) {
levels++;
size += obj->attr->cache.size;
}
printf ("+«xx Logical processor 0 has %d caches totaling %luKB\n",
levels, size / 1024);

/***
« Fifth example:
* Bind to only one thread of the last core of the machine.
*
* First find out where cores are, or else smaller sets of CPUs if
* the OS doesn’t have the notion of a "core".
***/

depth = hwloc_get_type_or_below_depth (topology, HWLOC_OBJ_CORE) ;

/+ Get last core. =/
obj = hwloc_get_obj_by_depth (topology, depth,
hwloc_get_nbobjs_by_depth (topology, depth) - 1);
1f (obj) |
/* Get a copy of its cpuset that we may modify. %/
cpuset = hwloc_bitmap_dup (obj->cpuset);

/* Get only one logical processor (in case the core is
SMT/hyper-threaded) . */
hwloc_bitmap_singlify (cpuset);

/+* And try to bind ourself there. %/
if (hwloc_set_cpubind(topology, cpuset, 0)) {
char =*str;
int error = errno;
hwloc_bitmap_asprintf (&str, obj->cpuset);
printf ("Couldn’t bind to cpuset %s: %s\n", str, strerror (error));
free(str);

}

/+ Free our cpuset copy */
hwloc_bitmap_free (cpuset);
}

/****************k**
* Sixth example:
* Allocate some memory on the last NUMA node, bind some existing
* memory to the last NUMA node.
*********k**********************k**********************k*********/
/* Get last node. There’s always at least one. */
n = hwloc_get_nbobjs_by_type (topology, HWLOC_OBJ_NUMANODE) ;
obj = hwloc_get_obj_by_type (topology, HWLOC_OBJ_NUMANODE, n - 1);

size = 1024x1024;

m = hwloc_alloc_membind(topology, size, obj->nodeset,
HWLOC_MEMBIND_BIND, HWLOC_MEMBIND_BYNODESET) ;

hwloc_free (topology, m, size);

m = malloc(size);

hwloc_set_area_membind(topology, m, size, obj->nodeset,
HWLOC_MEMBIND_BIND, HWLOC_MEMBIND_BYNODESET) ;

free(m);

/* Destroy topology object. x/
hwloc_topology_destroy (topology) ;

return 0;

}
hwloc provides a pkg—conf i g executable to obtain relevant compiler and linker flags. See Compiling software on top of hwloc's C API

for details on building program on top of hwloc's API using GNU Make or CMake.
On a machine 2 processor packages — each package of which has two processing cores — the output from running

Generated by Doxygen

1.5 Questions and Bugs 9

hwloc—hello could be something like the following:

shell$./hwloc-hello
Objects at level 0
Index 0: Machine
Objects at level 1
Index 0: Package#0
Index 1: Package#l
Objects at level 2
Index 0: Core#0
Index 1: Core#l
Index 2: Core#3
Index 3: Core#2
Objects at level 3
Index 0: PU#0
Index 1: PU#1
Index 2: PU#2
Index 3: PU#3
Printing overall tree
Machine
Package#0
Core#0
PU#0
Core#l
PU#1
Package#l
Core#3
PU#2
Core#2
PU#3
2 package (s)
Logical processor 0 has 0 caches totaling OKB
shells

1.5 AQuestions and Bugs

Bugs should be reported in the tracker (https://github.com/open-mpi/hwloc/1issues). Opening a new

issue automatically displays lots of hints about how to debug and report issues.

Questions may be sent to the users or developers mailing lists (https: //www.open-mpi.org/community/lists/hwloc.«
php).

There is also a #hwloc IRC channel on Libera Chat (1rc.libera.chat).

1.6 History / Credits

hwloc is the evolution and merger of the libtopology project and the Portable Linux Processor Affinity (PLPA) (https«
://www.open-mpi.org/projects/plpa/) project. Because of functional and ideological overlap, these two
code bases and ideas were merged and released under the name "hwloc" as an Open MPI sub-project.

libtopology was initially developed by the Inria Runtime Team-Project. PLPA was initially developed by the Open MPI
development team as a sub-project. Both are now deprecated in favor of hwloc, which is distributed as an Open MPI
sub-project.

Generated by Doxygen

https://github.com/open-mpi/hwloc/issues
https://www.open-mpi.org/community/lists/hwloc.php
https://www.open-mpi.org/community/lists/hwloc.php
https://www.open-mpi.org/projects/plpa/
https://www.open-mpi.org/projects/plpa/

10

Hardware Locality

Generated by Doxygen

Chapter 2

Installation

hwloc (https://www.open-mpi.org/projects/hwloc/) is available under the BSD license. It is hosted as
a sub-project of the overall Open MPI project (https://www.open-mpi.org/). Note that hwloc does not require
any functionality from Open MPI — it is a wholly separate (and much smaller!) project and code base. It just happens to
be hosted as part of the overall Open MPI project.

2.1 Basic Installation

Installation is the fairly common GNU-based process:

shell$./configure --prefix=...
shell$ make
shell$ make install

The hwloc command-line tool "Istopo” produces human-readable topology maps, as mentioned above. Running the
"Istopo" tool is a good way to check as a graphical output whether hwloc properly detected the architecture of your node.

2.2 Optional Dependencies

Istopo may also export graphics to the SVG and "fig" file formats. Support for PDF, Postscript, and PNG exporting is
provided if the "Cairo" development package (usually cairo-devel or 1ibcairo2-dev) can be found in "Istopo”
when hwloc is configured and build.

The hwloc core may also benefit from the following development packages:

* libpciaccess for full 1/0 device discovery (1ibpciaccess-devel or libpciaccess—dev package). On
Linux, PCI discovery may still be performed (without vendor/device names) even if libpciaccess cannot be used.

+ AMD or NVIDIA OpenCL implementations for OpenCL device discovery.
« the NVIDIA CUDA Toolkit for CUDA device discovery. See How do | enable CUDA and select which CUDA version to use?.

+ the NVIDIA Management Library (NVML) for NVML device discovery. It is included in CUDA since version 8.0.
Older NVML releases were available within the NVIDIA GPU Deployment Kit from https://developer.«+
nvidia.com/gpu-deployment-kit .

» the NV-CONTROL X extension library (NVCitrl) for NVIDIA display discovery. The relevant development pack-
age is usually 11bXNVCtrl-devel or libxnvctrl—-dev. It is also available within nvidia-settings from
ftp://download.nvidia.com/XFree86/nvidia-settings/ and https://github.com/«
NVIDIA/nvidia-settings/ .

« the AMD ROCm SMI library for RSMI device discovery. The relevant development package is usually
rocm-smi-1ib64 or librocm-smi-dev. See How do | enable ROCm SMI and select which version to use?.

Generated by Doxygen

https://www.open-mpi.org/projects/hwloc/
https://www.open-mpi.org/
https://developer.nvidia.com/gpu-deployment-kit
https://developer.nvidia.com/gpu-deployment-kit
ftp://download.nvidia.com/XFree86/nvidia-settings/
https://github.com/NVIDIA/nvidia-settings/
https://github.com/NVIDIA/nvidia-settings/

12 Installation

« the oneAPI Level Zero library. The relevant development package is usually level-zero-dev or
level-zero—-devel. The implementation must be recent enough to support zesDriverGetDevice«
ByUuidExp ()

« libxml2 for full XML import/export support (otherwise, the internal minimalistic parser will only be able to import
XML files that were exported by the same hwloc release). See Importing and exporting topologies from/to XML files
for details. The relevant development package is usually 1ibxml2-devel or 1ibxml2-dev.

* libudev on Linux for easier discovery of OS device information (otherwise hwloc will try to manually parse udev
raw files). The relevant development package is usually 1ibudev-devel or 1ibudev-dev.

« libtool's Itdl library for dynamic plugin loading on Unix systems if the native dlopen cannot be used. The relevant
development package is usually 1ibtool-1tdl-devel or 1ibltdl-dev.

PCI and XML support may be statically built inside the main hwloc library, or as separate dynamically-loaded plugins
(see the Components and plugins section).

Also note that if you install supplemental libraries in non-standard locations, hwloc's configure script may not be able
to find them without some help. You may need to specify additional CPPFLAGS, LDFLAGS, or PKG_CONFIG_PATH
values on the configure command line.

For example, if libpciaccess was installed into /opt/pciaccess, hwloc's configure script may not find it by default. Try
adding PKG_CONFIG_PATH to the ./configure command line, like this:

./configure PKG_CONFIG_PATH=/opt/pciaccess/lib/pkgconfig ...

Note that because of the possibility of GPL taint, the pciutils library 1ibpci will not be used (remember that hwloc
is BSD-licensed).

2.3 Installing from a Git clone

Additionally, the code can be directly cloned from Git:

shell$ git clone https://github.com/open-mpi/hwloc.git
shell$ cd hwloc
shell$./autogen.sh

Note that GNU Autoconf >=2.63, Automake >=1.11 and Libtool >=2.2.6 are required when building from a Git clone.
Nightly development snapshots are available on the web site, they can be configured and built without any need for Git
or GNU Autotools.

Generated by Doxygen

Chapter 3

Compiling software on top of hwiloc's C API

A program using the hwloc C API (for instance with hwloc-hello.c presented in APl Example) may be built with
standard development tools. pkg—config provides easy ways to retrieve the required compiler and linker flags as
described below, but it is not mandatory.

3.1 Compiling on top of hwloc's C APl with GNU Make

Here's an example of Makefile for building hwloc-hello. c with GNU Make:

CFLAGS += S$(shell pkg-config --cflags hwloc)
LDLIBS += $(shell pkg-config --1libs hwloc)

hwloc-hello: hwloc-hello.c
$(CC) hwloc-hello.c $(CFLAGS) -o hwloc-hello $(LDLIBS)

3.2 Compiling on top of hwloc's C APl with CMake

Here's an example de CMakeLists.txt which shows variables obtained from pkg-config and how to use them:

cmake_minimum_required (VERSION 3.6)
project (TEST_HWLOC C)

include (FindPkgConfig)
if (PKG_CONFIG_FOUND)
pkg_search_module (HWLOC REQUIRED IMPORTED_TARGET hwloc)
else (PKG_CONFIG_FOUND)
message (FATAL_ERROR "FindHWLOC needs pkg-config program and PKG_CONFIG_PATH must contain the path to hwloc.pc £
endif (PKG_CONFIG_FOUND)

add_executable (hwloc-hello hwloc-hello.c)
target_link_libraries (hwloc-hello PRIVATE PkgConfig::HWLOC)

The project may be built with:

cmake -B build
cmake —--build build --verbose

The built binary is then available under build/hwloc-hello.

Generated by Doxygen

14

Compiling software on top of hwloc's C API

Generated by Doxygen

Chapter 4

Terms and Definitions

4.1 Obijects

Object
Interesting kind of part of the system, such as a Core, a L2Cache, a NUMA memory node, etc. The different types
detected by hwloc are detailed in the hwloc_obj_type_t enumeration.

Objects are topologically sorted by locality (CPU and node sets) into a tree (see Hierarchy, Tree and Levels).

Object Kind
There are four kinds of Objects: Memory (NUMA nodes and Memory-side caches), /O (Bridges, PCI and OS
devices), Misc, and Normal (everything else, including Machine, Package, Die, Core, PU, CPU Caches, etc.).
Normal and Memory objects have (non-NULL) CPU sets and nodesets, while I/O and Misc don't.

See also

Kinds of object Type.

Processing Unit (PU)
The smallest processing element that can be represented by a hwloc object. It may be a single-core processor, a
core of a multicore processor, or a single thread in a SMT processor (also sometimes called "Logical processor",
not to be confused with "Logical index of a processor"). hwloc's PU acronym stands for Processing Unit.

Package
A processor Package is the physical package that usually gets inserted into a socket on the motherboard. It is
also often called a physical processor or a CPU even if these names bring confusion with respect to cores and
processing units. A processor package usually contains multiple cores (and may also be composed of multiple
dies). hwloc Package objects were called Sockets up to hwloc 1.10.

NUMA Node
An object that contains memory that is directly and byte-accessible to the host processors. It is usually close to
some cores as specified by its CPU set. Hence it is attached as a memory child of the object that groups those
cores together, for instance a Package objects with 4 Core children (see Hierarchy, Tree and Levels).

Memory-side Cache
A cache in front of a specific memory region (e.g. a range of physical addresses). It caches all accesses to that
region without caring about which core issued the request. This is the opposite of usual CPU caches where only
accesses from the local cores are cached, without caring about the target memory.

In hwloc, memory-side caches are memory objects placed between their local CPU objects (parent) and the target
NUMA node memory (child).

Generated by Doxygen

16 Terms and Definitions

4.2 Indexes and Sets

OS or physical index
The index that the operating system (OS) uses to identify the object. This may be completely arbitrary, non-
unique, non-contiguous, not representative of logical proximity, and may depend on the BIOS configuration. That
is why hwloc almost never uses them, only in the default Istopo output (P#x) and cpuset masks. See also
Should | use logical or physical/OS indexes? and how?.

Logical index
Index to uniquely identify objects of the same type and depth, automatically computed by hwloc according to the
topology. It expresses logical proximity in a generic way, i.e. objects which have adjacent logical indexes are adja-
cent in the topology. That is why hwloc almost always uses it in its API, since it expresses logical proximity. They
can be shown (as L#x) by 1 st opo thanks to the —1 option. This index is always linear and in the range [0, num«
_objs_same_type_same_level-1]. Think of it as ““cousin rank." The ordering is based on topology first, and then
on OS CPU numbers, so it is stable across everything except firmware CPU renumbering. "Logical index" should
not be confused with "Logical processor". A "Logical processor" (which in hwloc we rather call "processing unit"
to avoid the confusion) has both a physical index (as chosen arbitrarily by BIOS/OS) and a logical index (as com-
puted according to logical proximity by hwloc). See also Should | use logical or physical/OS indexes? and how?.

CPU set
The set of processing units (PU) logically included in an object (if it makes sense). They are always expressed
using physical processor numbers (as announced by the OS). They are implemented as the hwloc_bitmap_t
opaque structure. hwloc CPU sets are just masks, they do not have any relation with an operating system actual
binding notion like Linux' cpusets. 1/O and Misc objects do not have CPU sets while all Normal and Memory
objects have non-NULL CPU sets.

Node set
The set of NUMA memory nodes logically included in an object (if it makes sense). They are always expressed
using physical node numbers (as announced by the OS). They are implemented with the hwloc_bitmap_t opaque
structure. as bitmaps. 1/0O and Misc objects do not have Node sets while all Normal and Memory objects have
non-NULL nodesets.

Bitmap
A possibly-infinite set of bits used for describing sets of objects such as CPUs (CPU sets) or memory nodes
(Node sets). They are implemented with the hwloc_bitmap_t opaque structure.

4.3 Hierarchy, Tree and Levels

Parent object
The object logically containing the current object, for example because its CPU set includes the CPU set of the
current object. All objects have a non-NULL parent, except the root of the topology (Machine object).

Ancestor object
The parent object, or its own parent, and so on.

Children object(s)
The object (or objects) contained in the current object because their CPU set is included in the CPU set of the
current object. Each object may also contain separated lists for Memory, 1/0 and Misc object children.

Arity
The number of normal children of an object. There are also specific arities for Memory, 1/0O and Misc children.

Sibling objects
Objects in the same children list, which all of them are normal children of the same parent, or all of them are
Memory children of the same parent, or I/O children, or Misc. They usually have the same type (and hence are
cousins, as well). But they may not if the topology is asymmetric.

Generated by Doxygen

4.3 Hierarchy, Tree and Levels 17

Sibling rank
Index to uniquely identify objects which have the same parent, and is always in the range [0, arity-1] (respectively
memory_arity, io_arity or misc_arity for Memory, /O and Misc children of a parent).

Cousin objects
Objects of the same type (and depth) as the current object, even if they do not have the same parent.

Level
Set of objects of the same type and depth. All these objects are cousins.

Memory, I/O and Misc objects also have their own specific levels and (virtual) depth.

Depth
Nesting level in the object tree, starting from the root object. If the topology is symmetric, the depth of a child is
equal to the parent depth plus one, and an object depth is also equal to the number of parent/child links between
the root object and the given object. If the topology is asymmetric, the difference between some parent and child
depths may be larger than one when some intermediate levels (for instance groups) are missing in only some
parts of the machine.

The depth of the Machine object is always 0 since it is always the root of the topology. The depth of PU objects is
equal to the number of levels in the topology minus one.

Memory, I/O and Misc objects also have their own specific levels and depth.

The following diagram can help to understand the vocabulary of the relationships by showing the example of a machine
with two dual core packages (with no hardware threads); thus, a topology with 5 levels. Each box with rounded corner
corresponds to one hwloc_obj_t, containing the values of the different integer fields (depth, logical_index, etc.), and
arrows show to which other hwloc_obj_t pointers point to (first_child, parent, etc.).

The topology always starts with a Machine object as root (depth 0) and ends with PU objects at the bottom (depth 4
here).

Objects of the same level (cousins) are listed in red boxes and linked with red arrows. Children of the same parent
(siblings) are linked with blue arrows.

The L2 cache of the last core is intentionally missing to show how asymmetric topologies are handled. See
What happens if my topology is asymmetric? for more information about such strange topologies.

Generated by Doxygen

18 Terms and Definitions

Machine .depth =0
level Jlogical_index =0
depth=0 .os_index = -1

.sibli k=0
sit m_g_ran NUMA Node
.arity=2

.memory_arity=1 .depth =-3

- | /=== __ »| -logical_index =0
children[1] parent .0s_index =0
last_child .sibling_rank = 0
parent "
-
Package Package
level next_sibling .depth =1
depth=1 Jogical_index =0 — Jogical_index = 1
.0s_index =0 next_cousin prev_sibling .os_index =1
.sibling_rank=0 |- — .sibling_rank=1
.arity=2 prev_cousin .arity=2
children[0] chi]dren[]]‘ children[0] hi]dren[]]‘

first_child

ast_child first_child ast_child

parent parent parent
((
Cache Cache o Cache Cache
level depth = 2 next_sibling [gepth = 2 depth =2
depth=2 Jogical_index =0 prev_sibling| -logical_index = 1 Jogical_index =2 \\ | next_sibling
.0s_index =0 t cousi .os_index = 1 t cousi .0s_index =0 \
.sibling_rank=0 it .sibling_rank=1 it .sibling_rank=0
.arity=1 prev_cousin | .arity=1 prev_cousin | .arity=1
children[0]| children[0] children[0]
first_child first_child first_child
last_child last_child last_child
parent parent parent parent
Core Core (Core (Core \(COI‘C
level .depth=3 .depth=3 .depth =3 prev._siblin .depth =3
depth=3 Jogical_index =0 Jogical_index = 1 Jogical_index =2 - Jogical_index =3
.0s_index =0 — .0s_index =1 I .0s_index =0 — .0s_index = 1
. next_cousin . next_cousin o= next_cousin e
.sibling_rank=0 .sibling_rank=0 .sibling_rank=0 .sibling_rank=0
.arity=1 prev_cousin | .arity=1 prev_cousin | .arity=1 prev_cousin | .arity=1
children[0]| children[0] children[0] children[0]
first_child first_child first_child first_child
last_child last_child last_child last_child
parent parent parent parent
PU PU (PU (PU (PU
level .depth=4 .depth =4 .depth=4 .depth =4
depth=4 Jogical_index =0 Jogical_index = 1 Jogical_index =2 Jogical_index =3
.0s_index =0 . .0s_index =2 . .0s_index = 1 - .0s_index =3
. next_cousin . next_cousin o next_cousin -
.sibling_rank=0 .sibling_rank=0 .sibling_rank=0 .sibling_rank=0
.arity=0 prev_cousin | .arity=0 prev_cousin | .arity=0 prev_cousin | .arity=0

It should be noted that for PU objects, the logical index — as computed linearly by hwloc — is not the same as the OS
index.

The NUMA node is on the side because it is not part of the main tree but rather attached to the object that corresponds
to its locality (the entire machine here, hence the root object). It is attached as a Memory child (in green) and has a

virtual depth (negative). It could also have siblings if there were multiple local NUMA nodes, or cousins if other NUMA
nodes were attached somewhere else in the machine.

I/O or Misc objects could be attached in a similar manner.

Generated by Doxygen

Chapter 5

Command-Line Tools

hwloc comes with an extensive C programming interface and several command line utilities. Each of them is fully
documented in its own manual page; the following is a summary of the available command line tools.

5.1 Istopo and Istopo-no-graphics

Istopo (also known as hwloc-Is) displays the hierarchical topology map of the current system. The output may be
graphical, ascii-art or textual, and can also be exported to numerous file formats such as PDF, PNG, XML, and others.
Advanced graphical outputs require the "Cairo" development package (usually cairo-devel or libcairo2-dev).
Istopo and Istopo-no-graphics accept the same command-line options. However, graphical outputs are only available in
Istopo. Textual outputs (those that do not depend on heavy external libraries such as Cairo) are supported in both Istopo
and Istopo-no-graphics.

This command can also display the processes currently bound to a part of the machine (via the ——ps option).

Note that Istopo can read XML files and/or alternate chroot filesystems and display topological maps representing those
systems (e.g., use Istopo to output an XML file on one system, and then use Istopo to read in that XML file and display
it on a different system).

5.2 hwloc-bind

hwloc-bind binds processes to specific hardware objects through a flexible syntax. A simple example is binding an
executable to specific cores (or packages or bitmaps or ...). The hwloc-bind(1) man page provides much more detail on
what is possible.

hwloc-bind can also be used to retrieve the current process' binding, or retrieve the last CPU(s) where a process ran, or
operate on memory binding.

Just like hwloc-calc, the input locations given to hwloc-bind may be either objects or cpusets (bitmaps as reported by
hwloc-calc or hwloc-distrib).

5.3 hwloc-calc

hwloc-calc is hwloc's Swiss Army Knife command-line tool for converting things. The input may be either objects or
cpusets (bitmaps as reported by another hwloc-calc instance or by hwloc-distrib), that may be combined by addition,
intersection or subtraction. The output may be expressed as:

 a cpuset bitmap: This compact opaque representation of objects is useful for shell scripts etc. It may passed to
hwloc command-line tools such as hwloc-calc or hwloc-bind, or to hwloc command-line options such as 1stopo
——restrict.

» a nodeset bitmap: Another opaque representation that represents memory locality more precisely, especially if
some NUMA nodes are CPU less or if multiple NUMA nodes are local to the same CPUs.

Generated by Doxygen

20 Command-Line Tools

» the amount of the equivalent hwloc objects from a specific type, or the list of their indexes. This is useful for
iterating over all similar objects (for instance all cores) within a given part of a platform.

+ a hierarchical description of objects, for instance a thread index within a core within a package. This gives a better
view of the actual location of an object.

Moreover, input and/or output may be use either physical/OS object indexes or as hwloc's logical object indexes. It
eases cooperation with external tools such as taskset or numactl by exporting hwloc specifications into list of processor
or NUMA node physical indexes. See also How do | convert between logical and OS/physical indexes?.

5.4 hwloc-info

hwloc-info dumps information about the given objects, as well as all its specific attributes. It is intended to be used with
tools such as grep for filtering certain attribute lines. When no object is specified, or when ——topology is passed,
hwloc-info prints a summary of the topology. When ——support is passed, hwloc-info lists the supported features for
the topology.

5.5 hwloc-distrib

hwloc-distrib generates a set of cpuset bitmaps that are uniformly distributed across the machine for the given number
of processes. These strings may be used with hwloc-bind to run processes to maximize their memory bandwidth by
properly distributing them across the machine.

5.6 hwloc-ps

hwloc-ps is a tool to display the bindings of processes that are currently running on the local machine. By default,
hwloc-ps only lists processes that are bound; unbound process (and Linux kernel threads) are not displayed.

5.7 hwloc-annotate

hwloc-annotate may modify object (and topology) attributes such as string information (see Custom string infos for de-
tails) or Misc children objects. It may also add distances, memory attributes, etc. to the topology. It reads an input
topology from a XML file and outputs the annotated topology as another XML file.

5.8 hwloc-diff, hwloc-patch and hwloc-compress-dir

hwloc-diff computes the difference between two topologies and outputs it to another XML file.

hwloc-patch reads such a difference file and applies to another topology.

hwloc-compress-dir compresses an entire directory of XML files by using hwloc-diff to save the differences between
topologies instead of entire topologies.

5.9 hwloc-dump-hwdata

hwloc-dump-hwdata is a Linux and x86-specific tool that dumps (during boot, privileged) some topology and locality

information from raw hardware files (SMBIOS and ACPI tables) to human-readable and world-accessible files that the

hwloc library will later reuse.

Currently only used on Intel Xeon Phi processor platforms. See Why do | need hwloc-dump-hwdata for memory on Intel Xeon Phi process
See HWLOC_DUMPED_HWDATA_DIR in Environment Variables for details about the location of dumped files.

Generated by Doxygen

5.10 hwloc-gather-topology and hwloc-gather-cpuid 21

5.10 hwloc-gather-topology and hwloc-gather-cpuid

hwloc-gather-topology is a Linux-specific tool that saves the relevant topology files of the current machine into a tarball
(and the corresponding Istopo outputs).

hwloc-gather-cpuid is a x86-specific tool that dumps the result of CPUID instructions on the current machine into a
directory.

The output of hwloc-gather-cpuid is included in the tarball saved by hwloc-gather-topology when running on Linux/x86.
These files may be used later (possibly offline) for simulating or debugging a machine without actually running on it.

Generated by Doxygen

22

Command-Line Tools

Generated by Doxygen

Chapter 6

Environment Variables

The behavior of the hwloc library and tools may be tuned thanks to the following environment variables.

6.1

Environment variables for changing the source of topology information

HWLOC_XMLFILE=/path/to/file.xml

Enforce the discovery from the given XML file as if hwloc_topology_set_xml() had been called. This file may have
been generated earlier with 1stopo file.xml. For convenience, the XML backend provides empty binding
hooks which just return success. To have hwloc still actually call OS-specific hooks, HWLOC_THISSYSTEM
should be set 1 in the environment too, to assert that the loaded file is really the underlying system. See also
Importing and exporting topologies from/to XML files.

HWLOC_SYNTHETIC=pack:3 [numa] L2:2 core:4 pu:2

Enforce the discovery through a synthetic description string as if hwloc_topology_set_synthetic() had been
called. For convenience, this backend provides empty binding hooks which just return success. See also
Synthetic topologies.

HWLOC_FSROOT=/path/to/linux/filesystem-root/

Switch to reading the topology from the specified Linux filesystem root instead of the main file-system root. This
directory may have been saved previously from another machine with hwloc—gather-topology.

One should likely also set HWLOC_COMPONENTS=11inux, st op so that non-Linux backends are disabled (the
—1 option of command-line tools takes care of both).

Not using the main file-system root causes hwloc_topology_is_thissystem() to return 0. For convenience, this
backend provides empty binding hooks which just return success. To have hwloc still actually call OS-specific
hooks, HWLOC_THISSYSTEM should be set 1 in the environment too, to assert that the loaded file is really the
underlying system.

HWLOC_CPUID_PATH=/path/to/cpuid/

Force the x86 backend to read dumped CPUIDs from the given directory instead of executing actual x86 CPUID in-
structions. This directory may have been saved previously from another machine with hwloc-gather-cpuid.

One should likely also set HWLOC_COMPONENTS=x86, st op so that non-x86 backends are disabled (the -1
option of command-line tools takes care of both).

It causes hwloc_topology_is_thissystem() to return 0. For convenience, this backend provides empty binding
hooks which just return success. To have hwloc still actually call OS-specific hooks, HWLOC_THISSYSTEM
should be set 1 in the environment too, to assert that the loaded CPUID dump is really the underlying system.

HWLOC_DUMPED_HWDATA_DIR=/path/to/dumped/files/

Loads file dumped by hwloc-dump-hwdata (on Linux) from the given directory. The default dump/load di-
rectory is configured during build based on --runstatedir, --localstatedir, and --prefix options. It usually points to

Generated by Doxygen

24 Environment Variables

/var/run/hwloc/ in Linux distribution packages, but it may also point to $Sprefix/var/run/hwloc/
when manually installing and only specifying --prefix.

HWLOC_ANNOTATE_GLOBAL_COMPONENTS=0
Allow components to annotate the topology even if they are usually excluded by global components by default.
For instance, setting this variable to 1 enables the addition of PCI vendor and model string info attributes to a XML
topology that was generated without those names (if pciaccess was missing).

HWLOC_THISSYSTEM=1
Assume that the selected backend provides the topology for the system on which we are running, even if it is not
the OS-specific backend but the XML backend for instance. This means making the binding functions actually call
the OS-specific system calls and really do binding, while the XML backend would otherwise provide empty hooks
just returning success. This can be used for efficiency reasons to first detect the topology once, save it to a XML
file, and quickly reload it later through the XML backend, but still having binding functions actually do bind.

It enforces the return value of hwloc_topology_is_thissystem(), as if HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM
was set with hwloc_topology_set _flags(). It also enables support for the variable HWLOC_THISSYSTEM_ «
ALLOWED_RESOURCES.

6.2 Environment variables for tweaking topology objects

HWLOC_PCI_LOCALITY=<domain/bus> <cpuset>;...

HWLOC_PCI_LOCALITY=/path/to/pci/locality/file
Change the locality of 1/0O devices behind the specified PCl buses. If no I/O locality information is available or if
the BIOS reports incorrect information, this variable allows to move a I/O device tree (OS and/or PCI devices with
optional bridges) near a custom set of processors.

Localities are given either inside the environment variable itself, or in the pointed file. They may be separated
either by semi-colons or by line-breaks. Invalid localities are ignored, and it is possible to insert comments
between actual localities by starting the line with # or / /.

Each locality contains a domain/bus specification (in hexadecimal numbers as usual) followed by a whitespace
and a cpuset:

*+ 0001 <cpuset> specifies the locality of all buses in PCl domain 0000.
* 0000:0f <cpuset> specifies only PCI bus 0f in domain 0000.
* 0002:04-0a <cpuset> specifies a range of buses (from 04 to 0a) within domain 0002.

Domain/bus specifications should usually match entire hierarchies of buses behind a bridge (including primary,
secondary and subordinate buses). For instance, if hostbridge 0000:00 is above other bridges/switches with
buses 0000:01 to 0000:09, the variable should be HWLOC_PCI_LOCALITY="0000:00-09 <cpuset>", otherwise
hwloc will try to extend the given locality to match the entire hierarchy. A single hierarchy of buses cannot be split
between two localities.

If the variable is defined to empty or invalid, no forced PCI locality is applied but hwloc's internal automatic locality
quirks are disabled, which means the exact PCI locality reported by the platform is used.

HWLOC_X86_TOPOEXT_NUMANODES=0
When using the x86 backend, setting this variable to 1 enables the building of NUMA nodes from AMD processor
CPUID instructions. However this strategy does not always reflect BIOS configuration such as NUMA interleaving.
And node indexes may be different from those of the operating system. Hence this should only be used when OS
backends are wrong and the user is sure that CPUID returns correct NUMA information.

HWLOC_KEEP_NVIDIA_GPU_NUMA_NODES=0
Show or hide NUMA nodes that correspond to NVIDIA GPU memory. By default they are ignored on POWER
platforms to avoid interleaved memory being allocated on all CPUs and GPUs by mistake.

Generated by Doxygen

6.3 Environment variables for tweaking hwloc heuristics 25

Setting this environment variable to 0 hides the NUMA nodes (default on POWER). Setting to 1 exposes these
NUMA nodes (default on non-POWER platforms such as NVIDIA Grace Hopper).

These NUMA nodes may be recognized by the GPUMemory subtype. They also have a PCIBusID info attribute
to identify the corresponding GPU.

HWLOC_KNL_MSCACHE_L3=0
Expose the KNL MCDRAM in cache mode as a Memory-side Cache instead of a L3. hwloc releases prior to 2.1
exposed the MCDRAM cache as a CPU-side L3 cache. Now that Memory-side caches are supported by hwloc,
it is still exposed as a L3 by default to avoid breaking existing applications. Setting this environment variable to 1
will expose it as a proper Memory-side cache.

HWLOC_WINDOWS_PROCESSOR_GROUP_OBJS=0
Expose Windows processor groups as hwloc Group objects. By default (0), these groups are disabled because
they may be incompatible with the hierarchy of resources that hwloc builds (leading to warnings). Setting this
variable to 1 reenables the addition of these groups to the topology.
This variable does not impact the querying of Windows processor groups using the dedicated API in
hwloc/windows.h, this feature is always supported.

6.3 Environment variables for tweaking hwloc heuristics

HWLOC_USE_NUMA_DISTANCES=7
Enable or disable some use of NUMA distances and memory target/initiator information to improve the locality of
NUMA nodes, especially CPU-less nodes.

Bits in the value of this environment variable enable different features: Bit O enables the gathering of NUMA
distances from the operating system. Bit 1 further enables the use of NUMA distances to improve the locality of
CPU-less nodes. Bit 2 enables the use of target/initiator information. By default, all bits are set (7).

HWLOC_MEMTIERS_GUESS=none

HWLOC_MEMTIERS_GUESS-=all
Disable or enable all heuristics to guess memory subtypes and tiers. By default, hwloc only uses heuristics that
are likely correct and disables those that are unlikely.

HWLOC_MEMTIERS=0x0f=HBM;0xf=DRAM
Enforce the memory tiers from the given semi-colon separated list. Each entry specifies a bitmask (nodeset) of
NUMA nodes and their subtype. Nodes not listed in any entry are not placed in any tier.

If an empty value or none is given, tiers are entirely disabled.

HWLOC_MEMTIERS_REFRESH=1
If set, this variable forces the rebuilding of memory tiers. This is mostly useful when importing a XML topology
from an old hwloc version which was not able to guess memory subtypes and tiers.

HWLOC_GROUPING=1
Enable or disable object grouping based on distances. By default (1), hwloc uses distance matrices between
objects (either read from the OS or given by the user) to find groups of close objects. These groups are described
by adding intermediate Group objects in the topology. Setting this environment variable to 0 will disable this
grouping.
See also HWLOC_GROUPING_VERBOSE for verbose messages about grouping.

HWLOC_GROUPING_ACCURACY=0.05
Relax distance comparison during grouping. By default, objects may be grouped if their distances form a minimal
distance graph. When setting this variable to 0.02, and when HWLOC_DISTANCES_ADD_FLAG_GROUP_INACCURATE
is given, these distances do not have to be strictly equal anymore, they may just be equal with a 2% error.

Generated by Doxygen

26

Environment Variables

If set to t ry instead of a numerical value, hwloc will try to group with perfect accuracy (0, the default), then with
0.01, 0.02, 0.05 and finally 0.1.

Numbers given in this environment variable should always use a dot as a decimal mark (for instance 0.01 instead
of 0,01).

HWLOC_CPUKINDS_RANKING=default

Change the ranking policy for CPU kinds. hwloc tries to rank CPU kinds that are energy efficiency first, and then
CPUs that are rather high-performance and power hungry.

By default, if available, the OS-provided efficiency is used for ranking. Otherwise, the frequency and/or core types
are used when available.

This environment variable may be set to coretype+frequency, coretype+frequency_strict,
coretype, frequency, frequency_base, frequency_max, forced_efficiency, no_«
forced_efficiency,default, or none.

HWLOC_CPUKINDS_MAXFREQ=adjust=10

Change the use of the max frequency in the Linux backend. hwloc tries to read the base and max frequencies of
each core on Linux. Some hardware features such as Intel Turbo Boost Max 3.0 make some cores report slightly
higher max frequencies than others in the same CPU package. Despite having slightly different frequencies,
these cores are considered identical instead of exposing an hybrid CPU. Hence, by default (adjust=10), hwloc
uniformizes the max frequencies of cores that have the same base frequency (higher values are downgraded by
up to 10%). When available, the CPU capacity value is also adjusted accordingly.

If this environment variable is set to ad just =X, the 10% threshold is replaced with X. If set to 1, max frequencies
are not adjusted anymore, some homogeneous processors may appear hybrid because of this. If set to 0, max
frequencies are entirely ignored.

HWLOC_CPUKINDS_HOMOGENEOUS=0

Uniformize max frequency, base frequency and Linux capacity to force a single homogeneous kind of CPUs. This
is enabled by default on NVIDIA Grace but may be disabled if set to 0 (or enabled on other platforms if set to 1).

HWLOC_LINUX_CPUKINDS=-1

Try to enable the discovery of CPU kinds on Linux. This is enabled by default except on old AMD CPUs known to
be homogeneous. Setting to 1 always enables it, while 0 always disables it. Setting to cppc=0 enables it without
using ACPI1 CPPC nominal frequency.

6.4 Environment variables for changing allowed resources

HWLOC_THISSYSTEM_ALLOWED_RESOURCES=1

Get the set of allowed resources from the native operating system even if the topology was loaded from XML or
synthetic description, as if HWLOC_TOPOLOGY_FLAG_THISSYSTEM_ALLOWED_RESOURCES was set with
hwloc_topology_set_flags(). This variable requires the topology to match the current system (see the variable
HWLOC_THISSYSTEM).

This is useful when the topology is not loaded directly from the local machine (e.g. for performance reason) and it
comes with all resources, but the running process is restricted to only a part of the machine (for instance because
of Linux Cgroup/Cpuset).

HWLOC_ALLOW=all

Totally ignore administrative restrictions such as Linux Cgroups and consider all resources (PUs and NUMA
nodes) as allowed. This is different from setting HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED which
gathers all resources but marks the unavailable ones as disallowed.

Generated by Doxygen

6.5 Environment variables for controlling components and plugins 27

6.5 Environment variables for controlling components and plugins

HWLOC_COMPONENTS=list,of,components
Enable or disable the given comma-separated list of components (if they do not conflict with each other). Compo-
nent names prefixed with — are disabled (a single phase may also be disabled).

Once the end of the list is reached, hwloc falls back to enabling the remaining components (sorted by priority)
that do not conflict with the already enabled ones, and unless explicitly disabled in the list. If stop is met, the
enabling loop immediately stops, no more component is enabled.

This is useful for understanding whether a topology issue comes from the native operating system backend or
from the x86 backend: Setting to x86, stop or 1inux, stop will test one backend without the other.

If xm1 or synthetic components are selected, the corresponding XML filename or synthetic description string
should be passed in HWLOC_XMLFILE or HWLOC_SYNTHETIC respectively.

Since this variable is the low-level and more generic way to select components, it takes precedence over environ-
ment variables for selecting components.

If the variable is set to an empty string (or set to a single comma), no specific component is loaded first, all
components are loaded in priority order.

See Selecting which components to use for details.

HWLOC_PLUGINS_PATH=/path/to/hwloc/plugins/:...
Change the default search directory for plugins. By default, $1ibdir/hwloc is used. The variable may contain
several colon-separated directories.

HWLOC_PLUGINS_BLACKLIST=filename1,filename2,...
Prevent plugins from being loaded if their filename (without path) is listed. Plugin filenames may be found in
verbose messages outputted when HWLOC_PLUGINS_VERBOSE=1.

6.6 Environment variables for changing the verbosity

HWLOC_HIDE_ERRORS=1
Enables or disable verbose reporting of errors. The hwloc library may issue warnings to the standard error
stream when it detects a problem during topology discovery, for instance if the operating system (or user) gives
contradictory topology information.

By default (1), hwloc only shows critical errors such as invalid hardware topology information or invalid configura-
tion. If set to 0 (default in Istopo), more errors are displayed, for instance a failure to initialize CUDA or NVML. If
set to 2, no hwloc error messages are shown.

Note that additional verbose messages may be enabled with other variables such as HWLOC_GROUPING_«+
VERBOSE.

HWLOC_DEBUG_VERBOSE=0
Disable all verbose messages that are enabled by default when —enable-debug is passed to configure. When
set to more than 1, even more verbose messages are displayed. The default is 1.

HWLOC_XML_VERBOSE=1

HWLOC_SYNTHETIC_VERBOSE=1
enables verbose messages in the XML or synthetic topology backends. hwloc XML backends (see
Importing and exporting topologies from/to XML files) can emit some error messages to the error output stream.
Enabling these verbose messages within hwloc can be useful for understanding failures to parse input XML
topologies. Similarly, enabling verbose messages in the synthetic topology backend can help understand why the
description string is invalid. See also Synthetic topologies.

Generated by Doxygen

28 Environment Variables

HWLOC_GROUPING_VERBOSE=0
Enable or disable some verbose messages during grouping. If this variable is set to 1, some debug messages
will be displayed during distance-based grouping of objects even if debug was not specific at configure time. This
is useful when trying to find an interesting distance grouping accuracy.

HWLOC_COMPONENTS_VERBOSE=1
Display messages when components are registered or enabled. This is the recommended way to list the available
components with their priority (all of them are registered at startup).

HWLOC_PLUGINS_VERBOSE=1
Display verbose information about plugins: list which directories are scanned, which files are loaded, and which
components are successfully loaded.

Generated by Doxygen

Chapter 7

CPU and Memory Binding Overview

Binding tasks and data buffers is hwloc's second main goal after discovering and exposing the hardware topology. hwloc
defines APIs to bind threads and processes to cores and processing units (see CPU binding), and to bind memory
buffers to NUMA nodes (see Memory binding). Some examples are available under doc/examples/ in the source tree.
Sections below provide high-level insights on how these APIs work.

7.1 Binding Policies and Portability

hwloc binding APIs are portable to multiple operating systems. However operating systems sometimes define slightly
different policies, which means hwloc's behavior might slightly differ.

On the CPU binding side, OSes have different constraints of which sets of PUs can be used for binding (only full cores,
random sets of PUs, etc.). Moreover the HWLOC_CPUBIND_STRICT may be given to clarify what to do in some corner
cases. It is recommended to read CPU binding for details.

On the memory binding side, things are more complicated. First, there are multiple API for binding existing memory
buffers, allocating new ones, etc. Second, multiple policies exist (first-touch, bind, interleave, etc.) but some of them
are not implemented by all operating systems. Third, some of these policies have slightly different meanings. For in-
stance, hwloc's bind (HWLOC_MEMBIND_BIND) uses Linux' MPOL_PREFERRED_MANY (or MPOL_PREFERRED)
by default, but it switches to MPOL_BIND when strict binding is requested (HWLOC_MEMBIND_STRICT). Reading
Memory binding is strongly recommended.

7.2 Joint CPU and Memory Binding (or not)

Some operating systems do not systematically provide separate functions for CPU and memory binding. This means
that CPU binding functions may have have effects on the memory binding policy. Likewise, changing the memory binding
policy may change the CPU binding of the current thread. This is often not a problem for applications, so by default
hwloc will make use of these functions when they provide better binding support.

If the application does not want the CPU binding to change when changing the memory policy, it needs to use the
HWLOC_MEMBIND_NOCPUBIND flag to prevent hwloc from using OS functions which would change the CPU binding.
Additionally, HWLOC_CPUBIND_NOMEMBIND can be passed to CPU binding function to prevent hwloc from using OS
functions would change the memory binding policy. Of course, using these flags will reduce hwloc's overall support for
binding, so their use is discouraged.

One can avoid using these flags but still closely control both memory and CPU binding by allocating memory, touching
each page in the allocated memory, and then changing the CPU binding. The already-really-allocated memory will then
be "locked" to physical memory and will not be migrated. Thus, even if the memory binding policy gets changed by the
CPU binding order, the already-allocated memory will not change with it. When binding and allocating further memory,
the CPU binding should be performed again in case the memory binding altered the previously-selected CPU binding.

Generated by Doxygen

30 CPU and Memory Binding Overview

7.3 Current Memory Binding Policy

Not all operating systems support the notion of a "current" memory binding policy for the current process, but such
operating systems often still provide a way to allocate data on a given node set. Conversely, some operating systems
support the notion of a "current” memory binding policy and do not permit allocating data on a specific node set without

changing the current policy and allocate the data. To provide the most powerful coverage of these facilities, hwloc
provides:

« functions that set/get the current memory binding policies (if supported): hwloc_set_membind(), hwloc_get_membind(),
hwloc_set_proc_membind() and hwloc_get_proc_membind()

« a function that allocates memory bound to specific node set without changing the current memory binding policy
(if supported): hwloc_alloc_membind().

* a helper which, if needed, changes the current memory binding policy of the process in order to obtain memory
binding: hwloc_alloc_membind_policy().

An application can thus use the two first sets of functions if it wants to manage separately the global process binding
policy and directed allocation, or use the third set of functions if it does not care about the process memory binding
policy. Again, reading Memory binding is strongly recommended.

Generated by Doxygen

Chapter 8

/0 Devices

hwloc usually manipulates processing units and memory but it can also discover I/O devices and report their locality
as well. This is useful for placing I/O intensive applications on cores near the I/O devices they use, or for gathering
information about all platform components.

8.1 Enabling and requirements

I/O discovery is disabled by default (except in Istopo) for performance reasons. It can be enabled by changing the filtering
of I/O object types to HWLOC_TYPE_FILTER_KEEP_IMPORTANT or HWLOC_TYPE_FILTER_KEEP_ALL before
loading the topology, for instance with hwloc_topology_set_io_types_filter ().

Note that I/0O discovery requires significant help from the operating system. The pciaccess library (the development
package is usually 1ibpciaccess—devel or libpciaccess—dev) is needed to fully detect PCl devices and
bridges/switches. On Linux, PCI discovery may still be performed even if 1ibpciaccess cannot be used. But
it misses PCI device names. Moreover, some operating systems require privileges for probing PCl devices, see
Does hwloc require privileged access? for details.

The actual locality of I/O devices is only currently detected on Linux. Other operating system will just report I/O devices
as being attached to the topology root object.

8.2 1/0 objects

When 1/O discovery is enabled and supported, some additional objects are added to the topology. The corresponding
I/O object types are:

* HWLOC_OBJ_OS_DEVICE describes an operating-system-specific handle such as the sda drive or the eth0
network interface. See OS devices.

* HWLOC_OBJ_PCI_DEVICE and HWLOC_OBJ_BRIDGE build up a PCI hierarchy made of bridges (that may
be actually be switches) and devices. See PCI devices and bridges.

Any of these types may be filtered individually with hwloc_topology_set_type_filter ().

hwloc tries to attach these new objects to normal objects (usually NUMA nodes) to match their actual physical location.
For instance, if a I/0 hub (or root complex) is physically connected to a package, the corresponding hwloc bridge object
(and its PCI bridges and devices children) is inserted as a child of the corresponding hwloc Package object. These
children are not in the normal children list but rather in the I/0-specific children list.

I/O objects also have neither CPU sets nor node sets (NULL pointers) because they are not directly usable by the
user applications for binding. Moreover I/O hierarchies may be highly complex (asymmetric trees of bridges). So I/O
objects are placed in specific levels with custom depths. Their lists may still be traversed with regular helpers such as
hwloc_get_next_obj_by type(). However, hwloc offers some dedicated helpers such as hwloc_get_next_pcidev() and
hwloc_get_next_osdev() for convenience (see Finding I/O objects).

Generated by Doxygen

32 1/0 Devices

8.3 OS devices

Although each PCI device is uniquely identified by its bus ID (e.g. 0000:01:02.3), a user-space application can
hardly find out which PCI device it is actually using. Applications rather use software handles (such as the ethO net-
work interface, the sda hard drive, or the mix4_0 OpenFabrics HCA). Therefore hwloc tries to add software devices
(HWLOC_OBJ_OS_DEVICE, also known as OS devices).

OS devices may be attached below PCI devices, but they may also be attached directly to normal objects. Indeed
some OS devices are not related to PCI. For instance, NVDIMM block devices (such as pmem0Os on Linux) are directly
attached near their NUMA node (I/O child of the parent whose memory child is the NUMA node). Also, if hwloc could
not discover PCI for some reason, PCl-related OS devices may also be attached directly to normal objects.

Finally, OS subdevices may be exposed as OS devices children of another OS device. This is the case of LevelZero
subdevices for instance.

hwloc first tries to discover OS devices from the operating system, e.g. eth0, sda or mix4_0. However, this ability is
currently only available on Linux for some classes of devices.

hwloc then tries to discover software devices through additional /O components using external libraries. For instance
proprietary graphics drivers do not expose any named OS device, but hwloc may still create one OS object per software
handle when supported. For instance the opencl and cuda components may add some opencl/0d0 and cuda0 OS
device objects.

Here is a list of OS device objects commonly created by hwloc components when I/O discovery is enabled and sup-
ported.

 Hard disks or non-volatile memory devices (HWLOC_OBJ_OSDEV_BLOCK)
— sda or dax2.0 (Linux component)
* Network interfaces (HWLOC_OBJ_OSDEV_NETWORK)

— eth0, wlan0, ib0 (Linux component)

— hsn0 with "Slingshot" subtype for HPE Cray HSNs (Linux component).
+ OpenFabrics (InfiniBand, Omni-Path, usNIC, etc) HCAs (HWLOC_OBJ_OSDEV_OPENFABRICS)

— mix5_0, hfi1_0, qib0, usnic_0 (Linux component)
— bxi0 with "BXI" subtype for Atos/Bull BXI HCAs (Linux component) even if those are not really OpenFabrics.
* GPUs (HWLOC_OBJ_OSDEV_GPU)
— rsmi0 for the first RSMI device ("RSMI" subtype, from the RSMI component, using the AMD ROCm SMI
library)

— nvml0 for the first NVML device ("NVML" subtype, from the NVML component, using the NVIDIA Manage-
ment Library)

— 0.0 for the first display ("Display" subtype, from the GL component, using the NV-CONTROL X extension
library, NVCtrl)

— card0 and renderD128 for DRM device files (from the Linux component, filtered-out by default because
considered non-important)
» Co-Processors (HWLOC_OBJ_OSDEV_COPROC)
— opencl0do for the first device of the first OpenCL platform, opencl1d3 for the fourth device of the second
OpenCL platform ("OpenCL" subtype, from the OpenCL component)

— ze0 for the first Level Zero device ("LevelZero" subtype, from the levelzero component, using the oneAPI
Level Zero library), and ze0.1 for its second subdevice (if any).

— cuda0 for the first NVIDIA CUDA device ("CUDA" subtype, from the CUDA component, using the NVIDIA
CUDA Library)

— ve0 for the first NEC Vector Engine device ("VectorEngine" subtype, from the Linux component)

Generated by Doxygen

8.4 PCI devices and bridges 33

« DMA engine channel (HWLOC_OBJ_OSDEV_DMA)

— dmaOchanO (Linux component) when all OS devices are enabled (HWLOC_TYPE_FILTER_KEEP_ALL)

Note that some PCI devices may contain multiple software devices (see the example below).
See also Interoperability With Other Software for managing these devices without considering them as hwloc objects.

8.4 PCl devices and bridges

A PCI hierarchy is usually organized as follows: A hostbridge object (HWNLOC_OBJ_BRIDGE object with upstream
type Host and downstream type PCI) is attached below a normal object (usually the entire machine or a NUMA node).
There may be multiple hostbridges in the machine, attached to different places, but all PCI devices are below one of
them (unless the Bridge object type is filtered-out).

Each hostbridge contains one or several children, either other bridges (usually PCI to PCI switches) or PCI devices
(HWLOC_OBJ_PCI_DEVICE). The number of bridges between the hostbridge and a PCI device depends on the
machine.

8.5 Consulting I/O devices and binding

I/O devices may be consulted by traversing the topology manually (with usual routines such as hwloc_get_obj_by_type())
or by using dedicated helpers (such as hwloc_get_pcidev_by_busid(), see Finding I/O objects).

I/O objects do not actually contain any locality information because their CPU sets and node sets are NULL. Their
locality must be retrieved by walking up the object tree (through the parent link) until a non-1/O object is found (see
hwloc_get_non_io_ancestor_obj()). This normal object should have non-NULL CPU sets and node sets which describe
the processing units and memory that are immediately close to the 1/O device. For instance the path from a OS device
to its locality may go across a PCl device parent, one or several bridges, up to a Package node with the same locality.
Command-line tools are also aware of I/O devices. Istopo displays the interesting ones by default (passing ——no-io
disables it).

hwloc-calc and hwloc-bind may manipulate 1/0 devices specified by PCl bus ID or by OS device name.

* pci=0000:02:03.0 is replaced by the set of CPUs that are close to the PCI device whose bus ID is given.
* os=ethO is replaced by CPUs that are close to the 1/0 device whose software handle is called et hO0.

This enables easy binding of I/O-intensive applications near the device they use.

8.6 Examples

The following picture shows a dual-package dual-core host whose PCI bus is connected to the first package and NUMA
node.

Generated by Doxygen

34 I1/0 Devices
Machine (2466 total)
Package L&D Package L#¥1
NUMANcde L#0 P#0 (12GB) NUMANcde L#1 P#1 (12GE)
O—
L3 (8192KB) 04 — |0.2 | PCI01:00.0 L3 (B192KB)
L2 (256KB) || L2 (256KB) EEELLY L2 (256KB) || L2 (256KE)
L1 (32KB) L1 (32KB) 0.2 | PCI01:00.1 L1 (32KB) L1 (32KE)
Core L#0 Core L#1 e EEL Core L#2 Core L#3
PU L#0 PU L#1 —{— P L#2 PU L#3
PO P2 0.2 0.2 PCI03:00.0 P#1 P#3
Block sda
.--*:b—-—-—
PCI 04:03.0
0.1 | PCI 00:1f.2
2.0 | PCI 51:00.0
Met ib0 | | Netibl
Met mixd 0

Six interesting PCI devices were discovered (dark green boxes). However, hwloc found some corresponding software
devices (eth0, eth1, sda, mix4_0, ib0, and ib1 light grey boxes) for only four of these physical devices. The other ones
(PCI 04:03.0 and PCI 00:1f.2) are an unused IDE controller (no disk attached) and a graphic card (no corresponding
software device reported to the user by the operating system).

On the contrary, it should be noted that three different software devices were found for the last PCI device (PCI 51:00.0).
Indeed this OpenFabrics HCA PCI device object contains one OpenFabrics software device (mix4_0) and two virtual
network interfaces (ib0 and ib7).

Here is the corresponding textual output:

Machine (24GB total)
Package L#0
NUMANode L#0 (P#0 12GB)
L3 L#0 (8192KB)
L2 L#0 (256KB)
L2 L#1 (256KB)
HostBridge
PCIBridge
PCI 01:00.0 (Ethernet)
Net "ethO"
PCI 01:00.1 (Ethernet)
Net "ethl"
PCIBridge
PCI 03:00.0 (RAID)
Block "sda"

+ L1 L#0
+ L1 L#l

(32KB) + Core L#0 + PU L#0
(32KB) + Core L#1 + PU L#1

(P#0)
(P#2)

Generated by Doxygen

8.6 Examples

35

PCIBridge
PCI 04:03.0 (VGA)

PCI 00:1f.2 (IDE)

PCI 51:00.0 (InfiniBand)
Net "ibO"
Net "ibl"

Net "mlx4_0O"
Package L#1
NUMANode L#1 (P#1 12GB)
L3 L#1 (8192KB)
L2 L#2 (256KB) + L1 L#2 (32KB) + Core L#2 + PU L#2 (P#1)
L2 L#3 (256KB) + L1 L#3 (32KB) + Core L#3 + PU L#3 (P#3)

Generated by Doxygen

36

1/0 Devices

Generated by Doxygen

Chapter 9

Miscellaneous objects

hwloc topologies may be annotated with Misc objects (of type HWLOC_OBJ_MI SC) either automatically or by the user.
This is a flexible way to annotate topologies with large sets of information since Misc objects may be inserted anywhere
in the topology (to annotate specific objects or parts of the topology), even below other Misc objects, and each of them
may contain multiple attributes (see also How do | annotate the topology with private notes?).

These Misc objects may have a subtype field to replace Mi sc with something else in the Istopo output.

9.1 Misc objects added by hwloc

hwloc only uses Misc objects when other object types are not sufficient, and when the Misc object type is not filtered-out
anymore. This currently includes:

* Memory modules (DIMMs), on Linux when privileged and when dmi-sys£fs is supported by the kernel. These
objects have a subtype field of value MemoryModule. They are currently always attached to the root object.
Their attributes describe the DIMM vendor, model, etc. 1stopo —v displays them as:

Misc (MemoryModule) (P#1 DevicelLocation="Bottom-Slot 2 (right)" BankLocation="BANK 2" Vendor=Elpida
SerialNumber=21733667 AssetTag=9876543210 PartNumber="EBJ81lUG8EFUO-GN-F ")

+ Displaying process binding in 1stopo —-top. These objects have a subtype field of value Process and a
name attribute made of their PID and program name. They are attached below the object they are bound to. The
textual 1stopo displays them as:

PU L#0 (P#0)
Misc (Process) 4445 myprogram

9.2 Annotating topologies with Misc objects

The user may annotate hwloc topologies with its own Misc objects. This can be achieved with hwloc_topology_insert_misc_ob]
as well as hwloc-annotate command-line tool.

Generated by Doxygen

38

Miscellaneous objects

Generated by Doxygen

Chapter 10

Object attributes

10.1 Normal attributes

hwloc objects have many generic attributes in the hwloc_obj structure, for instance their Llogical_index or os_<«
index (see Should | use logical or physical/OS indexes? and how?), depth or name.

The kind of object is first described by the ob j—>t ype generic attribute (an integer). OS devices also have a specific
obj->attr->osdev.type integer for distinguishing between NICs, GPUs, etc.

Objects may also have an optional obj—>subt ype pointing to a better description string (displayed by Istopo either
in place or after the main ob j—>type attribute):

* NUMA nodes: subtype DRAM (for usual main memory), HBM (high-bandwidth memory), SPM (specific-purpose
memory, usually reserved for some custom applications), NVM (non-volatile memory when used as main mem-
ory), MCDRAM (on KNL), GPUMemory (NVIDIA GPU memory shared over NVLink on POWER, over NVLink-
C2C on Grace Hopper, etc.), CXL-DRAM or CXL-NVM for CXL DRAM or non-volatile memory. Note that
some of these subtypes are guessed by the library, they might be missing or slightly wrong in some corner
cases. See Heterogeneous Memory for details, and HWLOC_MEMTIERS and HWLOC_MEMTIERS_GUESS in
Environment variables for tweaking hwloc heuristics for tuning these.

» Groups: subtype Cluster, Module, Tile, Compute Unit, Book or Drawer for different architecture-
specific groups of CPUs (see also What are these Group objects in my topology?).

+ OS devices (see also OS devices):

Co-processor: subtype OpenCL, LevelZero, CUDA, or VectorEngine.
GPU: subtype RSMI (AMD GPU) or NVML (NVIDIA GPU).

OpenFabrics: subtype BXTI (Bull/Atos BXI HCA).

Network: subtype S1ingshot (HPE Cray Slingshot Cassini HSN).

Block: subtype Disk, NVM (non-volatile memory), SPM (specific-purpose memory), CXLMem (CXL volatile
ou persistent memory), Tape, or Removable Media Device.

» L3 Caches: subtype MemorySideCache when hwloc is configured to expose the KNL MCDRAM in Cache
mode as a L3.

» PCl devices: subtype NVSwitch for NVLink switches (see also NVLinkBandwidth in Distances).
» Misc devices: subtype MemoryModule (see also Misc objects added by hwloc)

Each object also contains an attr field that, if non NULL, points to a union hwloc_obj_attr_u of type-specific attribute
structures. For instance, a L2Cache object ob j contains cache-specific information in ob j—>attr->cache, such
as its size and associativity, cache type. See hwloc_obj_attr_u for details.

Generated by Doxygen

40 Obiject attributes

10.2 Custom string infos

Aside of these generic attribute fields, hwloc annotates many objects with info attributes made of name and value strings.
Each object contains a list of such pairs that may be consulted manually (looking at the object infos array field) or
using the hwloc_obj_get_info_by name(). The user may additionally add new name-value pairs to any object using
hwloc_obj_add_info() or the hwloc-annotate program.

Here is a list of attributes that may be automatically added by hwloc. A description is given for each pair name (or group
of related pairs), and examples of values are also provided.

Note that these attributes heavily depend on the ability of the operating system to report them. Many of them will
therefore be missing on some OS.

10.2.1 Operating System Information

These info attributes are attached to the root object (Machine).

OSName=Linux

OSRelease=5.14.0-427.76.1.el9_4.x86_64

OSVersion=#1 SMP PREEMPT_DYNAMIC Fri Jun 27 09:53:45 EDT 2025
HostName=adastra6

Architecture=x86_64
The operating system name, release, version, the hostname and the architecture name, as reported by the Unix
uname command.

LinuxCgroup=/slurm/uid_10102/job_4229632/step_extern
The name the Linux control group where the calling process is placed.

WindowsBuildEnvironment=Cygwin
Either MinGW or Cygwin when one of these environments was used during build.

10.2.2 hwloc Information

These info attributes are attached to the root object (Machine).

MemoryTiersNr=2
The number of different memory tiers in the topology, if any. See Heterogeneous Memory.

Backend=Linux (topology root, or specific object added by that backend)
The name of the hwloc backend/component that filled the topology. If several components were combined, mul-
tiple Backend pairs may exist, with different values, for instance x86 and Linux in the root object and CUDA in
CUDA OS device objects.

SyntheticDescription=Pack:1 [NUMA(memory=16GiB)] L2:6(size=1MiB) L1d:1(size=48kiB) Core:1 PU:2
The description string that was given to hwloc to build this synthetic topology. See Synthetic topologies

hwlocVersion=2.13.0
The version number of the hwloc library that was used to generate the topology. If the topology was loaded from
XML, this is not the hwloc version that loaded it, but rather the first hwloc instance that exported the topology to
XML earlier.

Generated by Doxygen

10.2 Custom string infos 4

ProcessName=myprogram
The name of the process that contains the hwloc library that was used to generate the topology. If the topology
was from XML, this is not the hwloc process that loaded it, but rather the first process that exported the topology
to XML earlier.

10.2.3 Hardware Platform Information

These info attributes are attached to the root object (Machine).

DMIBIOSVersion=V70 Ver. 01.08.00

DMIBoardVendor=HP

DMIChassisType=10

DMIProductName=HP EliteBook 840 14 inch G10 Notebook PC
These keys (and several others) provide the name, serial number, version, etc. of the hardware product, chassis,
motherboard and BIOS, as reported by DMI when supported on Linux (under /sys/class/dmi/id/).
HardwareName=Marvell Armada-370
HardwareRevision=0001
HardwareSerial=000abc123
The name, revision and serial number of the platform, currently available only on some Linux/ARM platforms.
PlatformName=PowerNV
PlatformModel=C1P9S01 REV 1.01
PlatformVendor=Eyetech Ltd.
PlatformBoardID=0x22c
PlatformRevision=3
SystemVersionRegister=0x3456
All these keys describe POWER/PowerPC platforms. Currently only available on some Linux platforms.
SoC0ID=25

SoC2Family=Tegra

SoC1Revision=0x00000102
These keys provide the ID, family and revision of the first system-on-chip (SoC0), second (SoC1), etc. Currently
only available on Linux on some platforms.

Generated by Doxygen

42 Obiject attributes

MemoryMode, ClusterMode
Intel Xeon Phi processor configuration modes. Available if hwloc-dump-hwdata was used (see Why do | need hwloc-dump-hwdata fc
or if hwloc managed to guess them from the NUMA configuration.

The memory mode may be Cache, Flat, Hybrid50 (half the MCDRAM is used as a cache) or Hybrid25 (25%
of MCDRAM as cache). The cluster mode may be Quadrant, Hemisphere, AlI2All, SNC2 or SNC4. See
doc/examples/get-knl-modes.c in the source directory for an example of retrieving these attributes.

10.2.4 CPU Information

These info attributes are attached to Package objects, or to the root object (Machine) if package locality information is
missing.

CPUModel=AMD EPYC 7A53 64-Core Processor
The processor model name, available on most platforms and operating systems.

CPUVendor=AuthenticAMD
The processor vendor name, usually available when running on x86 hardware and/or Linux platforms.

CPUModelNumber=48

CPUFamilyNumber=25

CPUStepping=1
x86-specific processor model, family, and stepping numbers.

CPUImplementer=0x48

CPUArchitecture=8

CPUVariant=0x1

CPUPart=0xd01
ARM-specific CPU information about the implementer, the sub-architecture, the variant and the part number,
currently only available on Linux on some platforms.

CPUFamily=Loongson-64bit
The family of the CPU, currently only available on Linux on LoongArch platforms.

CPURevision=0x11
Processor revision number, currently only available on Linux on ARM, LoongArch and on some POWER/PowerPC
platforms.

ProcessorVersionRegister=0x123
POWER/PowerPC-specific processor version register (PVR), currently only available on Linux on some platforms.

CPUType=sparcv9
A Solaris-specific general processor type name, such as 1 86pc or sparcv?9, as reported by PICL.

Generated by Doxygen

10.2 Custom string infos 43

10.2.5 OS Device Information
10.2.5.1 GPU and Coprocessor OS Device Information

These info attributes are attached to OS device objects specified in parentheses.

GPUVendor=NVIDIA Corporation
GPUModel=Tesla V100-SXM3-32GB-H (GPU or Co-Processor OS devices)
The vendor and model names of the GPU device.

OpenCLDeviceType=GPU

OpenCLPlatformindex=0

OpenCLPlatformName=AMD Accelerated Parallel Processing

OpenCLPlatformDevicelndex=1 (OpenCL OS devices)
The type of OpenCL device, the OpenCL platform index and name, and the index of the device within the platform.

OpenCLComputeUnits=110

OpenCLGlobalMemorySize=67092480 (OpenCL OS devices)
The number of compute units and global memory size of an OpenCL device. Sizes are in KiB (1024 bytes).

LevelZeroVendor=Intel(R) Corporation

LevelZeroModel=Intel(R) Data Center GPU Max 1550

LevelZeroBrand=Intel(R) Corporation

LevelZeroSerialNumber=0x180e7227b70f4a0d

LevelZeroBoardNumber=0 (LevelZero OS devices)
The name of the vendor, device model, brand of a Level Zero device, and its serial and board numbers.

LevelZeroDriverindex=0

LevelZeroDriverDevicelndex=0 (LevelZero OS devices)
The index of the Level Zero driver within the list of drivers, and the index of the device within the list of devices
managed by this driver.

LevelZeroUUID=27a77ad2b8419be80000000000000000 (LevelZero OS devices or subdevices)
The UUID of the device or subdevice.

LevelZeroSubdevices=2 (LevelZero OS devices)
The number of subdevices below this OS device.

LevelZeroSubdevicelD=1 (LevelZero OS subdevices)
The index of this subdevice within its parent.

LevelZeroDeviceType=GPU (LevelZero OS devices or subdevices)
A string describing the type of device, for instance "GPU", "CPU", "FPGA", etc.

Generated by Doxygen

44 Obiject attributes

LevelZeroNumSlices=2

LevelZeroNumSubslicesPerSlice=56

LevelZeroNumEUsPerSubslice=8

LevelZeroNumThreadsPerEU=8 (LevelZero OS devices or subdevices)
The number of slices in the device, of subslices per slice, of execution units (EU) per subslice, and of threads per
EU.

LevelZeroHBMSize=134217728

LevelZeroDDRSize=16777216

LevelZeroMemorySize=16777216 (LevelZero OS devices or subdevices)
The amount of HBM or DDR memory of a LevelZero device or subdevice. Sizes are in KiB (1024 bytes). If the
type of memory could not be determined, the generic name LevelZeroMemorySize is used. For devices that
contain subdevices, the amount reported in the root device includes the memories of all its subdevices.

LevelZeroCQGroup=3s

LevelZeroCQGroup2=7+«0x2 (LevelZero OS devices or subdevices)
The number of completion queue groups, and the description of the third group (as N+*0xX where N is the number
of queues in the group, and 0xX is the hexadecimal bitmask of ze_ command_qgueue_group_property+«
_flag_t listing properties of those queues).

AMDUUID=e36ac86da8af0f71

AMDSerial=692224001590 (RSMI GPU OS devices)
The UUID and serial number of AMD GPUs.

RSMIVRAMSize=67092480

RSMIVisibleVRAMSize=67092480

RSMIGTTSize=262899364 (RSMI GPU OS devices)
The amount of GPU memory (VRAM), of GPU memory that is visible from the host (Visible VRAM), and of system
memory that is usable by the GPU (Graphics Translation Table). Sizes are in KiB (1024 bytes).

XGMiHivelD=bac53b896800dc20 (RSMI GPU OS devices)
The ID of the group of GPUs (Hive) interconnected by XGMI links

XGMIPeers="rsmi0 rsmi1" (RSMI GPU OS devices)
The list of RSMI OS devices that are directly connected to the current device through XGMI links. They are given
as a space-separated list of object names, for instance rsmi2 rsmi3.

NVIDIAUUID=GPU-06162e6e-80e9-16e9-357e-ac30a929731¢c

NVIDIASerial=0322716102756 (NVML GPU OS devices)
The UUID and serial number of NVIDIA GPUs.

Generated by Doxygen

10.2 Custom string infos 45

CUDAMultiProcessors=56

CUDACoresPerMP=64

CUDAGIobalMemorySize=16671616

CUDAL2CacheSize=4096

CUDASharedMemorySizePerMP=48 (CUDA OS devices)
The number of shared multiprocessors, the number of (FP32) cores per multiprocessor, the global memory size,
the (global) L2 cache size, and size of the shared memory in each multiprocessor of a CUDA device. Sizes are in
KiB (1024 bytes).

VectorEngineModel=1

VectorEngineSerialNumber=32424a3233303034390000000000000 (VectorEngine OS devices)

The model and serial number of a VectorEngine device.

VectorEngineCores=8

VectorEngineMemorySize=50331648

VectorEngineLLCSize=16384

VectorEnginel2Size=256

VectorEngineL1dSize=32

VectorEngineL1iSize=32 (VectorEngine OS devices)
The number of cores, memory size, and the sizes of the (global) last level cache and of L2, L1d and L1i caches
of a VectorEngine device. Sizes are in KiB (1024 bytes).

VectorEngineNUMAPartitioned=1 (VectorEngine OS devices)
If this attribute exists, the VectorEngine device is configured in partitioned mode with multiple NUMA nodes.

10.2.5.2 Other OS Device Information

These info attributes are attached to OS device objects specified in parentheses.

Vendor=SK hynix

Model=PC801 HFS001TEJ9X101N

Revision=HPS1

Size=1000204632

Generated by Doxygen

46 Obiject attributes

SectorSize=512 (Block OS devices)
The vendor and model names, revision, size (in KiB = 1024 bytes) and SectorSize (in bytes).

LinuxDevicelD=259:0 (Block OS devices)
The major/minor device number such as 8:0 of Linux device.

CXLRAMSize=16777216

CXLPMEMSize=1073741824 (CXL Memory Block OS devices)
The size of the volatile (RAM) or persistent (PMEM) memory in a CXL Type-3 device. Sizes are in KiB (1024
bytes).

Address=40:5b:7f:97:a0:b8

Port=1 (Network interface OS devices)
The MAC address and the port number of a software network interface, such as eth4 on Linux.

NodeGUID=9¢c63:c003:00fb:7458

SysimageGUID=9¢63:c003:00fb:7458

Port1State=4

Port2LID=0x2

Port2LMC=0

Port3GID1=fe80:0000:0000:0009:9¢63:c003:00fb:7458 (OpenFabrics OS devices)
The node GUID and GUID mask, the state of a port #1 (value is 4 when active), the LID and LID mask count of
port #2, and GID #1 of port #3.

BXIUUID=0x720109782dfd (OpenFabrics BXI OS devices)
The UUID of an Atos/Bull BXI HCA.

10.2.6 Other Object-specific Information

These info attributes are attached to objects specified in parentheses.

MemoryTier=1 (NUMA Nodes)
The rank of the memory tier of this node. Ranks start from 0 for highest bandwidth nodes. The attribute is only
set if multiple tiers are found. See Heterogeneous Memory.

CXLDevice=0003:02:01.0 (NUMA Nodes or DAX Memory OS devices)
The PCI/CXL bus ID of a device whose CXL Type-3 memory is exposed here. If multiple devices are interleaved,
their bus IDs are separated by commas, and the number of devices is reported in CXLDevicelnterleaveWays.

CXLDevicelnterleaveWays=2 (NUMA Nodes or DAX Memory OS devices)
If multiple CXL devices are interleaved, this attribute shows the number of devices (and the number of bus IDs in
the CXLDevice attributes).

DAXDevice=dax1.0 (NUMA Nodes)
The name of the Linux DAX device that was used to expose a non-volatile memory region as a volatile NUMA
node.

Generated by Doxygen

10.2 Custom string infos 47

DAXType=SPM (NUMA Nodes or DAX OS devices)
The type of memory exposed in a Linux DAX device or in the corresponding NUMA node, either "NVM" (non-
volatile memory) or "SPM" (specific-purpose memory).

DAXParent=ACPI0017:00/root0/decoder0.1/region1/dax_region1 (NUMA Nodes or DAX OS devices)
A string describing the Linux sysfs hierarchy that exposes the DAX device, for instance containing "hmem1" for
specific-purpose memory or "ndbusQ" for NVDIMMs.

PCIBusID=0006:00:00.0 (GPUMemory NUMA Nodes)
The PCI bus ID of the GPU whose memory is exposed in this NUMA node.

Inclusive=1 (Caches)
The inclusiveness of a cache (1 if inclusive, 0 otherwise). Currently only available on x86 processors.

SolarisProcessorGroup=CPU_PM_Active_Power_Domain (Group)
The Solaris kstat processor group name that was used to build this Group object.

PClVendor=Bull HN Information Systems

PCIDevice=BXI Host Channel Adapter v1.3 (PCl devices and bridges)
The vendor and device names of the PCI device.

PCISlot=2 (PCI devices or Bridges)
The name/number of the physical slot where the device is plugged. If the physical device contains PCI bridges
above the actual PCI device, the attribute may be attached to the highest bridge (i.e. the first object that actually
appears below the physical slot).

Vendor=Hynix

FormFactor=DIMM

Type=DDR5

Size=16777216

DeviceLocation=B6

BankLocation=Controller0OChannel ADimmO

Rank=1

AssetTag=011736A0

PartNumber=HMCG78AGBRA191N (MemoryModule Misc objects)

Information about memory modules (DIMMSs) extracted from SMBIOS. Size is in KiB.

SerialNumber=AMCANO00091340A83M (Block and CXL Block Memory OS devices, MemoryModule Misc

objects)
The serial number of the device.

Note that some OS devices such as Co-Processors may have specific info names such as LevelZero«
SerialNumber when formatted by dedicated APls, see other subsections above.

Generated by Doxygen

48 Obiject attributes

10.2.7 User-Given Information
Here is a non-exhaustive list of user-provided info attributes that have a special meaning:

IstopoStyle=Background=#0000ff; Text=#ffffff

Enforces the style of an object (background and text colors) in the graphical output of Istopo. See CUSTOM
COLORS in the Istopo(1) manpage for details.

Generated by Doxygen

Chapter 11

Topology Attributes: Distances, Memory
Attributes and CPU Kinds

Besides the hierarchy of objects and individual object attributes (see Object attributes), hwloc may also expose finer
information about the hardware organization.

11.1 Distances

A machine with 4 CPUs may have identical links between every pairs of CPUs, or those CPUs could also only be
connected through a ring. In the ring case, accessing the memory of nearby CPUs is slower than local memory, but it is
also faster than accessing the memory of CPU on the opposite side of the ring. These deep details cannot be exposed
in the hwloc hierarchy, that is why hwloc also exposes distances.

Distances are matrices of values between sets of objects, usually latencies or bandwidths. By default, hwloc tries to get
a matrix of relative latencies between NUMA nodes when exposed by the hardware.

In the aforementioned ring case, the matrix could report 10 for latency between a NUMA node and itself, 20 for nearby
nodes, and 30 for nodes that are opposites on the ring. Those are theoretical values exposed by hardware vendors
(in the System Locality Distance Information Table (SLIT) in the ACPI) rather than physical latencies. They are mostly
meant for comparing node relative distances.

Distances structures currently created by hwloc are:

NUMALatency (Linux, Solaris, FreeBSD)
This is the matrix of theoretical latencies described above.

XGMIBandwidth (RSMI)
This is the matrix of unidirectional XGMI bandwidths between AMD GPUs (in MB/s). It contains 0 when there is
no direct XGMI link between objects. Values on the diagonal are artificially set to very high so that local access
always appears faster than remote access.

GPUs are identified by RSMI OS devices such as "rsmiQ". They may be converted into the corresponding OpenCL
or PCI devices using hwloc_get_obj_with_same_locality() or the hwloc-annotate tool.

hwloc_distances_transform() or hwloc-annotate may also be used to transform this matrix into something more
convenient, for instance by replacing bandwidths with numbers of links between peers.

XGMIHops (RSMI)
This matrix lists the number of XGMI hops between AMD GPUs. It reports 1 when there is a direct link between
two distinct GPUs. If there is no XGMI route between them, the value is 0. The number of hops between a GPU
and itself (on the diagonal) is 0 as well.

XeLinkBandwidth (LevelZero)
This is the matrix of unidirectional XeLink bandwidths between Intel GPUs (in MB/s). It contains 0 when there is
no direct XeLink between objects. When there are multiple links, their bandwidth is aggregated.

Generated by Doxygen

50 Topology Attributes: Distances, Memory Attributes and CPU Kinds

Values on the diagonal are artificially set to very high so that local access always appears faster than remote
access. This includes bandwidths between a (sub)device and itself, between a subdevice and its parent device,
or between two subdevices of the same parent.

The matrix interconnects all LevelZero devices and subdevices (if any), even if some of them may have no link at
all.

The bandwidths of links between subdevices are accumulated in the bandwidth between their parents.

NVLinkBandwidth (NVML)
This is the matrix of unidirectional NVLink bandwidths between NVIDIA GPUs (in MB/s). It contains 0 when there
is no direct NVLink between objects. When there are multiple links, their bandwidth is aggregated. Values on the
diagonal are artificially set to very high so that local access always appears faster than remote access.

On POWER platforms, NVLinks may also connects GPUs to CPUs. On NVIDIA platforms such as DGX-2, a
NVSwitch may interconnect GPUs through NVLinks. In these cases, the distances structure is heterogeneous.
GPUs always appear first in the matrix (as NVML OS devices such as "nvml0"), and non-GPU objects may appear
at the end (Package for POWER processors, PCI device for NVSwitch).

NVML OS devices may be converted into the corresponding CUDA, OpenCL or PCI devices using
hwloc_get_obj_with_same_locality() or the hwloc-annotate tool.

hwloc_distances_transform() or hwloc-annotate may also be used to transform this matrix into something more
convenient, for instance by removing switches or CPU ports, or by replacing bandwidths with numbers of links
between peers.

When a NVSwitch interconnects GPUs, only links between one GPU and different NVSwitch ports are reported.
They may be merged into a single switch port with hwloc_distances_transform() or hwloc-annotate. Or a transitive
closure may also be applied to report the bandwidth between GPUs across the NVSwitch.

Users may also specify their own matrices between any set of objects, even if these objects are of different types (e.g.
bandwidths between GPUs and CPUs).

The entire API is located in hwloc/distances.h. See also Retrieve distances between objects, as well as
Helpers for consulting distance matrices and Add distances between objects.

11.2 Memory Attributes

Machines with heterogeneous memory, for instance high-bandwidth memory (HBM), normal memory (DDR), and/or
high-capacity slow memory (such as non-volatile memory DIMMs, NVDIMMSs) require applications to allocate buffers in
the appropriate target memory depending on performance and capacity needs. Those target nodes may be exposed in
the hwloc hierarchy as different memory children but there is a need for performance information to select the appropriate
one.

hwloc memory attributes are designed to expose memory information such as latency, bandwidth, etc. Users may also
specify their own attributes and values.

The memory attributes APl is located in hwloc/memattrs.h, see Comparing memory node attributes for finding where to allocate on

and Managing memory attributes for details. See also an example in doc/examples/memory-attributes.c in the source
tree.

Memory attributes are the low-level solution to selecting target memory. hwloc uses them internally to build Memory
Tiers which provide an easy way to distinguish NUMA nodes of different kinds, as explained in Heterogeneous Memory.

11.3 CPU Kinds

Hybrid CPUs may contain different kinds of cores. The CPU kinds API in hwloc/cpukinds.h provides a way to list the
sets of PUs in each kind and get some optional information about their hardware characteristics and efficiency.

If the operating system provides efficiency information (e.g. Windows 10, MacOS X / Darwin and some Linux kernels),
it is used to rank hwloc CPU kinds by efficiency. Otherwise, hwloc implements several heuristics based on frequencies
and core types (see HWLOC_CPUKINDS_RANKING in Environment variables for tweaking hwloc heuristics).

The ranking shows energy-efficient CPUs first, and high-performance power-hungry cores last.

Generated by Doxygen

11.3 CPU Kinds 51

These CPU kinds may be annotated with the following native attributes:

FrequencyMaxMHz (Linux)
The maximal operating frequency of the core, as reported by cpufreq drivers on Linux.

FrequencyBaseMHz (Linux)
The base/nominal operating frequency of the core, as reported by some cpufreq or ACPI drivers on Linux (e.g.
cpufreq cppcorintel_pstate).

CoreType (x86)
A string describing the kind of core, currently IntelAtom, IntelCore or IntelLowPower, as reported by
the x86 CPUID instruction and Linux PMU on some Intel processors.

LinuxCapacity (Linux)
The Linux-specific CPU capacity found in sysfs, as reported by the Linux kernel on some recent platforms. Higher
values usually mean that the Linux scheduler considers the core as high-performance rather than energy-efficient.

LinuxCPUType (Linux)
The Linux-specific CPU type found in sysfs, such as intel_atom_0, as reported by future Linux kernels on
some Intel processors.

DarwinCompatible (Darwin / Mac OS X)
The compatibility attribute of the CPUs as found in the IO registry on Darwin / Mac OS X. For instance
apple, icestorm; ARM, v8 for energy-efficient cores and apple, firestorm; ARM, v8 on performance
cores on Apple M1 CPU.

The hwloc-calc tool may be used to query the number of cpukinds or which ones exist in some cores:
$ hwloc-calc -N cpukind all
2

$ hwloc-calc -I cpukind package:0
0,1

See Kinds of CPU cores for details.

Generated by Doxygen

52

Topology Attributes: Distances, Memory Attributes and CPU Kinds

Generated by Doxygen

Chapter 12

Heterogeneous Memory

Heterogeneous memory hardware exposes different NUMA nodes for different memory technologies. On the image
below, a dual-socket server has both HBM (high bandwidth memory) and usual DRAM connected to each socket, as
well as some CXL memory connected to the entire machine.

Machine [3120MiBE total)

CEL-DRAM L34 (1024MiB)

Package L#0 Package L#1
DRAM L#0 (1024MiB) | | HEM L#1 (1024MiB) DRAM L#2 (1024MiB) | | HEM L#3 (1024MiB)
Core L#0 | | Core L#1 | | Core L#2 | | Core L3 Core L#4 | | Core L#5 | | Core L#6 | | Core L#7

The hardware usually exposes "default"” memory first because it is where "normal" data buffers should be allocated by
default.

However there is no guarantee about whether HBM, NVM, CXL will appear second. Hence there is a need to explicit
memory technologies and performance to help users decide where to allocate.

12.1 Memory Tiers and Default nodes

hwloc builds Memory Tiers to identify different kinds of NUMA nodes. On the above machine, the first tier would contain
both HBM NUMA nodes (L#1 and L#3), while the second tier would contain both DRAM nodes (L#0 and L#2), and the
CXL memory (L#4) would be in the third tier. NUMA nodes are then annotated accordingly:

» Each node object has its subtype field set to HBM, DRAM or CXL-DRAM (see other possible values in
Normal attributes).

» Each node also has a string info attribute with name MemoryTier and value 0 for the first tier, 1 for the second,
etc.

Tiers are built using two kinds of information:
« First hwloc looks into operating system information to find out whether a node is non-volatile, CXL, special-
purpose, etc.

» Then it combines that knowledge with performance metrics exposed by the hardware to guess what's actually
DRAM, HBM, etc. These metrics are also exposed in hwloc Memory Attributes, for instance bandwidth and la-
tency, for read and write. See Memory Attributes and Comparing memory node attributes for finding where to allocate on
for more details.

Generated by Doxygen

54 Heterogeneous Memory

Once nodes with similar or different characteristics are identified, they are placed in tiers. Tiers are then sorted by
bandwidth so that the highest bandwidth is ranked first, etc.
If hwloc fails to build tiers properly, see HRLOC_MEMT IERS and HWLOC_MEMTIERS_GUESS in Environment variables for tweaking hwilc

hwloc also tries to identify "default” memory nodes. They usually correspond the tier containing DRAM nodes. These
are where normal data buffers should be allocated from, but they may also be used when placing tasks per NUMA
domain (to hide NUMA nodes with overlapping localities, e.g. HBM and CXL in our example above).

12.2 Using Heterogeneous Memory from the command-line

Specific kinds or tiers of memory may be specified in location filters when using NUMA nodes in hwloc command-line
tools. For instance, binding memory on the first HBM node (numa [hbm] : 0) is actually equivalent to binding on the
second node (numa : 1) on our example platform:

$ hwloc-bind —--membind ’numa[hbm]:0’ —-- myprogram
$ hwloc-bind --membind ’‘numa:1’ -- myprogram

To count DRAM nodes in the first CPU package, or all nodes:

$ hwloc-calc -N ’'numal[dram]’ package:0
1

$ hwloc-calc -N 'numa’ package:0

2

To list all default NUMA nodes:

$ hwloc-calc --default-nodes all
0,2

To list all the physical indexes of Tier-0 NUMA nodes (HBM P#2 and P#3 not shown on the figure):

$ hwloc-calc -I ’'numaltier=0]’ -p all
2,3

To find the memory kind of a NUMA node, one may look at its info attribute or use hwloc-calc:

$ hwloc-info --get-attr "info MemoryTier" numa:1l
1

$ hwloc-calc -I memorytier numa:l

1

The number of tiers may be retrieved by looking at topology attributes in the root object, of by counting tiers inside it:

$ hwloc-info --get-attr "info MemoryTiersNr" topology
2

$ hwloc-calc --N memorytier all

2

hwloc-calc and hwloc-bind also have options such as ——local-memory and ——best-memattr to select the best
NUMA node among the local ones. For instance, the following command-lines say that, among nodes near node:0
(DRAM L#0), the best one for latency is itself while the best one for bandwidth is node:1 (HBM L#1).

$ hwloc-calc —--best-memattr latency node:0

0

$ hwloc-calc --best-memattr bandwidth node:0
1

Generated by Doxygen

12.3 Using Heterogeneous Memory from the C API 55

12.3 Using Heterogeneous Memory from the C API

There are two major changes introduced by heterogeneous memory when looking at the hierarchical tree of objects.

« First, there may be multiple memory children attached at the same place. For instance, each Package in the
above image has two memory children, one for the DRAM NUMA node, and another one for the HBM node.

» Second, memory children may be attached at different levels. In the above image, CXL memory is attached to
the root Machine object instead of below a Package.

Hence, one may have to rethink the way it selects NUMA nodes.

12.3.1 lterating over the list of (heterogeneous) NUMA nodes

A common need consists in iterating over the list of NUMA nodes (e.g. using hwloc_get_next_obj_by_type()). This is
useful for counting some domains before partitioning a job, or for finding a node that is local to some objects. With
heterogeneous memory, one should remember that multiple nodes may now have the same locality (HBM and DRAM
above) or overlapping localities (e.g. DRAM and CXL above).

» Checking NUMA node subtype or tier attributes is a good way to avoid this issue by ignoring nodes of different
kinds.

» Another solution consists in ignoring nodes whose CPU set overlap the previously selected ones. For instance, in
the above example, one could first select DRAM L#0 but ignore HBM L#1 (because it overlaps with DRAM L#0),
then select DRAM L#2 but ignore HBM L#3 and CXL L#4 (overlap wih DRAM L#2).

hwloc set of default nodes (returned by hwloc_topology_get_default_nodeset()) was designed for this purpose: it
ignores NUMA nodes with overlapping CPU set (only the first one is kept), and also tries to return nodes with similar
subtypes.

It is also possible to iterate over the memory parents (e.g. Packages in our example) and select only one mem-
ory child for each of them. hwloc_get_memory_parents_depth() may be used to find the depth of these parents.
However this method only works if all memory parents are at the same level. It would fail in our example«
: the root Machine object also has a memory child (CXL), hence hwloc_get_memory_parents_depth() would returns
HWLOC_TYPE_DEPTH_MULTIPLE.

12.3.2 lterating over local (heterogeneous) NUMA nodes

Another common need is to find NUMA nodes that are local to some objects (e.g. a Core). A basic solution consists in
looking at the Core nodeset and iterating over NUMA nodes to select those whose nodeset are included. A nicer solution
is to walk up the tree to find ancestors with a memory child. With heterogeneous memory, multiple such ancestors may
exist (Package and Machine in our example) and they may have multiple memory children.

Both these methods may be replaced with hwloc_get_local_numanode_objs() which provides a convenient and flexible
way to retrieve local NUMA nodes. One may then iterate over the returned array to select the appropriate one(s)
depending on their subtype, tier or performance attributes.

hwloc_memattr_get_best_target() is also a convenient way to select the best local NUMA node according to perfor-
mance metrics. See also Comparing memory node attributes for finding where to allocate on.

Generated by Doxygen

56

Heterogeneous Memory

Generated by Doxygen

Chapter 13

Importing and exporting topologies from/to
XML files

hwloc offers the ability to export topologies to XML files and reload them later. This is for instance useful for loading
topologies faster (see | do not want hwloc to rediscover my enormous machine topology every time | rerun a process),
manipulating other nodes' topology, or avoiding the need for privileged processes (see Does hwloc require privileged access?).
Topologies may be exported to XML files thanks to hwloc_topology_export_xml(), or to a XML memory buffer with
hwloc_topology_export_xmlbuffer(). The Istopo program can also serve as a XML topology export tool.

XML topologies may then be reloaded later with hwloc_topology_set xml() and hwloc_topology_set xmlibuffer().

The HWLOC_XMLFILE environment variable also tells hwloc to load the topology from the given XML file (see
Environment variables for changing the source of topology information).

Note

Loading XML topologies disables binding because the loaded topology may not correspond to the physical ma-
chine that loads it. This behavior may be reverted by asserting that loaded file really matches the underlying sys-
tem with the HWLOC_THISSYSTEM environment variable or the HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM
topology flag.

The topology flag HWLOC_TOPOLOGY_FLAG_THISSYSTEM_ALLOWED_RESOURCES may be used to load
a XML topology that contains the entire machine and restrict it to the part that is actually available to the current
process (e.g. when Linux Cgroup/Cpuset are used to restrict the set of resources).

hwloc also offers the ability to export/import Topology differences.

XML topology files are not localized. They use a dot as a decimal separator. Therefore any exported topology can
be reloaded on any other machine without requiring to change the locale.

XML exports contain all details about the platform. It means that two very similar nodes still have different XML
exports (e.g. some serial numbers or MAC addresses are different). If a less precise exporting/importing is
required, one may want to look at Synthetic topologies instead.

13.1 libxml2 and minimalistic XML backends

hwloc offers two backends for importing/exporting XML.

First, it can use the libxml2 library for importing/exporting XML files. It features full XML support, for instance when
those files have to be manipulated by non-hwloc software (e.g. a XSLT parser). The libxml2 backend is enabled by
default if libxml2 development headers are available (the relevant development package is usually 1ibxml2-devel
or libxml2-dev).

If libxml2 is not available at configure time, or if ——disable-1ibxml2 is passed, hwloc falls back to a custom
backend. Contrary to the aforementioned full XML backend with libxmlI2, this minimalistic XML backend cannot be
guaranteed to work with external programs. It should only be assumed to be compatible with the same hwloc release

Generated by Doxygen

58 Importing and exporting topologies from/to XML files

(even if using the libxml2 backend). Its advantage is, however, to always be available without requiring any external
dependency.

If libxml2 is available but the core hwloc library should not directly depend on it, the libxmI2 support may be built as
a dynamicall-loaded plugin. One should pass ——enable-plugins to enable plugin support (when supported) and
build as plugins all component that support it. Or pass ——enable-plugins=xml_1libxml to only build this libxmi2
support as a plugin.

13.2 XML import error management

Importing XML files can fail at least because of file access errors, invalid XML syntax, non-hwloc-valid XML contents, or
incompatibilities between hwloc releases (see Are XML topology files compatible between hwloc releases?).

Both backend cannot detect all these errors when the input XML file or buffer is selected (when hwloc_topology_set_xml()

or hwloc_topology_set_xmlbuffer() is called). Some errors such non-hwloc-valid contents can only be detected later

when loading the topology with hwloc_topology_load().

It is therefore strongly recommended to check the return value of both hwloc_topology_set_xmil() (or hwloc_topology_set_xmlbuffer())
and hwloc_topology_load() to handle all these errors.

Generated by Doxygen

Chapter 14

Synthetic topologies

hwloc may load fake or remote topologies so as to consult them without having the underlying hardware available. Aside
from loading XML topologies, hwloc also enables the building of synthetic topologies that are described by a single
string listing the arity of each levels.
For instance, Istopo may create a topology made of 2 packages, containing a single NUMA node and a L2 cache above
two single-threaded cores:
$ lstopo —-i "pack:2 node:1l 12:1 core:2 pu:l" -
Machine (2048MB)
Package L#0
NUMANode L#0 (P#0 1024MB)
L2 L#0 (4096KB)
Core L#0 + PU L#0 (P#0)
Core L#1 + PU L#1 (P#1)
Package L#l
NUMANode L#1 (P#1 1024MB)
L2 L#1 (4096KB)
Core L#2 + PU L#2 (P#2)
Core L#3 + PU L#3 (P#3)

Replacing — with £ile.xml in this command line will export this topology to XML as usual.
Note

Synthetic topologies offer a very basic way to export a topology and reimport it on another machine. It is a lot less
precise than XML but may still be enough when only the hierarchy of resources matters.

14.1 Synthetic description string

Each item in the description string gives the type of the level and the number of such children under each object of the
previous level. That is why the above topology contains 4 cores (2 cores times 2 nodes).

These type names must be written as numanode, package, core, 12u, 111, pu, group (hwloc_obj_type_+«
sscanf() is used for parsing the type names). They do not need to be written case-sensitively, nor entirely (as long as
there is no ambiguity, 2 characters such as ma select a Machine level). Note that /O and Misc objects are not available.
Instead of specifying the type of each level, it is possible to just specify the arities and let hwloc choose all types
according to usual topologies. The following examples are therefore equivalent:

$ lstopo -i "2 3 4 5 6"
$ lstopo —-i "Package:2 NUMANode:3 L2Cache:4 Core:5 PU:6"

NUMA nodes are handled in a special way since they are not part of the main CPU hierarchy but rather attached below
it as memory children. Thus, NUMANode : 3 actually means Group : 3 where one NUMA node is attached below each
group. These groups are merged back into the parent when possible (typically when a single NUMA node is requested
below each parent).

It is also possible the explicitly attach NUMA nodes to specific levels. For instance, a topology similar to a Intel Xeon Phi
processor (with 2 NUMA nodes per 16-core group) may be created with:

Generated by Doxygen

60 Synthetic topologies

$ lstopo —1i "package:1l group:4 [numa] [numa] core:16 pu:4"

The root object does not appear in the synthetic description string since it is always a Machine object. Therefore the
Machine type is disallowed in the description as well.

A NUMA level (with a single NUMA node) is automatically added if needed.

Each item may be followed parentheses containing a list of space-separated attributes. For instance:

* L2iCache:2 (size=32kB) specifies 2 children of 32kB level-2 instruction caches. The size may be specified
in bytes (without any unit suffix) or as kB, KiB, MB, MiB, etc.

* NUMANode: 3 (memory=16MB) specifies 3 NUMA nodes with 16MB each. The size may be specified in bytes
(without any unit suffix) or as GB, GiB, TB, TiB, etc.

* PU:2 (indexes=0,2,1, 3) specifies 2 PU children and the full list of OS indexes among the entire set of 4
PU objects.

* PU:2 (indexes=numa:core) specifies 2 PU children whose OS indexes are interleaved by NUMA node first
and then by package.

« Attributes in parentheses at the very beginning of the description apply to the root object.

hwloc command-line tools may modify a synthetic topology, for instance to customize object attributes, or
to remove some objects to make the topology heterogeneous or asymmetric. See many examples in
How do | create a custom heterogeneous and asymmetric topology?.

14.2 Loading a synthetic topology

Aside from Istopo, the hwloc programming interface offers the same ability by passing the synthetic description string to
hwloc_topology_set_synthetic() before hwloc_topology_load().

Synthetic topologies are created by the synthet ic component. This component may be enabled by force by setting
the HWLOC_SYNTHETIC environment variable to something such as node:2 core:3 pu:4.

Loading a synthetic topology disables binding support since the topology usually does not match the underlying hard-
ware. Binding may be reenabled as usual by setting HWLOC_THISSYSTEM=1 in the environment or by setting the
HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM topology flag.

14.3 Exporting a topology as a synthetic string

The function hwloc_topology_export_synthetic() may export a topology as a synthetic string. It offers a convenient way
to quickly describe the contents of a machine. The Istopo tool may also perform such an export by forcing the output
format.

$ lstopo —-of synthetic --no-io
Package:1 L3Cache:1 L2Cache:2 LldCache:1 LliCache:1 Core:1 PU:2

The exported string may be passed back to hwloc for recreating another similar topology (see also Are synthetic strings compatible betweel
The entire tree will be similar, but some attributes such as the processor model will be missing.

Such an export is only possible if the topology is totally symmetric. It means that the symmetric_subtree field of

the root object is set. Also memory children should be attached in a symmetric way (e.g. the same number of memory

children below each Package object, etc.). However, I/O devices and Misc objects are ignored when looking at symmetry

and exporting the string.

Generated by Doxygen

Chapter 15

Interoperability With Other Software

Although hwloc offers its own portable interface, it still may have to interoperate with specific or non-portable libraries
that manipulate similar kinds of objects. hwloc therefore offers several specific "helpers" to assist converting between
those specific interfaces and hwloc.

Some external libraries may be specific to a particular OS; others may not always be available. The hwloc core therefore
generally does not explicitly depend on these types of libraries. However, when a custom application uses or otherwise
depends on such a library, it may optionally include the corresponding hwloc helper to extend the hwloc interface with
dedicated helpers.

Most of these helpers use structures that are specific to these external libraries and only meaningful on the local
machine. If so, the helper requires the input topology to match the current machine. Some helpers also require 1/O
device discovery to be supported and enabled for the current topology.

Linux specific features
hwloc/linux.h offers Linux-specific helpers that utilize some non-portable features of the Linux system, such as
binding threads through their thread ID ("tid") or parsing kernel CPU mask files. See Linux-specific helpers.

Windows specific features
hwloc/windows.h offers Windows-specific helpers to query information about Windows processor groups. See
Windows-specific helpers.

Linux libnuma
hwloc/linux-libnuma.h provides conversion helpers between hwloc CPU sets and libnuma-specific types,
such as bitmasks. It helps you use libnuma memory-binding functions with hwloc CPU sets. See
Interoperability with Linux libnuma bitmask and Interoperability with Linux libnuma unsigned long masks.

Glibc
hwloc/glibc-sched.h offers conversion routines between Glibc and hwloc CPU sets in order to use hwloc with func-
tions such as sched_getaffinity() or pthread_attr_setaffinity_np(). See Interoperability with glibc sched affinity.

OpenFabrics Verbs
hwloc/openfabrics-verbs.h helps interoperability with the OpenFabrics Verbs interface. For example, it can return
a list of processors near an OpenFabrics device. It may also return the corresponding OS device hwloc object for
further information (if I/O device discovery is enabled). See Interoperability with OpenFabrics.

OpenCL
hwloc/opencl.h enables interoperability with the OpenCL interface. Only the AMD and NVIDIA implementations
currently offer locality information. It may return the list of processors near a GPU given as a c1_device_id.
It may also return the corresponding OS device hwloc object for further information (if /O device discovery is
enabled). See Interoperability with OpenCL.

oneAPI Level Zero
hwloc/levelzero.h enables interoperability with the oneAPI Level Zero interface. It may return the list of processors
near an accelerator or GPU. It may also return the corresponding OS device hwloc object for further information
(if 1/0 device discovery is enabled). See Interoperability with the oneAPI Level Zero interface..

Generated by Doxygen

62 Interoperability With Other Software

AMD ROCm SMI Library (RSMI)
hwloc/rsmi.h enables interoperability with the AMD ROCm SMI interface. It may return the list of processors near
an AMD GPU. It may also return the corresponding OS device hwloc object for further information (if /O device
discovery is enabled). See Interoperability with the ROCm SMI Management Library.

NVIDIA CUDA
hwloc/cuda.h and hwloc/cudart.h enable interoperability with NVIDIA CUDA Driver and Runtime inter-
faces. For instance, it may return the list of processors near NVIDIA GPUs. It may also return the
corresponding OS device hwloc object for further information (if 1/O device discovery is enabled). See
Interoperability with the CUDA Driver API and Interoperability with the CUDA Runtime API.

NVIDIA Management Library (NVML)
hwloc/nvml.h enables interoperability with the NVIDIA NVML interface. It may return the list of processors near
a NVIDIA GPU given as a nvmlDevice_t. It may also return the corresponding OS device hwloc object for
further information (if I/O device discovery is enabled). See Interoperability with the NVIDIA Management Library.

NVIDIA displays
hwloc/gl.h enables interoperability with NVIDIA displays using the NV-CONTROL X extension (NVCtrl library). If
I/O device discovery is enabled, it may return the OS device hwloc object that corresponds to a display given as
a name such as :0.0 or given as a port/device pair (server/screen). See Interoperability with OpenGL displays.

Taskset command-line tool
The taskset command-line tool is widely used for binding processes. It manipulates CPU set strings in a format
that is slightly different from hwloc's one (it does not divide the string in fixed-size subsets and separates them
with commas). To ease interoperability, hwloc offers routines to convert hwloc CPU sets from/to taskset-specific
string format. See for instance hwloc_bitmap_taskset_snprintf() in The bitmap API.

Most hwloc command-line tools also support the option ——cpuset-output-format taskset to manipu-
late taskset-specific strings.

Generated by Doxygen

Chapter 16

Thread Safety

Like most libraries that mainly fill data structures, hwloc is not thread safe but rather reentrant: all state is held in a
hwloc_topology_t instance without mutex protection. That means, for example, that two threads can safely operate on
and modify two different hwloc_topology_t instances, but they should not simultaneously invoke functions that modify
the same instance. Similarly, one thread should not modify a hwloc_topology_t instance while another thread is reading
or traversing it. However, two threads can safely read or traverse the same hwloc_topology_t instance concurrently.
When running in multiprocessor environments, be aware that proper thread synchronization and/or memory coherency
protection is needed to pass hwloc data (such as hwloc_topology_t pointers) from one processor to another (e.g., a
mutex, semaphore, or a memory barrier). Note that this is not a hwloc-specific requirement, but it is worth mentioning.
For reference, hwloc_topology_t modification operations include (but may not be limited to):

Creation and destruction
hwloc_topology_init (), hwloc_topology_load(), hwloc_topology_destroy () (see
Topology Creation and Destruction) imply major modifications of the structure, including freeing some objects.
No other thread cannot access the topology or any of its objects at the same time.

Also references to objects inside the topology are not valid anymore after these functions return.

Runtime topology modifications
hwloc_topology_insert_misc_object (), hwloc_topology_alloc_group_object (), and
hwloc_topology_insert_group_object () (see Modifying a loaded Topology) may modify the topol-
ogy significantly by adding objects inside the tree, changing the topology depth, etc.

hwloc_distances_add_commit () andhwloc_distances_remove () (see Add distances between objects)
modify the list of distance structures in the topology, and the former may even insert new Group objects.

hwloc_memattr_register () andhwloc_memattr_set_value () (see Managing memory attributes)
modify the memory attributes of the topology.

hwloc_topology_restrict () modifies the topology even more dramatically by removing some objects.
hwloc_topology_refresh () updates some internal cached structures. (see below).

Although references to former objects may still be valid after insertion or restriction, it is strongly advised to not
rely on any such guarantee and always re-consult the topology to reacquire new instances of objects.

Consulting distances
hwloc_distances_get () and its variants are thread-safe except if the topology was recently modified (be-
cause distances may involve objects that were removed).

Whenever the topology is modified (see above), hwloc_topology_refresh () should be called in the same
thread-safe context to force the refresh of internal distances structures. A callto hwloc_distances_get ()
may also refresh distances-related structures.

Once this refresh has been performed, multiple hwloc_distances_get () may then be performed concur-
rently by multiple threads.

Generated by Doxygen

64

Thread Safety

Consulting memory attributes

Functions consulting memory attributes in hwloc/memattrs.h are thread-safe except if the topology was recently
modified (because memory attributes may involve objects that were removed).

Whenever the topology is modified (see above), hwloc_topology_refresh () should be called
in the same thread-safe context to force the refresh of internal memory attribute structures. A call to
hwloc_memattr_get_value () or hwloc_memattr_get_targets () may also refresh internal
structures for a given memory attribute.

Once this refresh has been performed, multiple functions consulting memory attributes may then be performed
concurrently by multiple threads.

Locating topologies

hwloc_topology_set_x (see Topology Detection Configuration and Query) do not modify the topol-
ogy directly, but they do modify internal structures describing the behavior of the upcoming invocation of
hwloc_topology_load (). Hence, all of these functions should not be used concurrently.

Generated by Doxygen

Chapter 17

Components and plugins

hwloc is organized in components that are responsible for discovering objects. Depending on the topology configura-
tion, some components will be used (once enabled, they create a backend), some will be ignored.

The usual default is to enable the native operating system component, (e.9. 1inux or solaris) and the pci one.
If available, an architecture-specific component (such as x86) may also improve the topology detection. Finally, some
hardware-specific components (such as cuda or rsmi) may add information about GPUs, accelerators, etc.

If a XML topology is loaded, the xm1 discovery component will be used instead of all other components.

17.1 Components enabled by default

The hwloc core contains a list of components sorted by priority. Each one is enabled as long as it does not conflict
with the previously enabled ones. This includes native operating system components, architecture-specific ones, and if
available, /0O components such as pci.

Usually the native operating system component (when it exists, e.g. 1inux or aix) is enabled first. Then hwloc looks
for an architecture specific component (e.g. x86). Finally there also exist a basic component (no_os) that just tries to
discover the number of PUs in the system.

Each component discovers as much topology information as possible. Most of them, including most native OS compo-
nents, do nothing unless the topology is still empty. Some others, such as x86 and pci, can complete and annotate
what other backends found earlier. Discovery is performed by phases: CPUs are first discovered, then memory is
attached, then PCI, etc.

Default priorities ensure that clever components are invoked first. Native operating system components have higher
priorities, and are therefore invoked first, because they likely offer very detailed topology information. If needed, it will
be later extended by architecture-specific information (e.g. from the x86 component).

If any configuration function such as hwloc_topology_set_xml() is used before loading the topology, the corresponding
component is enabled first. Then, as usual, hwloc enables any other component (based on priorities) that does not
conflict.

Certain components that manage a virtual topology, for instance XML topology import or synthetic topology description,
conflict with all other components. Therefore, they may only be loaded (e.g. with hwloc_topology_set_xml ())
if no other component is enabled.

The environment variable HWLOC_COMPONENTS_VERBOSE may be set to get verbose messages about available
components (including their priority) and enabling as backends.

17.2 Selecting which components to use

If no topology configuration functions such as hwloc_topology_set_synthetic () have been called, com-
ponents may be selected with environment variables such as HWLOC_XMLFILE, HWLOC_SYNTHETIC, HWLOC_+«
FSROOT, or HWLOC_CPUID_PATH (see Environment variables for changing the source of topology information).

Finally, the environment variable HWLOC_COMPONENTS resets the list of selected components. If the variable is set
and empty (or set to a single comma separating nothing, since some operating systems do not accept empty variables),

Generated by Doxygen

66 Components and plugins

the normal component priority order is used.

If the variable is set to x8 6 in this variable will cause the x8 6 component to take precedence over any other component,
including the native operating system component. It is therefore loaded first, before hwloc tries to load all remaining
non-conflicting components. In this case, x86 would take care of discovering everything it supports, instead of only
completing what the native OS information. This may be useful if the native component is buggy on some platforms.

It is possible to prevent some components from being loaded by prefixing their name with — in the list. For instance
%86, —pci will load the x8 6 component, then let hwloc load all the usual components except pci. A single component
phase may also be blacklisted, for instance with —1inux:io.

It is possible to prevent all remaining components from being loaded by placing st op in the environment variable. Only
the components listed before this keyword will be enabled.

hwloc_topology_set_components() may also be used inside the program to prevent the loading of a specific component
(or phases) for the target topology.

17.3 Loading components from plugins

Components may optionally be built as plugins so that the hwloc core library does not directly depend on their depen-
dencies (for instance the 1ibpciaccess library). Plugin support may be enabled with the ——enable-plugins
configure option, or with the HWLOC_ENABLE_PLUGINS CMake options on Windows. All components buildable as
plugins will then be built as plugins. The configure option may be given a comma-separated list of component names to
specify the exact list of components to build as plugins.

Plugins are built as independent dynamic libraries that are installed in $1ibdir/hwloc. All plugins found in
this directory are loaded during topology_init () (unless blacklisted in HWLOC_PLUGINS_BLACKLIST, see
Environment variables for controlling components and plugins). A specific list of directories (colon-separated) to scan
may be specified in the HWLOC_PLUGINS_PATH environment variable.

Note that loading a plugin just means that the corresponding component is registered to the hwloc core. Components
are then only enabled (as a backend) if the topology configuration requests it, as explained in the previous sections.
Also note that plugins should carefully be enabled and used when embedding hwloc in another project, see
Embedding hwloc in Other Software for details.

17.4 EXxisting components and plugins

All components distributed within hwloc are listed below. The list of actually available components may be listed at run-
ning with the HWLOC_COMPONENTS_VERBOSE environment variable (see Environment variables for changing the verbosity).

linux
The official component for discovering CPU, memory and 1/O devices on Linux. It discovers PCI devices without
the help of external libraries such as libpciaccess, but requires the pci component for adding vendor/device names
to PCI objects. It also discovers many kinds of Linux-specific OS devices.

aix, darwin, freebsd, hpux, netbsd, solaris, windows
Each officially supported operating system has its own native component, which is statically built when supported,
and which is used by default.

x86
The x86 architecture (either 32 or 64 bits) has its own component that may complete or replace the previously-
found CPU information. It is statically built when supported.

bgq
This component is specific to IBM BlueGene/Q compute node (running CNK). It is built and enabled by default
when ——host=powerpc64-bgg-1linux is passed to configure (see How do | build hwloc for BlueGene/Q?).

no_os
A basic component that just tries to detect the number of processing units in the system. It mostly serves on
operating systems that are not natively supported. It is always statically built.

Generated by Doxygen

17.4 Existing components and plugins 67

pci
PCI object discovery uses the external libpciaccess library; see I/O Devices. It may also annotate existing PCI
devices with vendor and device names. It may be built as a plugin.

opencl
The OpenCL component creates co-processor OS device objects such as openclOd0 (first device of the first
OpenCL platform) or opencl1d3 (fourth device of the second platform). Only the AMD and NVIDIA OpenCL
implementations currently offer locality information. It may be built as a plugin.

rsmi
This component creates GPU OS device objects such as rsmi0 for describing AMD GPUs. It may be built as a
plugin.

levelzero
This component creates co-processor OS device objects such as ze0 for describing oneAPI Level Zero devices.
It may also create sub-OS-devices such as ze0.0 inside those devices. It may be built as a plugin.

cuda
This component creates co-processor OS device objects such as cuda0 that correspond to NVIDIA GPUs used
with CUDA library. It may be built as a plugin.

nvml
Probing the NVIDIA Management Library creates OS device objects such as nvml0 that are useful for batch
schedulers. It also detects the actual PCle link bandwidth without depending on power management state and
without requiring administrator privileges. It may be built as a plugin.

gl
Probing the NV-CONTROL X extension (NVCtrl library) creates OS device objects such as :0.0 corresponding to
NVIDIA displays. They are useful for graphical applications that need to place computation and/or data near a
rendering GPU. It may be built as a plugin.

synthetic
Synthetic topology support (see Synthetic topologies) is always built statically.

xml
XML topology import (see Importing and exporting topologies from/to XML files) is always built stati-
cally. It internally uses a specific class of components for the actual XML import/export routines (see
libxml2 and minimalistic XML backends for details).

« xmi_nolibxml is a basic and hwloc-specific XML import/export. It is always statically built.
« xml_libxml relies on the external libxmlI2 library for provinding a feature-complete XML import/export. It
may be built as a plugin.
fake

A dummy plugin that does nothing but is used for debugging plugin support.

Generated by Doxygen

68

Components and plugins

Generated by Doxygen

Chapter 18

Embedding hwloc in Other Software

It can be desirable to include hwloc in a larger software package (be sure to check out the LICENSE file) so that users
don't have to separately download and install it before installing your software. This can be advantageous to ensure that
your software uses a known-tested/good version of hwloc, or for use on systems that do not have hwloc pre-installed.
When used in "embedded" mode, hwloc will:

* not install any header files
* not build any documentation files
+ not build or install any executables or tests

e not build 1ibhwloc.* — instead, it will build 1ibhwloc_embedded. *

There are two ways to put hwloc into "embedded" mode. The first is directly from the configure command line:

shell$./configure --enable-embedded-mode ...

The second requires that your software project uses the GNU Autoconf / Automake / Libtool tool chain to build your
software. If you do this, you can directly integrate hwloc's m4 configure macro into your configure script. You can then
invoke hwloc's configuration tests and build setup by calling a m4 macro (see below).

Although hwloc dynamic shared object plugins may be used in embedded mode, the embedder project will have to
manually setup dlopen or libltdl in its build system so that hwloc can load its plugins at run time. Also, embedders should
be aware of complications that can arise due to public and private linker namespaces (e.g., if the embedder project is
loaded into a private namespace and then hwloc tries to dynamically load its plugins, such loading may fail since the
hwloc plugins can't find the hwloc symbols they need). The embedder project is strongly advised not to use hwloc's
dynamically loading plugins / dlopen / libltdl capability.

18.1 Using hwloc's M4 Embedding Capabilities

Every project is different, and there are many different ways of integrating hwloc into yours. What follows is one example
of how to do it.

If your project uses recent versions Autoconf, Automake, and Libtool to build, you can use hwloc's embedded m4
capabilities. We have tested the embedded m4 with projects that use Autoconf 2.65, Automake 1.11.1, and Libtool
2.2.6b. Slightly earlier versions of may also work but are untested. Autoconf versions prior to 2.65 are almost certain to
not work.

You can either copy all the config/hwlocxm4 files from the hwloc source tree to the directory where your project's m4
files reside, or you can tell aclocal to find more m4 files in the embedded hwloc's "config" subdirectory (e.g., add "-«
Ipath/to/embedded/hwloc/config" to your Makefile.am's ACLOCAL_AMFLAGS).

The following macros can then be used from your configure script (only HWLOC_SETUP_CORE must be invoked if
using the m4 macros):

Generated by Doxygen

70

Embedding hwloc in Other Software

+ HWLOC_SETUP_CORE(config-dir-prefix, action-upon-success, action-upon-failure, print_banner_or_not): In-

voke the hwloc configuration tests and setup the hwloc tree to build. The first argument is the prefix to use
for AC_OUTPUT files — it's where the hwloc tree is located relative to $top_srcdir. Hence, if your embedded
hwloc is located in the source tree at contrib/hwloc, you should pass [contrib/hwloc] as the first argument.
If HWLOC_SETUP_CORE and the rest of configure completes successfully, then "make" traversals of the
hwloc tree with standard Automake targets (all, clean, install, etc.) should behave as expected. For example, it is
safe to list the hwloc directory in the SUBDIRS of a higher-level Makefile.am. The last argument, if not empty, will
cause the macro to display an announcement banner that it is starting the hwloc core configuration tests.

HWLOC_SETUP_CORE will set the following environment variables and AC_SUBST them: HWLOC_«
EMBEDDED_CFLAGS, HWLOC_EMBEDDED_CPPFLAGS, and HWLOC_EMBEDDED_LIBS. These flags
are filled with the values discovered in the hwloc-specific m4 tests, and can be used in your build process as rele-
vant. The _CFLAGS, _CPPFLAGS, and _LIBS variables are necessary to build libhwloc (or libhwloc_embedded)
itself.

HWLOC_SETUP_CORE also sets HWLOC_EMBEDDED_LDADD environment variable (and AC_SUBSTSs it) to
contain the location of the libhwloc_embedded.la convenience Libtool archive. It can be used in your build process
to link an application or other library against the embedded hwloc library.

NOTE: If the HWLOC_SET_SYMBOL_PREFIX macro is used, it must be invoked before HWLOC_SETUP«
_CORE.

HWLOC_BUILD_STANDALONE: HWLOC_SETUP_CORE defaults to building hwloc in an "embedded" mode
(described above). If HWLOC_BUILD_STANDALONE is invoked xbeforex HWLOC_SETUP_CORE, the embed-
ded definitions will not apply (e.g., libhwloc.la will be built, not libhwloc_embedded.la).

HWLOC_SET_SYMBOL_PREFIX(foo_): Tells the hwloc to prefix all of hwloc's types and public symbols with
"foo_"; meaning that function hwloc_init() becomes foo_hwloc_init(). Enum values are prefixed with an upper-case
translation if the prefix supplied; HWLOC_OBJ_CORE becomes FOO_hwloc_OBJ_CORE. This is recommended
behavior if you are including hwloc in middleware — it is possible that your software will be combined with other
software that links to another copy of hwloc. If both uses of hwloc utilize different symbol prefixes, there will be
no type/symbol clashes, and everything will compile, link, and run successfully. If you both embed hwloc without
changing the symbol prefix and also link against an external hwloc, you may get multiple symbol definitions when
linking your final library or application.

HWLOC_SETUP_DOCS, HWLOC_SETUP_UTILS, HWLOC_SETUP_TESTS: These three macros only ap-
ply when hwloc is built in "standalone" mode (i.e., they should NOT be invoked unless HWLOC_BUILD_«
STANDALONE has already been invoked).

HWLOC_DO_AM_CONDITIONALS: If you embed hwloc in a larger project and build it conditionally with Au-
tomake (e.g., if HWLOC_SETUP_CORE is invoked conditionally), you must unconditionally invoke HWLOC_«
DO_AM_CONDITIONALS to avoid warnings from Automake (for the cases where hwloc is not selected to be built).
This macro is necessary because hwloc uses some AM_CONDITIONALSs to build itself, and AM_CONDITIONALs
cannot be defined conditionally. Note that it is safe (but unnecessary) to call HWLOC_DO_AM_CONDITIONALS
even if HWLOC_SETUP_CORE is invoked unconditionally. If you are not using Automake to build hwloc, this
macro is unnecessary (and will actually cause errors because it invoked AM_x macros that will be undefined).

NOTE: When using the HWLOC_SETUP_CORE m4 macro, it may be necessary to explicitly invoke AC_CANONICAL+«
_TARGET (which requires config.sub and config.guess) and/or AC_USE_SYSTEM_EXTENSIONS macros early in the
configure script (e.g., after AC_INIT but before AM_INIT_AUTOMAKE). See the Autoconf documentation for further
information.

Also note that hwloc's top-level configure.ac script uses exactly the macros described above to build hwloc in a stan-
dalone mode (by default). You may want to examine it for one example of how these macros are used.

18.2 Example Embedding hwiloc

Here's an example of integrating with a larger project named sandbox that already uses Autoconf, Automake, and Libtool
to build itself:

Generated by Doxygen

18.2 Example Embedding hwloc 71

First, cd into the sandbox project source tree
shell$ cd sandbox
shell$ cp -r /somewhere/else/hwloc-<version> my-embedded-hwloc
shell$ edit Makefile.am
1. Add "-Imy-embedded-hwloc/config" to ACLOCAL_AMFLAGS
2. Add "my-embedded-hwloc" to SUBDIRS
3. Add "$ (HWLOC_EMBEDDED_LDADD)" and "$ (HWLOC_EMBEDDED_LIBS)" to
sandbox’s executable’s LDADD line. The former is the name of the
Libtool convenience library that hwloc will generate. The latter
is any dependent support libraries that may be needed by
$ (HWLOC_EMBEDDED_LDADD) .
4. Add "$ (HWLOC_EMBEDDED_CFLAGS)" to AM_CFLAGS
5. Add "$ (HWLOC_EMBEDDED_CPPFLAGS)" to AM_CPPFLAGS
shell$ edit configure.ac
1. Add "HWLOC_SET_SYMBOL_PREFIX (sandbox_hwloc_)" line
2. Add "HWLOC_SETUP_CORE ([my—-embedded-hwloc],
3. Add error checking for happy=no case
shell$ edit sandbox.c
1. Add #include <hwloc.h>

2. Add calls to sandbox_hwloc_init () and other hwloc API functions

[happy=yes], [happy=nol)" line

Now you can bootstrap, configure, build, and run the sandbox as normal — all calls to "sandbox_hwloc_x" will use the
embedded hwloc rather than any system-provided copy of hwloc.

Generated by Doxygen

72

Embedding hwloc in Other Software

Generated by Doxygen

Chapter 19

Frequently Asked Questions (FAQ)

19.1 Concepts

19.1.1 | only need binding, or the number of cores, why should | use hwloc ?

hwloc is its portable API that works on a variety of operating systems. It supports binding of threads, processes and
memory buffers (see CPU binding and Memory binding). Even if some features are not supported on some systems,
using hwloc is much easier than reimplementing your own portability layer.

Moreover, hwloc provides knowledge of cores and hardware threads. It offers easy ways to bind tasks to individual hard-
ware threads, or to entire multithreaded cores, etc. See How may | ignore symmetric multithreading, hyper-threading, etc. in hwloc?.
Most alternative software for binding do not even know whether each core is single-threaded, multithreaded or hyper-
threaded. They would bind to individual threads without any way to know whether multiple tasks are in the same
physical core.

However, using hwloc comes with an overhead since a topology must be loaded before gathering information and
binding tasks or memory. Fortunately this overhead may be significantly reduced by filtering non-interesting information
out of the topology, see What may | disable to make hwloc faster? below.

19.1.2 What may | disable to make hwloc faster?

Building a hwloc topology on a large machine may be slow because the discovery of hundreds of hardware cores
or threads takes time (especially when reading thousands of sysfs files on Linux). Ignoring some objects (for in-
stance caches) that aren't useful to the current application may improve this overhead. One should also consider
using XML (see | do not want hwloc to rediscover my enormous machine topology every time | rerun a process) to work
around such issues.

Contrary to Istopo which enables most features (see Why is Istopo slow?), the default hwloc configuration is to keep all
objects enabled except 1/Os and instruction caches. This usually builds a very precise view of the CPU and memory
subsystems, which may be reduced if some information is unneeded.

The following code tells hwloc to build a much smaller topology that only contains Cores (explicitly filtered-in below),
hardware threads (PUs, cannot be filtered-out), NUMA nodes (cannot be filtered-out), and the root object (usually a
Machine; the root cannot be removed without breaking the tree):

hwloc_topology_t topology;

hwloc_topology_init (&topology) ;

/+ filter everything out =/

hwloc_topology_set_all_types_filter (topology, HWLOC_TYPE_FILTER_KEEP_NONE) ;

/+ filter Cores back in */

hwloc_topology_set_type_filter (topology, HWLOC_OBJ_CORE, HWLOC_TYPE_FILTER_KEEP_ALL);
hwloc_topology_load(topology);

However, one should remember that filtering such objects out removes locality information from the hwloc tree. For
instance, we may not know anymore which PU is close to which NUMA node. This would be useful to applica-
tions that explicitly want to place specific memory buffers close to specific tasks. To ignore useless objects but keep

Generated by Doxygen

74 Frequently Asked Questions (FAQ)

those that bring locality/hierarchy information, applications may replace HWLOC_TYPE_FILTER_KEEP_NONE with
HWLOC_TYPE_FILTER_KEEP_STRUCTURE above.

Starting with hwloc 2.8, it is also possible to ignore distances between objects, memory performance attributes, and
kinds of CPU cores, by setting topology flags before load:

[...]
/* disable distances, memory attributes and CPU kinds =/
hwloc_topology_set_flags (topology, HWLOC_TOPOLOGY_FLAG_NO_DISTANCES

| HWLOC_TOPOLOGY_FLAG_NO_MEMATTRS

| HWLOC_TOPOLOGY_FLAG_NO_CPUKINDS) ;
[...]
hwloc_topology_load(topology);

Finally it is possible to prevent some hwloc components from being loaded and queried. If you are sure that the Linux
(or x86) component is enough to discover everything you need, you may ask hwloc to disable all other components by
setting something like HWLOC_COMPONENTS=11inux, stop in the environment. See Components and plugins for
details.

19.1.3 Should I use logical or physical/OS indexes? and how?

One of the original reasons why hwloc was created is that physical/OS indexes (obj—->o0s_index) are often crazy
and unpredictable: processors numbers are usually non-contiguous (processors 0 and 1 are not physically close), they
vary from one machine to another, and may even change after a BIOS or system update. These numbers make task
placement hardly portable. Moreover some objects have no physical/OS numbers (caches), and some objects have
non-unique numbers (core numbers are only unique within a socket). Physical/OS indexes are only guaranteed to exist
and be unique for PU and NUMA nodes.

hwloc therefore introduces logical indexes (obj->1ogical_index) which are portable, contiguous and logically
ordered (based on the resource organization in the locality tree). In general, one should only use logical indexes and
just let hwloc do the internal conversion when really needed (when talking to the OS and hardware).

hwloc developers recommend that users do not use physical/OS indexes unless they really know what they are doing.
The main reason for still using physical/OS indexes is when interacting with non-hwloc tools such as numactl or taskset,
or when reading hardware information from raw sources such as /proc/cpuinfo.

Keep in mind is that physical indexes are internally used to fill CPU and node sets (hwloc_cpuset_t and hwloc_nodeset_t)
because they are passed to operating systems for binding. Hence it is not recommended to display the contents of such
sets (e.g. with hwloc_bitmap_list_snprintf ()) without a clear indication that they are physical indexes. See
also How do | convert between logical and OS/physical indexes?

19.1.4 How do | convert between logical and OS/physical indexes?

Istopo options —1 and —p may be used to switch between logical indexes (prefixed with L#) and physical/OS indexes
(P#). Converting one into the other may also be achieved with hwloc-calc which may manipulate either logical or physical
indexes as input or output. See also hwloc-calc.

Convert PU with physical number 3 into logical number
$ hwloc-calc -I pu --physical-input --logical-output pu:3
5

Convert a set of NUMA nodes from logical to physical

(beware that the output order may not match the input order)

$ hwloc-calc -I numa —--logical-input —--physical-output numa:2-3 numa:7
0,2,5

From the C API, converting requires to go through objects to retrieve the other index. One may retrieve an object from
a logical index with hwloc_get_obj_by type() or hwloc_get_obj_by_depth(). Getting a PU object or NUMA node from a
physical index may be performed hwloc_get_pu_obj_by_os_index() or hwloc_get_numanode_obj_by_os_index().

Generated by Doxygen

19.1 Concepts 75

Given that cpusets and nodesets contain physical index bits, one may also want to convert them to logical indexes. One
solution consists in iterating over the input set (e.g. hwloc_bitmap_foreach_begin()) and convert each (physical) bit into
a PU object and then get its logical index.

A more general solution for converting a cpuset into the logical indexes of larger objects (e.g. Cores or Packages
instead of PUs) is to iterate over the level and keep the objects whose cpuset intersects the input cpuset. See
hwloc_get_next_obj_covering_cpuset_by type() for instance.

See also Should | use logical or physical/OS indexes? and how?

19.1.5 hwiloc is only a structural model, it ignores performance models, memory
bandwidth, etc.?

hwloc is indeed designed to provide applications with a structural model of the platform. This is an orthogonal approach
to describing the machine with performance models, for instance using memory bandwidth or latencies measured by
benchmarks. We believe that both approaches are important for helping application make the most of the hardware.
For instance, on a dual-processor host with four cores each, hwloc clearly shows which four cores are together. Laten-
cies between all pairs of cores of the same processor are likely identical, and also likely lower than the latency between
cores of different processors. However, the structural model cannot guarantee such implementation details. On the
other side, performance models would reveal such details without always clearly identifying which cores are in the same
processor.

The focus of hwloc is mainly of the structural modeling side. However, hwloc lets user adds performance informa-
tion to the topology through distances (see Distances), memory attributes (see Memory Attributes) or even custom
annotations (see How do | annotate the topology with private notes?). hwloc may also use such distance information
for grouping objects together (see hwloc only has a one-dimensional view of the architecture, it ignores distances? and
What are these Group objects in my topology?).

19.1.6 hwloc only has a one-dimensional view of the architecture, it ignores distances?

hwloc places all objects in a tree. Each level is a one-dimensional view of a set of similar objects. All children of the same
object (siblings) are assumed to be equally interconnected (same distance between any of them), while the distance
between children of different objects (cousins) is supposed to be larger.

Modern machines exhibit complex hardware interconnects, so this tree may miss some information about the actual
physical distances between objects. The hwloc topology may therefore be annotated with distance information that may
be used to build a more realistic representation (multi-dimensional) of each level. For instance, there can be a distance
matrix that representing the latencies between any pair of NUMA nodes if the BIOS and/or operating system reports
them.

For more information about the hwloc distances, see Distances.

19.1.7 What are these Group objects in my topology?

hwloc comes with a set of predefined object types (Core, Package, NUMA node, Caches) that match the vast majority
of hardware platforms. The HWLOC_OBJ_GROUP type was designed for cases where this set is not sufficient. Groups
may be used anywhere to add more structure information to the topology, for instance to show that 2 out of 4 NUMA
nodes are actually closer than the others. When applicable, the subtype field describes why a Group was actually
added (see also Normal attributes).

hwloc currently uses Groups for the following reasons:

+ NUMA parents when memory locality does not match any existing object.
+ |/O parents when 1/O locality does not match any existing object.
+ Distance-based groups made of close objects.

* AMD Core Complex (CCX) (subtype is Complex, in the x86 backend), but these objects are usually merged
with the L3 caches or Dies.

Generated by Doxygen

76 Frequently Asked Questions (FAQ)

« AMD Bulldozer dual-core compute units (subtype is ComputeUnit, in the x86 backend), but these objects
are usually merged with the L2 caches.

« Intel Extended Topology Enumeration levels such as Module and Tile (in the x86 and Windows backends).

» Windows processor groups when HWLOC_WINDOWS_PROCESSOR_GROUP_OBJS=1 is set in the environ-
ment (except if they contain exactly a single NUMA node, or a single Package, etc.).

» IBM S/390 "Books" on Linux (subtype is Book).

* Linux Clusters of CPUs (subtype is Cluster), for instance for ARM cores sharing of some internal cache or
bus, or x86 cores sharing a L2 cache (since Linux kernel 5.16). HWLOC_DONT_MERGE_CLUSTER_GROUPS=1
may be set in the environment to disable the automerging of these groups with identical caches, etc.

» AIX unknown hierarchy levels.

hwloc Groups are only kept if no other object has the same locality information. It means that a Group containing a
single child is merged into that child. And a Group is merged into its parent if it is its only child. For instance a Windows
processor group containing a single NUMA node would be merged with that NUMA node since it already contains the
relevant hierarchy information.

When inserting a custom Group with hwloc_hwloc_topology_insert_group_object(), this merging may be disabled by
setting its dont_merge attribute.

19.1.8 What happens if my topology is asymmetric?

hwloc supports asymmetric topologies even if most platforms are usually symmetric. For example, there could be
different types of processors in a single machine, each with different numbers of cores, symmetric multithreading, or
levels of caches.

In practice, asymmetric topologies are rare but occur for at least two reasons:

* Intermediate groups may added for I/O affinity: on a 4-package machine, an I/O bus may be connected to 2
packages. These packages are below an additional Group object, while the other packages are not (see also
What are these Group objects in my topology?).

« If only part of a node is available to the current process, for instance because the resource manager uses Linux
Cgroups to restrict process resources, some cores (or NUMA nodes) will disappear from the topology (unless flag
HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED was passed). On a 32-core machine where 12 cores
were allocated to the process, this may lead to one CPU package with 8 cores, another one with only 4 cores,
and two missing packages.

To understand how hwloc manages such cases, one should first remember the meaning of levels and cousin objects.
All objects of the same type are gathered as horizontal levels with a given depth. They are also connected through
the cousin pointers of the hwloc_obj structure. Object attribute (cache depth and type, group depth) are also taken in
account when gathering objects as horizontal levels. To be clear: there will be one level for L1i caches, another level for
L1d caches, another one for L2, etc.

If the topology is asymmetric (e.g., if a group is missing above some processors), a given horizontal level will still exist
if there exist any objects of that type. However, some branches of the overall tree may not have an object located in
that horizontal level. Note that this specific hole within one horizontal level does not imply anything for other levels. All
objects of the same type are gathered in horizontal levels even if their parents or children have different depths and
types.

See the diagram in Terms and Definitions for a graphical representation of such topologies.

Moreover, it is important to understand that a same parent object may have children of different types (and therefore,
different depths). These children are therefore siblings (because they have the same parent), but they are not
cousins (because they do not belong to the same horizontal level).

Generated by Doxygen

19.1 Concepts 7

19.1.9 What happens to my topology if | disable symmetric multithreading,
hyper-threading, etc. in the system?

hwloc creates one PU (processing unit) object per hardware thread. If your machine supports symmetric multithreading,
for instance Hyper-Threading, each Core object may contain multiple PU objects:

$ lstopo -

Core L#0
PU L#0 (P#0)
PU L#1 (P#2)
Core L#1
PU L#2 (P#1)
PU L#3 (P#3)

x86 machines usually offer the ability to disable hyper-threading in the BIOS. Or it can be disabled on the Linux kernel
command-line at boot time, or later by writing in sysfs virtual files.

If you do so, the hwloc topology structure does not significantly change, but some PU objects will not appear anymore.
No level will disappear, you will see the same number of Core objects, but each of them will contain a single PU now.
The PU level does not disappear either (remember that hwloc topologies always contain a PU level at the bottom of the
topology) even if there is a single PU object per Core parent.

$ lstopo -

Core L#0

PU L#0 (P#0)
Core L#l

PU L#1 (P#1)

19.1.10 How may | ignore symmetric multithreading, hyper-threading, etc. in hwloc?

First, see What happens to my topology if | disable symmetric multithreading, hyper-threading, etc. in the system? for
more information about multithreading.
If you need to ignore symmetric multithreading in software, you should likely manipulate hwloc Core objects directly:

/+ get the number of cores */
unsigned nbcores = hwloc_get_nbobjs_by_type (topology, HWLOC_OBJ_CORE) ;

/* get the third core below the first package =/

hwloc_obj_t package, core;

package = hwloc_get_obj_by_type (topology, HWLOC_OBJ_PACKAGE, O0);

core = hwloc_get_obj_inside_cpuset_by_type (topology, package->cpuset,
HWLOC_OBJ_CORE, 2);

Whenever you want to bind a process or thread to a core, make sure you singlify its cpuset first, so that the task is
actually bound to a single thread within this core (to avoid useless migrations).

/* bind on the second core */

hwloc_obj_t core = hwloc_get_obj_by_type (topology, HWLOC_OBJ_CORE, 1);
hwloc_cpuset_t set = hwloc_bitmap_dup (core->cpuset) ;
hwloc_bitmap_singlify (set);

hwloc_set_cpubind (topology, set, 0);

hwloc_bitmap_free (set);

With hwloc-calc or hwloc-bind command-line tools, you may specify that you only want a single-thread within each core
by asking for their first PU object:

$ hwloc-calc core:4-7
0x0000££00

$ hwloc-calc core:4-7.pu:0
0x00005500

When binding a process on the command-line, you may either specify the exact thread that you want to use, or ask
hwloc-bind to singlify the cpuset before binding

Generated by Doxygen

78 Frequently Asked Questions (FAQ)

$ hwloc-bind core:3.pu:0 -- echo "hello from first thread on core #3"
hello from first thread on core #3

$ hwloc-bind core:3 --single -- echo "hello from a single thread on core #3"
hello from a single thread on core #3

19.2 Advanced

19.2.1 1do not want hwloc to rediscover my enormous machine topology every time | rerun
a process

Although the topology discovery is not expensive on common machines, its overhead may become significant when
multiple processes repeat the discovery on large machines (for instance when starting one process per core in a parallel
application). The machine topology usually does not vary much, except if some cores are stopped/restarted or if the
administrator restrictions are modified. Thus rediscovering the whole topology again and again may look useless.

For this purpose, hwloc offers XML import/export and shared memory features.

XML lets you save the discovered topology to a file (for instance with the Istopo program) and reload it later by setting
the HWLOC_XMLFILE environment variable. The HWLOC_THISSYSTEM environment variable should also be set to
1 to assert that loaded file is really the underlying system.

Loading a XML topology is usually much faster than querying multiple files or calling multiple functions of the operating
system. It is also possible to manipulate such XML files with the C programming interface, and the import/export may
also be directed to memory buffer (that may for instance be transmitted between applications through a package). See
also Importing and exporting topologies from/to XML files.

Note

The environment variable HWLOC_THISSYSTEM_ALLOWED_RESOURCES may be used to load a
XML topology that contains the entire machine and restrict it to the part that is actually available to
the current process (e.g. when Linux Cgroup/Cpuset are used to restrict the set of resources). See
Environment variables for changing allowed resources.

Shared-memory topologies consist in one process exposing its topology in a shared-memory buffer so that other pro-
cesses (running on the same machine) may use it directly. This has the advantage of reducing the memory footprint
since a single topology is stored in physical memory for multiple processes. However, it requires all processes to map
this shared-memory buffer at the same virtual address, which may be difficult in some cases. This APl is described in
Sharing topologies between processes.

19.2.2 How many topologies may | use in my program?

hwloc lets you manipulate multiple topologies at the same time. However, these topologies consume memory and

system resources (for instance file descriptors) until they are destroyed. It is therefore discouraged to open the same

topology multiple times.

Sharing a single topology between threads is easy (see Thread Safety) since the vast majority of accesses are read-only.

If multiple topologies of different (but similar) nodes are needed in your program, have a look at How to avoid memory waste when manipule

19.2.3 How to avoid memory waste when manipulating multiple similar topologies?

hwloc does not share information between topologies. If multiple similar topologies are loaded in memory, for instance
the topologies of different identical nodes of a cluster, lots of information will be duplicated.

hwloc/diff.h (see also Topology differences) offers the ability to compute topology differences, apply or unapply them, or
export/import to/from XML. However, this feature is limited to basic differences such as attribute changes. It does not
support complex modifications such as adding or removing some objects.

Generated by Doxygen

19.2 Advanced 79

19.2.4 How do | annotate the topology with private notes?

Each hwloc object contains a userdata field that may be used by applications to store private pointers. This field
is only valid during the lifetime of these container object and topology. It becomes invalid as soon the topology is
destroyed, or as soon as the object disappears, for instance when restricting the topology. The userdata field is not
exported/imported to/from XML by default since hwloc does not know what it contains. This behavior may be changed by
specifying application-specific callbacks with hwloc_topology_set_userdata_export_callback () and
hwloc_topology_set_userdata_import_callback().

Each object may also contain some info attributes (name and value strings) that are setup by hwloc during discovery
and that may be extended by the user with hwloc_obj_add_info () (see also Object attributes). Contrary to the
userdata field which is unique, multiple info attributes may exist for each object, even with the same name. These
attributes are always exported to XML. However, only character strings may be used as names and values.

It is also possible to insert Misc objects with a custom name anywhere as a leaf of the topology (see
Miscellaneous objects). And Misc objects may have their own userdata and info attributes just like any other ob-
ject.

The hwloc-annotate command-line tool may be used for adding Misc objects and info attributes.

There is also a topology-specific userdata pointer that can be used to recognize different topologies by storing a custom
pointer. It may be manipulated withhwloc_topology_set_userdata () andhwloc_topology_get_userdata ().

19.2.5 How do | create a custom heterogeneous and asymmetric topology?

Synthetic topologies (see Synthetic topologies) allow to create custom topologies but they are always symmetric:
same numbers of cores in each package, same local NUMA nodes, same shared cache, etc. To create an asymmet-
ric topology, for instance to simulate hybrid CPUs, one may want to start from a larger symmetric topology and restrict it.

Assuming we want two packages, one with 4 dual-threaded cores, and one with 8 single-threaded cores, first we create
a topology with two identical packages, each with 8 dual-threaded cores:

$ lstopo -1 "pack:2 core:8 pu:2" topo.xml

Then create the bitmask representing the PUs that we wish to keep and pass it to Istopo's restrict option:
$ hwloc-calc -i topo.xml pack:0.core:0-3.pu:0-1 pack:1l.core:0-7.pu:0

0x555500ff

$ lstopo -1 topo.xml —--restrict 0x555500ff topo2.xml
$ mv -f topo2.xml topo.xml

To mark the cores of first package as Big (power hungry) and those of second package as Little (energy efficient), define
CPU kinds:

$ hwloc-annotate topo.xml topo.xml -- none —-- cpukind $(hwloc-calc -i topo.xml pack:0) 1 0 CoreType Big
$ hwloc-annotate topo.xml topo.xml —-- none —- cpukind $(hwloc-calc -i topo.xml pack:1l) 0 0 CoreType Little

A similar method may be used for heterogeneous memory. First we specify 2 NUMA nodes per package in our synthetic
description:

$ lstopo —1i "pack:2 [numa (memory=100GB)] [numa (memory=10GB)] core:8 pu:2" topo.xml

Then remove the second node of first package:

$ hwloc-calc -i topo.xml --nodeset node:all ~pack:0.node:1l
0x0000000e
$ lstopo -1 topo.xml —--restrict nodeset=0xe topo2.xml

$ mv -f topo2.xml topo.xml

Then make one large node even bigger:

$ hwloc-annotate topo.xml topo.xml —-- pack:0.numa:0 —-- size 200GB

Generated by Doxygen

80 Frequently Asked Questions (FAQ)

Now we have 200GB in first package, and 100GB+10GB in second package.

Next we may specify that the small NUMA node (second of second package) is HBM while the large ones are DRAM:

$ hwloc-annotate topo.xml topo.xml —- pack:0.numa:0 pack:1l.numa:0 —-- subtype DRAM
$ hwloc-annotate topo.xml topo.xml -- pack:l.numa:1 -- subtype HBM

Finally we may define memory performance attributes to specify that the HBM bandwidth (200GB/s) from local cores is
higher than the DRAM bandwidth (50GB/s):

$ hwloc-annotate topo.xml topo.xml —-- pack:0.numa:0 —-- memattr Bandwidth pack:0 50000
$ hwloc-annotate topo.xml topo.xml -- pack:l.numa:0 -- memattr Bandwidth pack:1 50000
$ hwloc—-annotate topo.xml topo.xml —- pack:l.numa:1l —-- memattr Bandwidth pack:1 200000

There is currently no way to create or modify I/O devices attached to such fake topologies. There is also no way to have
some partial levels, e.g. a L3 cache in one package but not in the other.

More changes may obviously be performed by manually modifying the XML export file. Simple operations such as
modifying object attributes (cache size, memory size, name-value info attributes, etc.), moving 1/O subtrees, moving
Misc objects, or removing objects are easy to perform.

However, modifying CPU and Memory objects requires care since cpusets and nodesets are supposed to remain con-
sistent between parents and children. Similarly, PCI bus IDs should remain consistent between bridges and children
within an I/O subtree.

19.3 Caveats

19.3.1 Why is Istopo slow?

Istopo enables most hwloc objects and discovery flags by default so that the output topology is as precise as possible
(while hwloc disables many of them by default). This includes I/O device discovery through PCI libraries as well as
external libraries such as NVML. To speed up Istopo, you may disable such features with command-line options such as
-—-no-io.

When NVIDIA GPU probing is enabled (e.g. with CUDA or NVML), one may enable the Persistent mode (with
nvidia-smi -pm 1) to avoid significant GPU wakeup and initialization overhead.

When AMD GPU discovery is enabled with OpenCL and hwloc is used remotely over ssh, some spurious round-trips on
the network may significantly increase the discovery time. Forcing the DISPLAY environment variable to the remote X
server display (usually : 0) instead of only setting the COMPUTE variable may avoid this.

Also remember that these hwloc components may be disabled. At build-time, one may pass configure
flags such as —--disable-opencl, --disable-cuda, --disable-nvml, --disable-rsmi, and
—--disable-levelzero. Atruntime, one may setthe environment variable HWLOC_COMPONENTS=-opencl, —~cuda, —nvml, -
or call hwloc_topology_set_components().

Remember that these backends are disabled by default, except in Istopo. If hwloc itself is still too slow even after
disabling all the I/O devices as explained above, see also What may | disable to make hwloc faster? for disabling even
more features.

19.3.2 Does hwloc require privileged access?

hwloc discovers the topology by querying the operating system. Some minor features may require privileged access to
the operation system. For instance memory module discovery on Linux is reserved to root, and the entire PCI discovery
on Solaris and BSDs requires access to some special files that are usually restricted to root (/dev/pcix or /devices/pcix).
To workaround this limitation, it is recommended to export the topology as a XML file generated by the administrator (with
the Istopo program) and make it available to all users (see Importing and exporting topologies from/to XML files). It will
offer all discovery information to any application without requiring any privileged access anymore. Only the necessary
hardware characteristics will be exported, no sensitive information will be disclosed through this XML export.

Generated by Doxygen

19.3 Caveats 81

This XML-based model also has the advantage of speeding up the discovery because reading a XML topology is usually
much faster than querying the operating system again.

The utility hwloc-dump-hwdata is also involved in gathering privileged information at boot time and making it avail-
able to non-privileged users (note that this may require a specific SELinux MLS policy module). However, it only applies
to Intel Xeon Phi processors for now (see Why do | need hwloc-dump-hwdata for memory on Intel Xeon Phi processor?).
See also HWLOC_DUMPED_HWDATA_DIR in Environment Variables for details about the location of dumped files.

19.3.3 What should | do when hwloc reports "operating system" warnings?

When the operating system reports invalid locality information (because of either software or hardware bugs), hwloc
may fail to insert some objects in the topology because they cannot fit in the already built tree of resources. If so, hwloc
will report a warning like the following. The object causing this error is ignored, the discovery continues but the resulting
topology will miss some objects and may be asymmetric (see also What happens if my topology is asymmetric?).

B R R R R S

hwloc received invalid information from the operating system.

L3 (cpuset 0x000003f0) intersects with NUMANode (P#0 cpuset 0x0000003f) without inclusion!
Error occurred in topology.c line 940

Please report this error message to the hwloc user’s mailing list,
along with the files generated by the hwloc-gather-topology script.

hwloc will now ignore this invalid topology information and continue.
KA KA KRR R hk Ak Ak Ak A A A A A A A A A A A A A A A A A AR AR A A A A A A A A A A A A A A A A A A AR A AR AR AR A Ak hhkhh kK, k%

These errors are common on large AMD platforms because of BIOS and/or Linux kernel bugs causing invalid L3 cache
information. In the above example, the hardware reports a L3 cache that is shared by 2 cores in the first NUMA node
and 4 cores in the second NUMA node. That's wrong, it should actually be shared by all 6 cores in a single NUMA node.
The resulting topology will miss some L3 caches.

If your application does not care about cache sharing, or if you do not plan to request cache-aware binding in your pro-
cess launcher, you may likely ignore this error (and hide it by setting HWLOC_HIDE_ERRORS=2 in your environment).
Some platforms report similar warnings about conflicting Packages and NUMANodes.

On x86 hosts, passing HWLOC_COMPONENTS=x86 in the environment may workaround some of these issues by
switching to a different way to discover the topology.

Upgrading the BIOS and/or the operating system may help. Otherwise, as explained in the message, reporting this issue
to the hwloc developers (by sending the tarball that is generated by the hwloc-gather-topology script on this platform) is
a good way to make sure that this is a software (operating system) or hardware bug (BIOS, etc).

See also Questions and Bugs. Opening an issue on GitHub automatically displays hints on what information you should
provide when reporting such bugs.

19.3.4 Why does Valgrind complain about hwloc memory leaks?

If you are debugging your application with Valgrind, you want to avoid memory leak reports that are caused by hwloc
and not by your program.

hwloc itself is often checked with Valgrind to make sure it does not leak memory. However, some global variables in
hwloc dependencies are never freed. For instance libz allocates its global state once at startup and never frees it so
that it may be reused later. Some libxml2 global state is also never freed because hwloc does not know whether it can
safely ask libxmlI2 to free it (the application may also be using libxml2 outside of hwloc).

These unfreed variables cause leak reports in Valgrind. hwloc installs a Valgrind suppressions file to hide them. You
should pass the following command-line option to Valgrind to use it:

-—-suppressions=/path/to/hwloc-valgrind.supp

Generated by Doxygen

82 Frequently Asked Questions (FAQ)

19.4 Platform-specific

19.4.1 How do | enable ROCm SMI and select which version to use?

hwloc enables ROCm SMI as soon as it finds its development headers and libraries on the system. This detection
consists in looking in /opt / rocm by default. If a ROCm version was specified with ——with-rocm-version=4.+«
4.0 or in the ROCM_VERSION environment variable, then /opt/rocm-<version> is used instead. Finally, a
specific installation path may be specified with ——with-rocm=/path/to/rocm.

As usual, developer header and library paths may also be set through environment variables such as LIBRARY_PATH
and C_INCLUDE_PATH.

To find out whether ROCm SMI was detected and enabled, look in Probe / display I/O devices at the end of the configure
script output. Passing ——enable-rsmi will also cause configure to fail if RSMI could not be found and enabled in
hwloc.

19.4.2 How do | enable CUDA and select which CUDA version to use?

hwloc enables CUDA as soon as it finds CUDA development headers and libraries on the system. This detection may
be performed thanks to pkg-config but it requires hwloc to know which CUDA version to look for. This may be
done by passing ——with-cuda-version=11.0 to the configure script. Otherwise hwloc will also look for the
CUDA_VERSION environment variable.

If pkg—config does not work, passing ——-with-cuda=/path/to/cuda to the configure script is another way to
define the corresponding library and header paths. Finally, these paths may also be set through environment variables
such as LIBRARY_PATH and C_INCLUDE_PATH.

These paths, either detected by pkg—config or given manually, will also be used to detect NVML and OpenCL
libraries and enable their hwloc backends.

To find out whether CUDA was detected and enabled, look in Probe / display I/O devices at the end of the configure
script output. Passing ——enable-cuda will also cause configure to fail if CUDA could not be found and enabled in
hwloc.

Note that -—with-cuda=/nonexisting may be used to disable all dependencies that are installed by CUDA, i.e.
the CUDA, NVML and NVIDIA OpenCL backends, since the given directory does not exist.

19.4.3 How do | find the local HBM NUMA node on heterogeneous memory systems?

Intel Xeon Phi processors introduced a new memory architecture by possibly having two distinct local memories«
: some normal memory (DRAM) and some high-bandwidth on-package memory (HBM, actually called MCDRAM on
Xeon Phi). Processors can be configured in various clustering modes to have up to 4 Clusters. Moreover, each Cluster
(quarter, half or whole processor) of the processor may have its own local parts of the DDR and of the MCDRAM.
This memory and clustering configuration may be probed by looking at MemoryMode and ClusterMode attributes, see
Hardware Platform Information and doc/examples/get-knl-modes.c in the source directory. These processors are now
obsolete but other models such as the Intel Xeon Max support similar features.

Since with version 2.0, hwloc properly exposes this memory configuration. DRAM and HBM are attached as two memory
children of the same parent, DRAM first, and HBM second if any. Depending on the hardware configuration, that parent
may be a Package, a Cache, or a Group object (of type C1luster on Xeon Phi).

Hence cores may have two local NUMA nodes, listed by the core nodeset. An application may allocate local memory
from a core by using that nodeset. The operating system will actually allocate from the DRAM when possible, or fallback
to the HBM.

To allocate specifically on one of these memories, one should walk up the parent pointers until finding an object with
some memory children. Looking at these memory children will give the DRAM first, then the HBM/MCDRAM if any.
Their nodeset may then be used for allocating or binding memory buffers.

One may also traverse the list of NUMA nodes until finding some whose cpuset matches the target core or PUs. The
high-bandwidth NUMA nodes may be identified thanks to the subtype field which is set to HBM (or MCDRAM on
XeonPhi).

Command-line tools such as hwloc-bind may bind memory on the HBM/MCDRAM by using the hbm keyword or by
selecting MCDRAM nodes explicitly. For instance, to bind on the first HBM/MCDRAM NUMA node on Xeon Phi:

Generated by Doxygen

19.4 Platform-specific 83

$ hwloc-bind —--membind —--hbm numa:0 -- myprogram
$ hwloc-bind --membind numa[mcdram]:0 —-- myprogram

See also Using Heterogeneous Memory from the command-line

19.4.4 Why do | need hwloc-dump-hwdata for memory on Intel Xeon Phi processor?

Intel Xeon Phi processors may use the on-package memory (MCDRAM) as either memory or a memory-side cache (re-
ported as a L3 cache by hwloc by default, see HWLOC_KNL_MSCACHE_L3 in Environment Variables). There are also
several clustering modes that significantly affect the memory organization (see How do | find the local HBM NUMA node on heterogeneou:
for more information about these modes). Details about these are currently only available to privileged users. Without
them, hwloc relies on a heuristic for guessing the modes.

The hwloc-dump-hwdata utility may be used to dump this privileged binary information into human-readable and world-
accessible files that the hwloc library will later load. The utility should usually run as root once during boot, in order to
update dumped information (stored under /var/run/hwloc by default) in case the MCDRAM or clustering configuration
changed between reboots.

When SELinux MLS policy is enabled, a specific hwloc policy module may be required so that all users get access
to the dumped files (in /var/run/hwloc by default). One may use hwloc policy files from the SELinux Reference Pol-
icy at https://github.com/TresysTechnology/refpolicy—-contrib (see also the documentation at
https://github.com/TresysTechnology/refpolicy/wiki/GettingStarted).
hwloc-dump-hwdata requires dmi-sysfs kernel module loaded.

The utility is currently unneeded on platforms without Intel Xeon Phi processors.

See HWLOC_DUMPED_HWDATA_DIR in Environment Variables for details about the location of dumped files.

19.4.5 How do | build hwloc for BlueGene/Q?

IBM BlueGene/Q machines run a standard Linux on the login/frontend nodes and a custom CNK (Compute Node Kernel)
on the compute nodes.

To discover the topology of a login/frontend node, hwloc should be configured as usual, without any BlueGene/Q-specific
option.

However, one would likely rather discover the topology of the compute nodes where parallel jobs are actually running. If
so, hwloc must be cross-compiled with the following configuration line:

./configure —--host=powerpc64-bgg-linux —--disable-shared —--enable-static \
CPPFLAGS='-I/bgsys/drivers/ppcfloor -I/bgsys/drivers/ppcfloor/spi/include/kernel/cnk/’

CPPFLAGS may have to be updated if your platform headers are installed in a different directory.

19.4.6 How do | build hwloc for Windows?

hwloc binary releases for Windows are available on the website download pages (as pre-built ZIPs for both 32bits
and 64bits x86 platforms). However hwloc also offers several ways to build on Windows:

« The usual Unix build steps (configure, make and make install) work on the MSYS2/MinGW environ-
ment on Windows (the official hwloc binary releases are built this way). Some environment variables and options
must be configured, see contrib/ci.inria.fr/job-3-mingw. sh in the hwloc repository for an exam-
ple (used for nightly testing).

* hwloc also supports such Unix-like builds in Cygwin (environment for porting Unix code to Windows).
» Windows build is also possible with CMake (CMakeLists.txt available under contrib/windows-cmake/).

* hwloc also comes with an example of Microsoft Visual Studio solution (under contrib/windows/) that
may serve as a base for custom builds.

Generated by Doxygen

https://github.com/TresysTechnology/refpolicy-contrib
https://github.com/TresysTechnology/refpolicy/wiki/GettingStarted

84 Frequently Asked Questions (FAQ)

19.4.7 How to get useful topology information on NetBSD?

The NetBSD (and FreeBSD) backend uses x86-specific topology discovery (through the x86 component). This imple-
mentation requires CPU binding so as to query topology information from each individual processor. This means that
hwloc cannot find any useful topology information unless user-level process binding is allowed by the NetBSD kernel.
The security.models.extensions.user_set_cpu_affinity sysctl variable must be set to 1 to do so.
Otherwise, only the number of processors will be detected.

19.4.8 Why does binding fail on AIX?

The AIX operating system requires specific user capabilities for attaching processes to resource sets (CAP_NUMA_«—
ATTACH). Otherwise functions such as hwloc_set_cpubind() fail (return -1 with errno set to EPERM).

This capability must also be inherited (through the additional CAP_PROPAGATE capability) if you plan to bind a process
before forking another process, for instance with hwloc-bind.

These capabilities may be given by the administrator with:

chuser "capabilities=CAP_PROPAGATE,CAP_NUMA_ATTACH" <username>

19.5 Compatibility between hwloc versions

19.5.1 How do | handle API changes?

The hwloc interface is extended with every new major release. Any application using the hwloc API should be prepared
to check at compile-time whether some features are available in the currently installed hwloc distribution.
For instance, to check whether the hwloc version is at least 2.0, you should use:

#include <hwloc.h>
#if HWLOC_API_VERSION >= 0x00020000

benaiz
To check for the API of release X.Y.Z at build time, you may compare HWLOC_API_VERSION with (X<<16) + (Y<<8) +Z.
For supporting older releases that do not have HWLOC_OBJ_NUMANODE and HWLOC_OBJ_PACKAGE yet, you may
use:

#include <hwloc.h>

#1f HWLOC_API_VERSION < 0x00010b00

#define HWLOC_OBJ_NUMANODE HWLOC_OBJ_NODE

#define HWLOC_OBJ_PACKAGE HWLOC_OBJ_SOCKET
#endif

Once a program is built against a hwloc library, it may also dynamically link with compatible libraries from other hwloc
releases. The version of that runtime library may be queried with hwloc_get_api_version(). For instance, the following
code enables the topology flag HWLOC_TOPOLOGY_FLAG_NO_DISTANCES when compiling on hwloc 2.8 or later,
but it disables it at runtime if running on an older hwloc (otherwise hwloc_topology_set_flags() would fail).
unsigned long topology_flags = ...; /x wanted flags that were supported before 2.8 x/
#1if HWLOC_API_VERSION >= 0x20800
if (hwloc_get_api_version() >= 0x20800)

topology_flags |= HWLOC_TOPOLOGY_FLAG_NO_DISTANCES; /+ wanted flags only supported in 2.8+ x/

#endif
hwloc_topology_set_flags (topology, topology_flags);

See also How do | handle ABI breaks? for using hwloc_get_api_version() for testing ABI compatibility.

19.5.2 What is the difference between API and library version humbers?

HWLOC_API_VERSION is the version of the API. It changes when functions are added, modified, etc. However it does
not necessarily change from one release to another. For instance, two releases of the same series (e.g. 2.0.3 and
2.0.4) usually have the same HWLOC_API_VERSION (0x00020000). However their HWLOC_VERSION strings are
different ("2.0.3" and "2.0.4" respectively).

Generated by Doxygen

19.5 Compatibility between hwloc versions 85

19.5.3 How do | handle ABI breaks?

The hwloc interface was deeply modified in release 2.0 to fix several issues of the 1.x interface (see
Upgrading to the hwloc 2.0 APl and the NEWS file in the source directory for details). The ABI was broken, which
means applications must be recompiled against the new 2.0 interface.

To check that you are not mixing old/recent headers with a recent/old runtime library, check the major revision number
in the API version:

#include <hwloc.h>
unsigned version = hwloc_get_api_version();
if ((version >> 16) != (HWLOC_API_VERSION >> 16)) {
fprintf (stderr,
"$s compiled for hwloc API 0x%x but running on library API Ox%x.\n"
"You may need to point LD_LIBRARY_PATH to the right hwloc library.\n"
"Aborting since the new ABI is not backward compatible.\n",
callname, HWLOC_API_VERSION, version);
exit (EXIT_FAILURE) ;
}

To specifically detect v2.0 issues:

#include <hwloc.h>
#if HWLOC_API_VERSION >= 0x00020000
/* headers are recent =/
if (hwloc_get_api_version() < 0x20000)
. error out, the hwloc runtime library is older than 2.0 ...
#else
/* headers are pre-2.0 x/
if (hwloc_get_api_version() >= 0x20000)
. error out, the hwloc runtime library is more recent than 2.0 ...
#endif

In theory, library sonames prevent linking with incompatible libraries. However custom hwloc installations or improperly
configured build environments may still lead to such issues. Hence running one of the above (cheap) checks before
initializing hwloc topology may be useful.

19.5.4 Are XML topology files compatible between hwloc releases?

XML topology files are forward-compatible: a XML file may be loaded by a hwloc library that is more recent than the
hwloc release that exported that file.

However, hwloc XMLs are not always backward-compatible: Topologies exported by hwloc 2.x cannot be imported by
1.x by default (see XML changes for working around such issues). There are also some corner cases where backward
compatibility is not guaranteed because of changes between major releases (for instance 1.11 XMLs could not be
imported in 1.10).

XMLs are exchanged at runtime between some components of the HPC software stack (for instance the resource
managers and MPI processes). Building all these components on the same (cluster-wide) hwloc installation is a good
way to avoid such incompatibilities.

19.5.5 Are synthetic strings compatible between hwloc releases?

Synthetic strings (see Synthetic topologies) are forward-compatible: a synthetic string generated by a release may be
imported by future hwloc libraries.

However they are often not backward-compatible because new details may have been added to synthetic descriptions in
recent releases. Some flags may be given to hwloc_topology_export_synthetic() to avoid such details and stay backward
compatible.

19.5.6 Is it possible to share a shared-memory topology between different hwloc releases?

Shared-memory topologies (see Sharing topologies between processes) have strong requirements on compatibility be-
tween hwloc libraries. Adopting a shared-memory topology fails if it was exported by a non-compatible hwloc release.

Generated by Doxygen

86 Frequently Asked Questions (FAQ)

Releases with same major revision are usually compatible (e.g. hwloc 2.0.4 may adopt a topology exported by 2.0.3)
but different major revisions may be incompatible (e.g. hwloc 2.1.0 cannot adopt from 2.0.x).

Topologies are shared at runtime between some components of the HPC software stack (for instance the resource
managers and MPI processes). Building all these components on the same (system-wide) hwloc installation is a good
way to avoid such incompatibilities.

Generated by Doxygen

Chapter 20

Upgrading to the hwloc 2.0 API

See Compatibility between hwloc versions for detecting the hwloc version that you are compiling and/or running against.

20.1 New Organization of NUMA nodes and Memory

20.1.1 Memory children

In hwloc v1.x, NUMA nodes were inside the tree, for instance Packages contained 2 NUMA nodes which contained a
L3 and several cache.

Starting with hwloc v2.0, NUMA nodes are not in the main tree anymore. They are attached under objects as Memory
Children on the side of normal children. This memory children list starts at ob j—>memory_first_child and its
size is obj->memory_arity. Hence there can now exist two local NUMA nodes, for instance on Intel Xeon Phi
processors.

The normal list of children (starting at obj->first_child, ending at obj->last_child, of size
obj->arity, and available as the array obj—>children) now only contains CPU-side objects: PUs, Cores,
Packages, Caches, Groups, Machine and System. hwloc_get_next_child() may still be used to iterate over all children
of all lists.

Hence the CPU-side hierarchy is built using normal children, while memory is attached to that hierarchy depending on
its affinity.

20.1.2 Examples

* a UMA machine with 2 packages and a single NUMA node is now modeled as a "Machine" object with two
"Package” children and one "NUMANode" memory children (displayed first in Istopo below):

Machine (1024MB total)
NUMANode L#0 (P#0 1024MB)
Package L#0

Core L#0 + PU L#0 (P#0)

Core L#1 + PU L#1 (P#1)
Package L#1

Core L#2 + PU L#2 (P#2)

Core L#3 + PU L#3 (P#3)

» a machine with 2 packages with one NUMA node and 2 cores in each is now:

Machine (2048MB total)
Package L#0
NUMANode L#0 (P#0 1024MB)
Core L#0 + PU L#0 (P#0)
Core L#1 + PU L#1 (P#1)
Package L#1
NUMANode L#1 (P#1 1024MB)
Core L#2 + PU L#2 (P#2)
Core L#3 + PU L#3 (P#3)

Generated by Doxygen

88 Upgrading to the hwloc 2.0 API

« if there are two NUMA nodes per package, a Group object may be added to keep cores together with their local
NUMA node:

Machine (4096MB total)
Package L#0
GroupO L#0
NUMANode L#0 (P#0 1024MB)
Core L#0 + PU L#0 (P#0)
Core L#1 + PU L#1 (P#1)
GroupO L#1
NUMANode L#1 (P#1 1024MB)
Core L#2 + PU L#2 (P#2)
Core L#3 + PU L#3 (P#3)
Package L#1
[...]

« if the platform has L3 caches whose localities are identical to NUMA nodes, Groups aren't needed:

Machine (4096MB total)
Package L#0
L3 L#0 (1l6MB)
NUMANode L#0 (P#0 1024MB)
Core L#0 + PU L#0 (P#0)
Core L#1 + PU L#1 (P#1)
L3 L#1 (16MB)
NUMANode L#1 (P#1 1024MB)
Core L#2 + PU L#2 (P#2)
Core L#3 + PU L#3 (P#3)
Package L#1
[...]

20.1.3 NUMA level and depth

NUMA nodes are not in "main” tree of normal objects anymore. Hence, they don't have a meaningful depth anymore (like
I/O and Misc objects). They have a virtual (negative) depth (HWLOC_TYPE_DEPTH_NUMANODE) so that functions
manipulating depths and level still work, and so that we can still iterate over the level of NUMA nodes just like for any
other level.

For instance we can still use lines such as

int depth = hwloc_get_type_depth (topology, HWLOC_OBJ_NUMANODE) ;
hwloc_obj_t obj = hwloc_get_obj_by_type (topology, HWLOC_OBJ_NUMANODE, 4);
hwloc_obj_t node = hwloc_get_next_obj_by_depth (topology, HWLOC_TYPE_DEPTH_NUMANODE, prev);

The NUMA depth should not be compared with others. An unmodified code that still compares NUMA and Package
depths (to find out whether Packages contain NUMA or the contrary) would now always assume Packages contain
NUMA (because the NUMA depth is negative).

However, the depth of the Normal parents of NUMA nodes may be used instead. In the last example above, NUMA
nodes are attached to L3 caches, hence one may compare the depth of Packages and L3 to find out that NUMA nodes
are contained in Packages. This depth of parents may be retrieved with hwloc_get_memory_parents_depth(). However,
this function may return HWLOC_TYPE_DEPTH_MULTIPLE on future platforms if NUMA nodes are attached to different
levels.

20.1.4 Finding Local NUMA nodes and looking at Children and Parents

Applications that walked up/down to find NUMANode parent/children must now be updated. Instead of looking directly
for a NUMA node, one should now look for an object that has some memory children. NUMA node(s) will be attached
there. For instance, when looking for a NUMA node above a given core core:

hwloc_obj_t parent = core->parent;
while (parent && !parent->memory_arity)
parent = parent->parent; /* no memory child, walk up */
if (parent)
/* use parent->memory_first_child (and its siblings if there are multiple local NUMA nodes) =/

Generated by Doxygen

20.2 4 Kinds of Objects and Children 89

The list of local NUMA nodes (usually a single one) is also described by the nodeset attribute of each object (which
contains the physical indexes of these nodes). lterating over the NUMA level is also an easy way to find local NUMA
nodes:

hwloc_obj_t tmp = NULL;
while ((tmp = hwloc_get_next_obj_by_type (topology, HWLOC_OBJ_NUMANODE, tmp)) != NULL) {
if (hwloc_bitmap_isset (obj->nodeset, tmp->os_index))
/* tmp is a NUMA node local to obj, use it */
}

Similarly finding objects that are close to a given NUMA nodes should be updated too. Instead of looking at the NUMA
node parents/children, one should now find a Normal parent above that NUMA node, and then look at its parents/children
as usual:

hwloc_obj_t tmp = obj->parent;

while (hwloc_obj_type_is_memory (tmp))
tmp = tmp—->parent;

/* now use tmp instead of obj x/

To avoid such hwloc v2.x-specific and NUMA-specific cases in the code, a generic lookup for any kind of object,
including NUMA nodes, might also be implemented by iterating over a level. For instance finding an object of type
type which either contains or is included in object ob7j can be performed by traversing the level of that type and
comparing CPU sets:

hwloc_obj_t tmp = NULL;
while ((tmp = hwloc_get_next_obj_by_type (topology, type, tmp)) != NULL) {
if (hwloc_bitmap_intersects (tmp->cpuset, obj->cpuset))
/* tmp matches, use it x/

}

This generic lookup works whenever type or ob3j are Normal or Memory objects since both have CPU sets.
Moreover, it is compatible with the hwloc v1.x API.

20.2 4 Kinds of Objects and Children

20.2.1 1/0 and Misc children

I/0 children are not in the main object children list anymore either. They are in the list starting at obj->io_first+«
_childandits sizeis obj—>io_arity.

Misc children are not in the main object children list anymore. They are in the list starting at ob j—>misc_first_«
childandits sizeis obj—->misc_arity.

See hwloc_obj for details about children lists.

hwloc_get_next_child() may still be used to iterate over all children of all lists.

20.2.2 Kinds of objects
Given the above, objects may now be of 4 kinds:
« Normal (everything not listed below, including Machine, Package, Core, PU, CPU Caches, etc);
* Memory (currently NUMA nodes or Memory-side Caches), attached to parents as Memory children;
« 1/O (Bridges, PCI and OS devices), attached to parents as I/O children;
+ Misc objects, attached to parents as Misc children.

See hwloc_obj for details about children lists.

For a given object type, the kind may be found with hwloc_obj_type is_normal(), hwloc_obj_type_is_memory(),
hwloc_obj_type_is_normal(), or comparing with HWLOC_OBJ_MISC.

Normal and Memory objects have (non-NULL) CPU sets and nodesets, while I/O and Misc objects don't have any sets
(they are NULL).

Generated by Doxygen

90 Upgrading to the hwloc 2.0 API

20.3 HWLOC_OBJ_CACHE replaced

Instead of a single HWLOC_OBJ_CACHE, there are now 8 types HWLOC_OBJ_L1CACHE, ..., HWLOC_OBJ_L5CACHE,
HWLOC_OBJ_L1ICACHE, ..., HWLOC_OBJ_L3ICACHE.

Cache object attributes are unchanged.

hwloc_get_cache_type_depth() is not needed to disambiguate cache types anymore since new types can be passed to
hwloc_get_type_depth() without ever getting HWLOC_TYPE_DEPTH_MULTIPLE anymore.

hwloc_obj_type_is_cache(), hwloc_obj_type_is_dcache() and hwloc_obj_type_is_icache() may be used to check
whether a given type is a cache, data/unified cache or instruction cache.

20.4 allowed_cpuset and allowed_nodeset only in the main topology

Objects do not have allowed_cpuset and allowed_nodeset anymore. They are only available for the entire
topology using hwloc_topology_get_allowed_cpuset() and hwloc_topology_get_allowed_nodeset().

As usual, those are only needed when the INCLUDE_DISALLOWED topology flag is given, which means disallowed
objects are kept in the topology. If so, one may find out whether some PUs inside an object is allowed by checking

hwloc_bitmap_intersects (obj->cpuset, hwloc_topology_get_allowed_cpuset (topology))

Replace cpusets with nodesets for NUMA nodes. To find out which ones, replace intersects() with and() to get the actual
intersection.

20.5 Object depths are now signed int

obj->depth as well as depths given to functions such as hwloc_get obj by depth() or returned by
hwloc_topology_get_depth() are now signed int.
Other depth such as cache-specific depth attribute are still unsigned.

20.6 Memory attributes become NUMANode-specific

Memory attributes such as ob j—>memory.local_memory are now only available in NUMANode-specific attributes
in obj—->attr->numanode.local_memory.

obj->memory.total_memory is available in all objects as obj—>total_memory.

See hwloc_obj_attr_u::hwloc_numanode_attr_s and hwloc_obj for details.

20.7 Topology configuration changes

The old ignoring APl as well as several configuration flags are replaced with the new filtering API, see
hwloc_topology_set_type_filter() and its variants, and hwloc_type_filter_e for details.

+ hwloc_topology_ignore_type(), hwloc_topology_ignore_type_keep_structure() and hwloc_topology_ignore_all«
_keep_structure() are respectively superseded by

hwloc_topology_set_type_filter (topology, type, HWLOC_TYPE_FILTER_KEEP_NONE) ;

hwloc_topology_set_type_filter (topology, type, HWLOC_TYPE_FILTER_KEEP_STRUCTURE) ;
hwloc_topology_set_all_types_filter (topology, HWLOC_TYPE_FILTER_KEEP_STRUCTURE) ;

Also, the meaning of KEEP_STRUCTURE has changed (only entire levels may be ignored, instead of single
objects), the old behavior is not available anymore.

* HWLOC_TOPOLOGY_FLAG_ICACHES is superseded by

hwloc_topology_set_icache_types_filter (topology, HWLOC_TYPE_FILTER_KEEP_ALL);

Generated by Doxygen

20.8 XML changes 91

+ HWLOC_TOPOLOGY_FLAG_WHOLE_IO, HWLOC_TOPOLOGY_FLAG_IO_DEVICES and HWLOC_«
TOPOLOGY_FLAG_IO_BRIDGES replaced.

To keep all I/O devices (PCI, Bridges, and OS devices), use:

hwloc_topology_set_io_types_filter (topology, HWLOC_TYPE_FILTER_KEEP_ALL);

To only keep important devices (Bridges with children, common PCI devices and OS devices):

hwloc_topology_set_io_types_filter (topology, HWLOC_TYPE_FILTER_KEEP_IMPORTANT) ;

20.8 XML changes

2.0 XML files are not compatible with 1.x

2.0 can load 1.x files, but only NUMA distances are imported. Other distance matrices are ignored (they were never
used by default anyway).

2.0 can export 1.x-compatible files, but only distances attached to the root object are exported (i.e. distances that cover
the entire machine). Other distance matrices are dropped (they were never used by default anyway).

Users are advised to negociate hwloc versions between exporter and importer: If the importer isn't 2.x, the
exporter should export to 1.x. Otherwise, things should work by default.

Hence hwloc_topology_export_xml() and hwloc_topology export_xmlbuffer() have a new flags argument. to force a
hwloc-1.x-compatible XML export.

« If both always support 2.0, don't pass any flag.

* When the importer uses hwloc 1.x, export with HWLOC_TOPOLOGY_EXPORT_XML_FLAG_V1. Otherwise the
importer will fail to import.

» When the exporter uses hwloc 1.x, it cannot pass any flag, and a 2.0 importer can import without problem.

#if HWLOC_API_VERSION >= 0x20000
if (need 1.x compatible XML export)

hwloc_topology_export_xml(...., HWLOC_TOPOLOGY_EXPORT_XML_FLAG_V1);
else /x need 2.x compatible XML export x/
hwloc_topology_export_xml(...., 0);
#else
hwloc_topology_export_xml(....);
#endif

Additionally, hwloc_topology_diff_load_xml(), hwloc_topology_diff_load_xmlbuffer(), hwloc_topology_diff_export_xml(),
hwloc_topology_diff_export_xmlbuffer() and hwloc_topology_diff_destroy() lost the topology argument: The first argu-
ment (topology) isn't needed anymore.

20.9 Distances API totally rewritten

The new distances API is in hwloc/distances.h.

Distances are not accessible directly from objects anymore. One should first call hwloc_distances_get() (or a variant) to
retrieve distances (possibly with one call to get the number of available distances structures, and another call to actually
get them). Then it may consult these structures, and finally release them.

The set of object involved in a distances structure is specified by an array of objects, it may not always cover the entire
machine or so.

20.10 Return values of functions

Bitmap functions (and a couple other functions) can return errors (in theory).

Most bitmap functions may have to reallocate the internal bitmap storage. In v1.x, they would silently crash if realloc
failed. In v2.0, they now return an int that can be negative on error. However, the preallocated storage is 512 bits, hence
realloc will not even be used unless you run hwloc on machines with larger PU or NUMAnode indexes.

Generated by Doxygen

92

Upgrading to the hwloc 2.0 API

hwloc_obj_add_info(), hwloc_cpuset_from_nodeset() and hwloc_cpuset_from_nodeset() also return an int, which would
be -1 in case of allocation errors.

20.11 Misc API changes

hwloc_type_sscanf() extends hwloc_obj_type_sscanf() by passing a union hwloc_obj_attr_u which may receive
Cache, Group, Bridge or OS device attributes.

hwloc_type_sscanf_as_depth() is also added to directly return the corresponding level depth within a topology.

hwloc_topology_insert_misc_object_by_cpuset() is replaced with hwloc_topology_alloc_group_object() and
hwloc_topology_insert_group_object().

hwloc_topology_insert_misc_object_by_parent() is replaced with hwloc_topology_insert_misc_object().

20.12 API removals and deprecations

HWLOC_OBJ_SYSTEM removed: The root object is always HWLOC_OBJ_MACHINE

_membind_nodeset() memory binding interfaces deprecated: One should use the variant without _nodeset suffix
and pass the HWLOC_MEMBIND_BYNODESET flag.

HWLOC_MEMBIND_REPLICATE removed: no supported operating system supports it anymore.
hwloc_obj_snprintf() removed because it was long-deprecated by hwloc_obj_type_snprintf() and hwloc_obj_attr_snprintf().
hwloc_obj_type_sscanf() deprecated, hwloc_obj_type_of_string() removed.

hwloc_cpuset_from/to_nodeset_strict() deprecated: Now useless since all topologies are NUMA. Use the variant
without the _strict suffix

hwloc_distribute() and hwloc_distributev() removed, deprecated by hwloc_distrib().

The Custom interface (hwloc_topology_set_custom(), etc.) was removed, as well as the corresponding command-
line tools (hwloc-assembler, etc.). Topologies always start with object with valid cpusets and nodesets.

obj->online_cpuset removed: Offline PUs are simply listed in the complete_cpuset as previously.

obj->os_level removed.

Generated by Doxygen

Chapter 21

Topic Index

21.1 Topics

Here is a list of all topics with brief descriptions:

Error reporting inthe APl L e 99
APLversion L e e e 99
Object Sets (hwloc_cpuset_t and hwloc_nodeset_t) 100
Object TYPES o o e e 101
Object Structure and Attributes L 105
Topology Creation and Destruction e 106
Object levels, depths and types L e 108
Converting between Object Types and Attributes, and Strings, 113
Consulting and Adding Info Attributes L 115
CPUDINDING e 116
Memory binding e e e e e 121
Changing the Source of Topology Discovery 0 i 129
Topology Detection Configurationand Query e 132
Modifying a loaded Topology e e e 141
Kinds of object Type e 146
Finding Objectsinside a CPU set e 148
Finding Objects covering atleast CPU set e 151
Looking at Ancestor and Child Objects e 153
Looking at Cache Objects e 155
Finding objects, miscellaneous helpers 156
Distributing items over atopology 159
CPU and node sets of entire topologies e 160
Converting between CPU setsand node sets 162
Finding /O objects L e 163
The bitmap APl 165
Exporting Topologiesto XML e 178
Exporting Topologies to Synthetic 182
Retrieve distances between objects L 184
Helpers for consulting distance matrices L 188
Add distances between objects L e 189
Remove distances between objects 191
Comparing memory node attributes for finding where to allocateon 192
Managing memory attributes L 201
Kinds of CRU COres o e 203
Linux-specific helpers e 205
Interoperability with Linux libnuma unsigned longmaskso Lo 207

Generated by Doxygen

94 Topic Index
Interoperability with Linux libnumabitmask 209
Windows-specific helpers e 210
Interoperability with glibc sched affinity 211
Interoperability with OpenCL o e 212
Interoperability with the CUDA Driver APl e e 214
Interoperability with the CUDA Runtime APl e 216
Interoperability with the NVIDIA Management Library 217
Interoperability with the ROCm SMI Management Library 219
Interoperability with the oneAPI Level Zero interface. Lo 220
Interoperability with OpenGL displays e e 222
Interoperability with OpenFabrics e 223
Topology differences L e 225
Sharing topologies between processes L 229
Components and Plugins: Discovery components and backends 231
Components and Plugins: Generic components e e 233
Components and Plugins: Core functions to be used by components 234
Components and Plugins: Filteringobjects 237
Components and Plugins: helpers for PCl discovery 238
Components and Plugins: finding PCI objects during other discoveries 239
Components and Plugins: distances L 240

Generated by Doxygen

Chapter 22

Directory Hierarchy

22.1 Directories

bitmap.h

cpukinds.h

cuda.h

cudart.h

diff.h

distances.h

export.h

gl.h

glibc-sched.h

helper.h

levelzero.h

linux-libnuma.h

linux.h

memattrs.h

nvml.h

opencl.h

openfabrics-verbs.h

plugins.h

rsmi.h

shmem.h

windows.h

iNClude e e e e

hWIOC . . . e e e e
bitmap.h
cpukinds.h
cuda.h
cudart.h
diff.h
distances.h
export.h
glh
glibc-sched.h
helper.h
levelzero.h
linux-libnuma.h
linux.h

Generated by Doxygen

96

Directory Hierarchy

memattrs.h

nvml.h

opencl.h
openfabrics-verbs.h
plugins.h

rsmi.h

shmem.h
windows.h

hwloc.h

Generated by Doxygen

Chapter 23

Data Structure Index

23.1 Data Structures

Here are the data structures with brief descriptions:

hwloc_backend

Discovery backend structure L
hwloc_obj_attr_u::hwloc_bridge_attr_s

Bridge specific Object Attributes
hwloc_obj_attr_u::hwloc_cache_attr_s

Cache-specific Object Attributes
hwloc_cl_device_pci_bus_info_khr
hwloc_cl_device_topology_amd e e e e
hwloc_component

Generic component structure L L
hwloc_disc_component

Discovery component structure
hwloc_disc_status

Discovery status structure L e e
hwloc_distances_s

Matrix of distances between asetofobjects oo oo,
hwloc_obj_attr_u::hwloc_group_attr_s

Group-specific Object Attributes L
hwloc_info_s

Object info attribute (name and value strings) L L L
hwloc_location

Where to measure attributes from L
hwloc_location::hwloc_location_u

Actual location L
hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page_type_s

Array of local memory page types, NULL if no local memory and page_typesis0
hwloc_obj_attr_u::hwloc_numanode_attr_s

NUMA node-specific Object Attributes
hwloc_obj

Structure of atopology object L L
hwloc_obj_attr_u

Object type-specific Attributes e
hwloc_obj_attr_u::hwloc_osdev_attr_s

OS Device specific Object Attributes
hwloc_obj_attr_u::hwloc_pcidev_attr_s

PCI Device specific Object Attributes

Generated by Doxygen

98

Data Structure Index

hwloc_topology_cpubind_support

Flags describing actual PU binding support for thistopology 266
hwloc_topology_diff_u::hwloc_topology_diff_generic_s o 268
hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_generic.s 268
hwloc_topology_diff_u::hwloc_topology_diff obj_attr s oo 269
hwloc_topology_diff obj_attr_u::hwloc_topology_diff_obj_attr_string_s

String attribute modification with an optionalname 269
hwloc_topology_diff_obj_attr_u

One object attribute difference L 270
hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_uint64_s

Integer attribute modification with an optionalindex 271
hwloc_topology_diff_u::hwloc_topology diff_too_complex_s, 271
hwloc_topology_diff _u

One element of a difference list between two topologies 272
hwloc_topology_discovery_support

Flags describing actual discovery support for this topology 273
hwloc_topology_membind_support

Flags describing actual memory binding support for this topology 274
hwloc_topology_misc_support

Flags describing miscellaneous features L oL oo 276
hwloc_topology_support

Set of flags describing actual support for thistopology 276

Generated by Doxygen

Chapter 24

Topic Documentation

24.1 Error reporting in the API

Most functions in the hwloc API return an integer value. Unless documentated differently, they return 0 on success and
-1 on error. Functions that return a pointer type return NULL on error.

errno will be set to a meaningful value whenever possible. This includes the usual EINVAL when invalid function
parameters are passed or ENOMEM when an internal allocation fails. Some specific errno value are also used, for
instance for binding errors as documented in CPU binding.

Some modules describe return values of their functions in their introduction, for instance in The bitmap API.

24.2 API version

Macros

+ #define HWLOC_API_VERSION 0x00020c00
+ #define HWLOC_COMPONENT_ABI 7

Functions

+ unsigned hwloc_get_api_version (void)

24.2.1 Detailed Description

24.2.2 Macro Definition Documentation
24.2.2.1 HWLOC_API_VERSION

#define HWLOC_API_VERSION 0x00020c00

Indicate at build time which hwloc API version is being used.

This number is updated to (X< <16)+(Y<<8)+Z when a new release X.Y.Z actually modifies the API.

Users may check for available features at build time using this number (see How do | handle APl changes?).

Note

This should not be confused with HWLOC_VERSION, the library version. Two stable releases of the same series
usually have the same HWLOC_API_VERSION even if their HWLOC_VERSION are different.

24.2.2.2 HWLOC_COMPONENT_ABI

#define HWLOC_COMPONENT_ABI 7
Current component and plugin ABI version (see hwloc/plugins.h).

Generated by Doxygen

100 Topic Documentation

24.2.3 Function Documentation
24.2.3.1 hwloc_get_api_version()

unsigned hwloc_get_api_version (

void)
Indicate at runtime which hwloc API version was used at build time.
Should be HWLOC_API_VERSION if running on the same version.

Returns

the build-time version number.

24.3 Object Sets (hwloc_cpuset_t and hwloc_nodeset_t)

Typedefs

« typedef hwloc_bitmap_t hwloc_cpuset_t

« typedef hwloc_const_bitmap_t hwloc_const_cpuset_t
« typedef hwloc_bitmap_t hwloc_nodeset_t

« typedef hwloc_const_bitmap_t hwloc_const_nodeset_t

24.3.1 Detailed Description

Hwloc uses bitmaps to represent two distinct kinds of object sets: CPU sets (hwloc_cpuset_t) and NUMA node sets
(hwloc_nodeset_t). These types are both typedefs to a common back end type (hwloc_bitmap_t), and therefore all the
hwloc bitmap functions are applicable to both hwloc_cpuset_t and hwloc_nodeset_t (see The bitmap API).

The rationale for having two different types is that even though the actions one wants to perform on these types are
the same (e.g., enable and disable individual items in the set/mask), they're used in very different contexts: one for
specifying which processors to use and one for specifying which NUMA nodes to use. Hence, the name difference is
really just to reflect the intent of where the type is used.

24.3.2 Typedef Documentation

24.3.2.1 hwloc_const_cpuset_t

typedef hwloc_const_bitmap_t hwloc_const_cpuset_t
A non-modifiable hwloc_cpuset_t.

24.3.2.2 hwloc_const_nodeset_t

typedef hwloc_const_bitmap_t hwloc_const_nodeset_t
A non-modifiable hwloc_nodeset_t.

24.3.2.3 hwloc_cpuset_t

typedef hwloc_bitmap_t hwloc_cpuset_t

A CPU set is a bitmap whose bits are set according to CPU physical OS indexes.

It may be consulted and modified with the bitmap API as any hwloc_bitmap_t (see hwloc/bitmap.h).
Each bit may be converted into a PU object using hwloc_get_pu_obj_by_os_index().

See also

fag_indexes

Generated by Doxygen

24.4 Object Types 101

24.3.2.4 hwloc_nodeset_t

typedef hwloc_bitmap_t hwloc_nodeset_t

A node set is a bitmap whose bits are set according to NUMA memory node physical OS indexes.

It may be consulted and modified with the bitmap APl as any hwloc_bitmap_t (see hwloc/bitmap.h). Each bit may be
converted into a NUMA node object using hwloc_get_numanode_obj_by_os_index().

See also

fag_indexes

When binding memory on a system without any NUMA node, the single main memory bank is considered as NUMA
node #0.
See also Converting between CPU sets and node sets.

24.4 Object Types

Macros

+ #define HWLOC_TYPE_UNORDERED

Typedefs

» typedef enum hwloc_obj_cache_type e hwloc_obj_cache_type t
 typedef enum hwloc_obj_bridge_type e hwloc_obj_bridge_type_t
 typedef enum hwloc_obj_osdev_type_e hwloc_obj_osdev_type t

Enumerations

» enum hwloc_obj_type_t {
HWLOC_OBJ_MACHINE , HWLOC_OBJ_PACKAGE , HWLOC_OBJ_CORE , HWLOC_OBJ_PU ,
HWLOC_OBJ_L1CACHE , HWLOC_OBJ_L2CACHE , HWLOC_OBJ_L3CACHE , HWLOC_OBJ_L4CACHE ,
HWLOC_OBJ_L5CACHE , HWLOC_OBJ_L1ICACHE , HWLOC_OBJ_L2ICACHE , HWLOC_OBJ_L3ICACHE ,
HWLOC_OBJ_GROUP , HWLOC_OBJ_NUMANODE , HWLOC_OBJ_BRIDGE , HWLOC_OBJ_PCI_DEVICE ,
HWLOC_OBJ_OS_DEVICE , HWLOC_OBJ_MISC , HWLOC_0OBJ_MEMCACHE , HWLOC_OBJ_DIE
HWLOC_OBJ_TYPE_MAX}

+ enum hwloc_obj_cache_type_e { HWLOC_OBJ_CACHE_UNIFIED , HWLOC_OBJ_CACHE_DATA , HWLOC_OBJ_CACHE_INSTF
1

» enum hwloc_obj_bridge_type_e { HWLOC_OBJ_BRIDGE_HOST , HWLOC_OBJ_BRIDGE_PCI }

» enum hwloc_obj_osdev_type_e {
HWLOC_OBJ_OSDEV_BLOCK , HWLOC_OBJ_OSDEV_GPU , HWLOC_OBJ_OSDEV_NETWORK
HWLOC_OBJ_OSDEV_OPENFABRICS,,
HWLOC_OBJ_OSDEV_DMA , HWLOC_OBJ_OSDEV_COPROC }

H

Functions

« int hwloc_compare_types (hwloc_obj_type_t type1, hwloc_obj_type_t type2)

24.4.1 Detailed Description
24.4.2 Macro Definition Documentation
24.4.21 HWLOC_TYPE_UNORDERED

#define HWLOC_TYPE_UNORDERED
Value returned by hwloc_compare_types() when types can not be compared.

Generated by Doxygen

102

Topic Documentation

24.4.3 Typedef Documentation

24.4.3.1 hwloc_obj_bridge_type_t

typedef enum hwloc_obj_bridge_type_e hwloc_obj_bridge_type_t
Type of one side (upstream or downstream) of an 1/O bridge.

24.4.3.2 hwloc_obj_cache_type_t

typedef enum hwloc_obj_cache_type_e hwloc_obj_cache_type_t

Cache type.

24.4.3.3 hwloc_obj_osdev_type_t

typedef enum hwloc_obj_osdev_type_e hwloc_obj_osdev_type_t

Type of a OS device.

24.4.4 Enumeration Type Documentation

24.4.41 hwloc_obj_bridge type_e

enum hwloc_obj_bridge_type_e

Type of one side (upstream or downstream) of an 1/O bridge.

Enumerator

HWLOC_OBJ_BRIDGE_HOST

Host-side of a bridge, only possible upstream.

HWLOC_OBJ_BRIDGE_PCI

PCI-side of a bridge.

24.4.4.2 hwloc_obj_cache_type e

enum hwloc_obj_cache_type_e

Cache type.

Enumerator

HWLOC_OBJ_CACHE_UNIFIED

Unified cache.

HWLOC_OBJ_CACHE_DATA

Data cache.

HWLOC_OBJ_CACHE_INSTRUCTION

Instruction cache (filtered out by default).

24.4.4.3 hwloc_obj_osdev_type_e

enum hwloc_obj_osdev_type_e

Type of a OS device.

Enumerator

HWLOC_OBJ_OSDEV_BLOCK

Operating system block device, or non-volatile memory device. For in-
stance "sda" or "dax2.0" on Linux.

Generated by Doxygen

24.4 Object Types

103

HWLOC_OBJ_OSDEV_GPU

Operating system GPU device. For instance ":0.0" for a GL display,
"card0" for a Linux DRM device.

HWLOC_OBJ_OSDEV_NETWORK Operating system network device. For instance the "ethQ" interface on

Linux.

HWLOC_OBJ_OSDEV_OPENFABRICS | Operating system openfabrics device. For instance the "mix4_0" Infini«

Band HCA, "hfi1_0" Omni-Path interface, or "bxi0" Atos/Bull BXI HCA on
Linux.

HWLOC_OBJ_OSDEV_DMA

Operating system dma engine device. For instance the "dmaOchan0"
DMA channel on Linux.

HWLOC_OBJ_OSDEV_COPROC Operating system co-processor device. For instance "opencl0d0" for a

OpenCL device, "cuda0" for a CUDA device.

24.4.44 hwloc_obj_type_t

enum hwloc_obj_type_t
Type of topology object.

Note

Do not rely on the ordering or completeness of the values as new ones may be defined in the future! If you need
to compare types, use hwloc_compare_types() instead.

Enumerator

HWLOC_OBJ_MACHINE

Machine. A set of processors and memory with cache coherency. This type is
always used for the root object of a topology, and never used anywhere else. Hence
its parent is always NULL.

HWLOC_OBJ_PACKAGE

Physical package. The physical package that usually gets inserted into a socket
on the motherboard. A processor package usually contains multiple cores, and
possibly some dies.

HWLOC_OBJ_CORE

Core. A computation unit (may be shared by several PUs, aka logical processors).

HWLOC_OBJ_PU

Processing Unit, or (Logical) Processor. An execution unit (may share a core with
some other logical processors, e.g. in the case of an SMT core). This is the smallest
object representing CPU resources, it cannot have any child except Misc objects.
Objects of this kind are always reported and can thus be used as fallback when
others are not.

HWLOC_OBJ_L1CACHE

Level 1 Data (or Unified) Cache.

HWLOC_OBJ_L2CACHE

Level 2 Data (or Unified) Cache.

HWLOC_OBJ_L3CACHE

or Unified) Cache.

HWLOC_OBJ_L4CACHE

()
()
Level 3 Data ()
()

Level 4 Data (or Unified) Cache.

HWLOC_OBJ_L5CACHE

Level 5 Data (or Unified) Cache.

HWLOC_OBJ_L1ICACHE

Level 1 instruction Cache (filtered out by default).

HWLOC_OBJ_L2ICACHE

Level 2 instruction Cache (filtered out by default).

HWLOC_OBJ_L3ICACHE

Level 3 instruction Cache (filtered out by default).

Generated by Doxygen

104

Topic Documentation

HWLOC_OBJ_GROUP

Group objects. Objects which do not fit in the above but are detected
by hwloc and are useful to take into account for affinity. For instance,
some operating systems expose their arbitrary processors aggregation this
way. And hwloc may insert such objects to group NUMA nodes accord-
ing to their distances. See also What are these Group objects in my topology?.
These objects are removed when they do not bring any structure (see
HWLOC_TYPE_FILTER_KEEP_STRUCTURE).

HWLOC_OBJ_NUMANODE

NUMA node. An object that contains memory that is directly and byte-accessible to
the host processors. It is usually close to some cores (the corresponding objects
are descendants of the NUMA node object in the hwloc tree). This is the smallest
object representing Memory resources, it cannot have any child except Misc objects.
However it may have Memory-side cache parents.

NUMA nodes may correspond to different kinds of memory (DRAM, HBM, CXL-+
DRAM, etc.). When hwloc is able to guess that kind, it is specified in the subtype
field of the object. See also Normal attributes in the main documentation.

There is always at least one such object in the topology even if the machine is not
NUMA.

Memory objects are not listed in the main children list, but rather in the dedicated
Memory children list.

NUMA nodes have a special depth HWLOC_TYPE_DEPTH_NUMANODE instead
of a normal depth just like other objects in the main tree.

HWLOC_OBJ_BRIDGE

Bridge (filtered out by default). Any bridge (or PCI switch) that connects the
host or an I/O bus, to another I/O bus. Bridges are not added to the topol-
ogy unless their filtering is changed (see hwloc_topology_set type_filter() and
hwloc_topology_set_io_types_filter()).

I/O objects are not listed in the main children list, but rather in the dedicated io
children list. 1/0 objects have NULL CPU and node sets.

HWLOC_OBJ_PCl_DEVICE

PCI device (filtered out by default). PCI devices are not added to the topol-
ogy unless their filtering is changed (see hwloc_topology_set_type_filter() and
hwloc_topology_set_io_types_filter()).

I/O objects are not listed in the main children list, but rather in the dedicated io
children list. 1/0O objects have NULL CPU and node sets.

HWLOC_OBJ_OS_DEVICE

Operating system device (filtered out by default). OS devices are not added to the
topology unless their filtering is changed (see hwloc_topology_set_type_filter() and
hwloc_topology_set_io_types_filter()).

I/O objects are not listed in the main children list, but rather in the dedicated io
children list. I/O objects have NULL CPU and node sets.

HWLOC_OBJ_MISC

Miscellaneous objects (filtered out by default). Objects without particular meaning,
that can e.g. be added by the application for its own use, or by hwloc for miscella-
neous objects such as MemoryModule (DIMMs). They are not added to the topology
unless their filtering is changed (see hwloc_topology_set_type_filter()).

These objects are not listed in the main children list, but rather in the dedicated misc
children list. Misc objects may only have Misc objects as children, and those are in
the dedicated misc children list as well. Misc objects have NULL CPU and node
sets.

HWLOC_OBJ_MEMCACHE

Memory-side cache (filtered out by default). A cache in front of a specific NUMA
node. This object always has at least one NUMA node as a memory child.

Memory objects are not listed in the main children list, but rather in the dedicated
Memory children list.

Memory-side cache have a special depth HWLOC_TYPE_DEPTH_MEMCACHE in-
stead of a normal depth just like other objects in the main tree.

Generated by Doxygen

24.5 Object Structure and Attributes 105

HWLOC_OBJ_DIE

Die within a physical package. A subpart of the physical package, that contains
multiple cores. Some operating systems (e.g. Linux) may expose a single die per
package even if the hardware does not support dies at all. To avoid showing such
non-existing dies, hwloc will filter them out if all of them are identical to packages.
This is functionally equivalent to HWLOC_TYPE_FILTER_KEEP_STRUCTURE be-
ing enforced for Dies versus Packages.

24.4.5 Function Documentation

24.4.5.1 hwloc_compare_types()

int hwloc_compare_types (

hwloc_obj_type_t typel,

hwloc_obj_type_t type2)
Compare the depth of two object types.
Types shouldn't be compared as they are, since newer ones may be added in the future.

Returns

A negative integer if t ypel objects usually include t ype?2 objects.

A positive integer if t ypel objects are usually included in t ype2 objects.

0if typel and type?2 objects are the same.
HWLOC_TYPE_UNORDERED if objects cannot be compared (because neither is usually contained in the other).

Note

Object types containing CPUs can always be compared (usually, a machine contains packages, which contain
caches, which contain cores, which contain PUs).

HWLOC_OBJ_PU will always be the deepest, while HWLOC_OBJ_MACHINE is always the highest.

This does not mean that the actual topology will respect that order: e.g. as of today cores may also contain caches,
and packages may also contain nodes. This is thus just to be seen as a fallback comparison method.

24.5 Object Structure and Attributes

Data Structures

« struct hwloc_obj
* union hwloc_obj_attr_u
« struct hwloc_info_s

Typedefs

« typedef struct hwloc_obj x hwloc_obj_t

24.5.1 Detailed Description

24.5.2 Typedef Documentation

24.5.2.1 hwloc_obj_t

typedef struct hwloc_obij* hwloc_obj_t
Convenience typedef; a pointer to a struct hwloc_obj.

Generated by Doxygen

106 Topic Documentation

24.6 Topology Creation and Destruction

Typedefs

« typedef struct hwloc_topology * hwloc_topology_t

Functions

« int hwloc_topology_init (hwloc_topology_t xtopologyp)

« int hwloc_topology load (hwloc_topology_t topology)

« void hwloc_topology_destroy (hwloc_topology_t topology)

« int hwloc_topology_dup (hwloc_topology_t xnewtopology, hwloc_topology_t oldtopology)
« int hwloc_topology_abi_check (hwloc_topology_t topology)

« void hwloc_topology_check (hwloc_topology_t topology)

24.6.1 Detailed Description

24.6.2 Typedef Documentation
24.6.2.1 hwloc_topology_t

typedef struct hwloc_topology* hwloc_topology_t
Topology context.
To be initialized with hwloc_topology_init() and built with hwloc_topology_load().

24.6.3 Function Documentation
24.6.3.1 hwloc_topology_abi_check()

int hwloc_topology_abi_check (

hwloc_topology_t topology)
Verify that the topology is compatible with the current hwloc library.
This is useful when using the same topology structure (in memory) in different libraries that may use different hwloc
installations (for instance if one library embeds a specific version of hwloc, while another library uses a default system-
wide hwloc installation).
If all libraries/programs use the same hwloc installation, this function always returns success.

Returns

0 on success.

-1 with errno set to EINVAL if incompatible.

Note

If sharing between processes with hwloc_shmem_topology_write(), the relevant check is already performed inside
hwloc_shmem_topology_adopt().

24.6.3.2 hwloc_topology_check()

void hwloc_topology_check (
hwloc_topology_t topology)
Run internal checks on a topology structure.
The program aborts if an inconsistency is detected in the given topology.

Parameters

Generated by Doxygen

24.6 Topology Creation and Destruction 107

‘ topology ‘ is the topology to be checked

Note

This routine is only useful to developers.

The input topology should have been previously loaded with hwloc_topology_load().

24.6.3.3 hwloc_topology_destroy()

void hwloc_topology_destroy (
hwloc_topology_t topology)
Terminate and free a topology context.

Parameters

’ topology ‘ is the topology to be freed

24.6.3.4 hwloc_topology_dup()

int hwloc_topology_dup (
hwloc_topology_t * newtopology,
hwloc_topology_t oldtopology)
Duplicate a topology.
The entire topology structure as well as its objects are duplicated into a new one.
This is useful for keeping a backup while modifying a topology.

Returns

0 on success, -1 on error.

Note

Object userdata is not duplicated since hwloc does not know what it point to. The objects of both old and new
topologies will point to the same userdata.

24.6.3.5 hwloc_topology_init()

int hwloc_topology_init (
hwloc_topology_t * topologyp)
Allocate a topology context.

Parameters

’ out ‘ topologyp | is assigned a pointer to the new allocated context.

Returns

0 on success, -1 on error.

Generated by Doxygen

108 Topic Documentation

24.6.3.6 hwloc_topology_load()

int hwloc_topology_load (

hwloc_topology_t topology)
Build the actual topology.
Build the actual topology once initialized with hwloc_topology_init() and tuned with Topology Detection Configuration and Query
and Changing the Source of Topology Discovery routines. No other routine may be called earlier using this topology
context.

Parameters

’ topology ‘ is the topology to be loaded with objects.

Returns

0 on success, -1 on error.

Note

On failure, the topology is reinitialized. It should be either destroyed with hwloc_topology_destroy() or configured
and loaded again.

This function may be called only once per topology.

The binding of the current thread or process may temporarily change during this call but it will be restored before
it returns.

See also

Topology Detection Configuration and Query and Changing the Source of Topology Discovery

24.7 Obiject levels, depths and types

Enumerations

» enum hwloc_get_type_depth_e {
HWLOC_TYPE_DEPTH_UNKNOWN , HWLOC_TYPE_DEPTH_MULTIPLE , HWLOC_TYPE_DEPTH_NUMANODE
, HWLOC_TYPE_DEPTH_BRIDGE ,
HWLOC_TYPE_DEPTH_PCI_DEVICE , HWLOC_TYPE_DEPTH_OS_DEVICE , HWLOC_TYPE_DEPTH_MISC
, HWLOC_TYPE_DEPTH_MEMCACHE }

Functions

« int hwloc_topology_get_depth (hwloc_topology_t restrict topology)

« int hwloc_get_type_depth (hwloc_topology_t topology, hwloc_obj_type_t type)

« int hwloc_get_memory_parents_depth (hwloc_topology_t topology)

« int hwloc_get_type_or_below_depth (hwloc_topology_t topology, hwloc_obj_type_t type)

« int hwloc_get_type_or_above_depth (hwloc_topology_t topology, hwloc_obj_type_t type)

» hwloc_obj_type_t hwloc_get_depth_type (hwloc_topology_t topology, int depth)

+ unsigned hwloc_get_nbobjs_by_depth (hwloc_topology_t topology, int depth)

« int hwloc_get_nbobjs_by_type (hwloc_topology_t topology, hwloc_obj_type_t type)

» hwloc_obj_t hwloc_get_root_obj (hwloc_topology_t topology)

» hwloc_obj_t hwloc_get_obj_by_depth (hwloc_topology_t topology, int depth, unsigned idx)

» hwloc_obj_t hwloc_get_obj_by_type (hwloc_topology_t topology, hwloc_obj_type_t type, unsigned idx)
» hwloc_obj_t hwloc_get_next_obj_by_depth (hwloc_topology_t topology, int depth, hwloc_obj_t prev)

» hwloc_obj_t hwloc_get_next_obj_by_type (hwloc_topology_t topology, hwloc_obj_type_t type, hwloc_obj_t prev)

Generated by Doxygen

24.7 Object levels, depths and types 109

24.7.1 Detailed Description

Be sure to see the figure in Terms and Definitions that shows a complete topology tree, including depths,
child/sibling/cousin relationships, and an example of an asymmetric topology where one package has fewer caches
than its peers.

24.7.2 Enumeration Type Documentation

24.7.21 hwloc_get_type_depth_e

enum hwloc_get_type_depth_e

Enumerator

HWLOC_TYPE_DEPTH_UNKNOWN No object of given type exists in the topology.
HWLOC_TYPE_DEPTH_MULTIPLE Objects of given type exist at different depth in the topology (only for

Groups).
HWLOC_TYPE_DEPTH_NUMANODE | Virtual depth for NUMA nodes.
HWLOC_TYPE_DEPTH_BRIDGE Virtual depth for bridge object level.

HWLOC_TYPE_DEPTH_PCI_DEVICE | Virtual depth for PCI device object level.
HWLOC_TYPE_DEPTH_OS_DEVICE | Virtual depth for software device object level.
HWLOC_TYPE _DEPTH_MISC Virtual depth for Misc object.
HWLOC_TYPE_DEPTH_MEMCACHE | Virtual depth for MemCache object.

24.7.3 Function Documentation
24.7.3.1 hwloc_get_depth_type()

hwloc_obj_type_t hwloc_get_depth_type (
hwloc_topology_t topology,
int depth)
Returns the type of objects at depth depth.
depth should between 0 and hwloc_topology_get_depth()-1, or a virtual depth such as HWLOC_TYPE_DEPTH_NUMANODE.

Returns

The type of objects at depth depth.
(hwloc_obj_type_t)-1 if depth depth does not exist.

24.7.3.2 hwloc_get_memory_parents_depth()

int hwloc_get_memory_parents_depth (

hwloc_topology_t topology)
Return the depth of parents where memory objects are attached.
Memory objects have virtual negative depths because they are not part of the main CPU-side hierarchy of objects. This
depth should not be compared with other level depths.
If all Memory objects are attached to Normal parents at the same depth, this parent depth may be compared to other as
usual, for instance for knowing whether NUMA nodes is attached above or below Packages.

Generated by Doxygen

110 Topic Documentation

Returns

The depth of Normal parents of all memory children if all these parents have the same depth. For instance the
depth of the Package level if all NUMA nodes are attached to Package objects.

HWLOC_TYPE_DEPTH_MULTIPLE if Normal parents of all memory children do not have the same depth. For
instance if some NUMA nodes are attached to Packages while others are attached to Groups.

24.7.3.3 hwloc_get_nbobjs_by_depth()

unsigned hwloc_get_nbobjs_by_depth (
hwloc_topology_t topology,
int depth)

Returns the width of level at depth depth.

Returns

The number of objects at topology depth depth.
0 if there are no objects at depth depth.

24.7.3.4 hwloc_get_nbobjs_by_type()

int hwloc_get_nbobjs_by_type (
hwloc_topology_t topology,
hwloc_obj_type_t type) [inline]
Returns the width of level type type.

Returns

The number of objects of type type.
-1 if there are multiple levels with objects of that type, e.g. HWLOC_OBJ_GROUP.
0 if there are no objects at depth depth.

24.7.3.5 hwloc_get_next_obj_by depth()

hwloc_obj_t hwloc_get_next_obj_by_depth (
hwloc_topology_t topology,
int depth,
hwloc_obij_t prev) [inline]

Returns the next object at depth depth.
Returns

The first object at depth depth if prev is NULL.
The object after prev at depth depth if prev is not NULL.

NULL if there is no such object.

24.7.3.6 hwloc_get_next_obj_by type()

hwloc_obj_t hwloc_get_next_obj_by_type (
hwloc_topology_t topology,
hwloc_obij_type_t type,
hwloc_obij_t prev) [inline]

Returns the next object of type type.

Generated by Doxygen

24.7 Object levels, depths and types 111

Returns

The first object of type type if prev is NULL.
The object after prev of type type if prev is not NULL.
NULL if there is no such object.

NULL if there are multiple levels with objects of that type (e.9. HWLOC_OBJ_GROUP), the caller may fallback to
hwloc_get_obj_by_depth().

24.7.3.7 hwloc_get_obj_by_depth()

hwloc_obj_t hwloc_get_obj_by_depth (
hwloc_topology_t topology,
int depth,
unsigned idx)

Returns the topology object at logical index idx from depth depth.
Returns

The object if it exists.
NULL if there is no object with this index and depth.

24.7.3.8 hwloc_get_obj_by_type()

hwloc_obj_t hwloc_get_obj_by_type (
hwloc_topology_t topology,
hwloc_obj_type_t type,
unsigned idx) [inline]

Returns the topology object at logical index idx with type type.
Returns

The object if it exists.
NULL if there is no object with this index and type.

NULL if there are multiple levels with objects of that type (e.g. HWLOC_OBJ_GROUP), the caller may fallback to
hwloc_get_obj_by_depth().

24.7.3.9 hwloc_get_root_obj()

hwloc_obj_t hwloc_get_root_obj (
hwloc_topology_t topology) [inline]

Returns the top-object of the topology-tree.

Its type is HWLOC_OBJ_MACHINE.

This function cannot return NULL.

24.7.3.10 hwloc_get_type_depth()

int hwloc_get_type_depth (
hwloc_topology_t topology,
hwloc_obj_type_t type)

Returns the depth of objects of type type.

Generated by Doxygen

112 Topic Documentation

Returns

The depth of objects of type type.

A negative virtual depth if a NUMA node, I/O or Misc object type is given. These objects are stored in spe-
cial levels that are not CPU-related. This virtual depth may be passed to other hwloc functions such as
hwloc_get_obj_by_depth() but it should not be considered as an actual depth by the application. In particular,
it should not be compared with any other object depth or with the entire topology depth.

HWLOC_TYPE_DEPTH_UNKNOWN if no object of this type is present on the underlying architecture, or if the
OS doesn't provide this kind of information.

HWLOC_TYPE_DEPTH_MULTIPLE if type HWLOC_OBJ_GROUP is given and multiple levels of Groups exist.

Note

If the type is absent but a similar type is acceptable, see also hwloc_get_type_or_below_depth() and
hwloc_get_type_or_above_depth().

See also

hwloc_get_memory_parents_depth() for managing the depth of memory objects.

hwloc_type_sscanf_as_depth() for returning the depth of objects whose type is given as a string.

24.7.3.11 hwloc_get_type_or_above_depth()

int hwloc_get_type_or_above_depth (
hwloc_topology_t topology,
hwloc_obj_type_t type) [inline]
Returns the depth of objects of type t ype or above.
If no object of this type is present on the underlying architecture, the function returns the depth of the first "present”
object typically containing type.
This function is only meaningful for normal object types. If a memory, I/O or Misc object type is given, the corresponding
virtual depth is always returned (see hwloc_get_type_depth()).
May return HWLOC_TYPE_DEPTH_MULTIPLE for HWLOC_OBJ_GROUP just like hwloc_get_type_depth().

24.7.3.12 hwloc_get_type_or_below_depth()

int hwloc_get_type_or_below_depth (
hwloc_topology_t topology,
hwloc_obij_type_t type) [inline]
Returns the depth of objects of type t ype or below.
If no object of this type is present on the underlying architecture, the function returns the depth of the first "present”
object typically found inside t ype.
This function is only meaningful for normal object types. If a memory, I/O or Misc object type is given, the corresponding
virtual depth is always returned (see hwloc_get_type_depth()).
May return HWLOC_TYPE_DEPTH_MULTIPLE for HWLOC_OBJ_GROUP just like hwloc_get_type_depth().

24.7.3.13 hwloc_topology_get_depth()

int hwloc_topology_get_depth (

hwloc_topology_t restrict topology)
Get the depth of the hierarchical tree of objects.
This is the depth of HWLOC_OBJ_PU objects plus one.

Generated by Doxygen

24.8 Converting between Object Types and Attributes, and Strings 113

Returns

the depth of the object tree.

Note

NUMA nodes, I/0O and Misc objects are ignored when computing the depth of the tree (they are placed on special
levels).

24.8 Converting between Object Types and Attributes, and Strings

Functions

+ const char x hwloc_obj_type_string (hwloc_obj_type_t type)
+ int hwloc_obj_type_snprintf (char *restrict string, size_t size, hwloc_obj_t obj, int verbose)
+ int hwloc_obj_attr_snprintf (char xrestrict string, size_t size, hwloc_obj_t obj, const char xrestrict separator, int

verbose)

« int hwloc_type_sscanf (const char *string, hwloc_obj_type_t *xtypep, union hwloc_obj_attr_u *attrp, size_t attr-
size)

« int hwloc_type_sscanf_as_depth (const char xstring, hwloc_obj_type_t xtypep, hwloc_topology_t topology, int
xdepthp)

24.8.1 Detailed Description

24.8.2 Function Documentation
24.8.2.1 hwloc_obj_attr_snprintf()

int hwloc_obj_attr_snprintf (
char *restrict string,
size_t size,
hwloc_obj_t obj,
const char *restrict separator,
int verbose)
Stringify the attributes of a given topology object into a human-readable form.
Attribute values are separated by separator.
Only the major attributes are printed in non-verbose mode.
If size is 0, string may safely be NULL.

Returns

the number of characters that were actually written if not truncating, or that would have been written (not including
the ending \ 0).

24.8.2.2 hwloc_obj_type_snprintf()

int hwloc_obj_type_snprintf (
char *restrict string,
size_t size,
hwloc_obj_t obj,
int verbose)
Stringify the type of a given topology object into a human-readable form.
Contrary to hwloc_obj_type_string(), this function includes object-specific attributes (such as the Group depth, the Bridge
type, or OS device type) in the output, and it requires the caller to provide the output buffer.
The output is guaranteed to be the same for all objects of a same topology level.

Generated by Doxygen

114 Topic Documentation

If verbose is 1, longer type names are used, e.g. L1Cache instead of L1.
The output string may be parsed back by hwloc_type_sscanf().
If sizeis 0, string may safely be NULL.

Returns

the number of characters that were actually written if not truncating, or that would have been written (not including
the ending \ 0).

24.8.2.3 hwloc_obj_type_string()

const char * hwloc_obj_type_string (

hwloc_obj_type_t type)
Return a constant stringified object type.
This function is the basic way to convert a generic type into a string. The output string may be parsed back by
hwloc_type_sscanf().
hwloc_obj_type_snprintf() may return a more precise output for a specific object, but it requires the caller to provide the
output buffer.

Returns

A constant string containing the object type name or "Unknown".

24.8.2.4 hwloc_type_sscanf()

int hwloc_type_sscanf (

const char * string,

hwloc_obij_type_t * typep,

union hwloc_obj_attr_u * attrp,

size_t attrsize)
Return an object type and attributes from a type string.
Convert strings such as "Package" or "L1iCache" into the corresponding types. Matching is case-insensitive, and only
the first letters are actually required to match.
The matched object type is set in t ypep (which cannot be NULL).
Type-specific attributes, for instance Cache type, Cache depth, Group depth, Bridge type or OS Device type may be
returned in attrp. Attributes that are not specified in the string (for instance "Group" without a depth, or "L2Cache"”
without a cache type) are set to -1.
attrp is only filled if not NULL and if its size specified in attrsize is large enough. It should be at least as large as
union hwloc_obj_attr_u.

Returns

0 if a type was correctly identified, otherwise -1.

Note

This function is guaranteed to match any string returned by hwloc_obj_type_string() or hwloc_obj_type_snprintf().

This is an extended version of the now deprecated hwloc_obj_type_sscanf().

24.8.2.5 hwloc_type_sscanf_as_depth()

int hwloc_type_sscanf_as_depth (
const char * string,

hwloc_obj_type_t * typep,

Generated by Doxygen

24.9 Consulting and Adding Info Attributes 115

hwloc_topology_t topology,
int * depthp)
Return an object type and its level depth from a type string.
Convert strings such as "Package" or "L1iCache" into the corresponding types and return in depthp the depth of the
corresponding level in the topology topology.
If no object of this type is present on the underlying architecture, HWLOC_TYPE_DEPTH_UNKNOWN is returned.
If multiple such levels exist (for instance if giving Group without any depth), the function may return HWLOC_TYPE_DEPTH_MULTIPLE
instead.
The matched object type is set in typep if typep is non NULL.

Note

This function is similar to hwloc_type_sscanf() followed by hwloc_get_type_depth() but it also automatically dis-
ambiguates multiple group levels etc.

This function is guaranteed to match any string returned by hwloc_obj_type_string() or hwloc_obj_type_snprintf().

24.9 Consulting and Adding Info Attributes

Functions

« const char x hwloc_obj_get_info_by _name (hwloc_obj_t obj, const char xname)
« int hwloc_obj_add_info (hwloc_obj_t obj, const char xname, const char xvalue)
« int hwloc_obj_set_subtype (hwloc_topology_t topology, hwloc_obj_t obj, const char xsubtype)

24.9.1 Detailed Description

24.9.2 Function Documentation
24.9.2.1 hwloc_obj_add_info()

int hwloc_obj_add_info (
hwloc_obj_t obj,
const char * name,
const char *x value)
Add the given name and value pair to the given object info attributes.
The info pair is appended to the existing info array even if another pair with the same name already exists.
The input strings are copied before being added in the object infos.

Returns

0 on success, —1 on error.

Note

This function may be used to enforce object colors in the Istopo graphical output by adding "IstopoStyle" as a name
and "Background=#rrggbb" as a value. See CUSTOM COLORS in the Istopo(1) manpage for details.

If name or value contain some non-printable characters, they will be dropped when exporting to XML, see
hwloc_topology_export_xml() in hwloc/export.h.

24.9.2.2 hwloc_obj_get_info_by name()

const char * hwloc_obj_get_info_by_name (
hwloc_obj_t obj,
const char *x name) [inline]
Search the given name in object infos and return the corresponding value.
If multiple info attributes match the given name, only the first one is returned.

Generated by Doxygen

116 Topic Documentation

Returns

A pointer to the value string if it exists.

NULL if no such info attribute exists.

Note

The string should not be freed by the caller, it belongs to the hwloc library.

24.9.2.3 hwloc_obj_set_subtype()

int hwloc_obj_set_subtype (
hwloc_topology_t topology,
hwloc_obj_t obj,
const char *x subtype)
Set (or replace) the subtype of an object.
The given subtype is copied internally, the caller is responsible for freeing the original subt ype if needed.
If another subtype already exists in ob ject, it is replaced. The given subt ype may be NULL to remove the existing
subtype.

Note
This function is mostly meant to initialize the subtype of user-added objects such as groups with
hwloc_topology_alloc_group_object().

Returns

0 on success.

-1 with errno set to ENOMEM on failure to allocate memory.

24.10 CPU binding

Enumerations

+ enum hwloc_cpubind_flags_t { HWLOC_CPUBIND_PROCESS , HWLOC_CPUBIND_THREAD , HWLOC_CPUBIND_STRICT
, HWLOC_CPUBIND_NOMEMBIND }

Functions

« int hwloc_set_cpubind (hwloc_topology_t topology, hwloc_const_cpuset_t set, int flags)

« int hwloc_get_cpubind (hwloc_topology_t topology, hwloc_cpuset_t set, int flags)

« int hwloc_set_proc_cpubind (hwloc_topology_t topology, hwloc_pid_t pid, hwloc_const_cpuset_t set, int flags)

« int hwloc_get_proc_cpubind (hwloc_topology_t topology, hwloc_pid_t pid, hwloc_cpuset_t set, int flags)

« int hwloc_set_thread_cpubind (hwloc_topology_t topology, hwloc_thread_t thread, hwloc_const_cpuset_t set, int
flags)

« int hwloc_get_thread_cpubind (hwloc_topology_t topology, hwloc_thread_t thread, hwloc_cpuset_t set, int flags)

« int hwloc_get_last_cpu_location (hwloc_topology_t topology, hwloc_cpuset_t set, int flags)

« int hwloc_get_proc_last_cpu_location (hwloc_topology_t topology, hwloc_pid_t pid, hwloc_cpuset_t set, int flags)

Generated by Doxygen

24.10 CPU binding 117

24.10.1 Detailed Description

Some operating systems only support binding threads or processes to a single PU. Others allow binding to larger sets
such as entire Cores or Packages or even random sets of individual PUs. In such operating system, the scheduler is free
to run the task on one of these PU, then migrate it to another PU, etc. It is often useful to call hwloc_bitmap_singlify() on
the target CPU set before passing it to the binding function to avoid these expensive migrations. See the documentation
of hwloc_bitmap_singlify() for details.

Some operating systems do not provide all hwloc-supported mechanisms to bind processes, threads, etc.
hwloc_topology_get_support() may be used to query about the actual CPU binding support in the currently used
operating system.

When the requested binding operation is not available and the HWLOC_CPUBIND_STRICT flag was passed, the func-
tion returns -1. errno is setto ENOSYS when it is not possible to bind the requested kind of object processes/threads.
errno is set to EXDEV when the requested cpuset can not be enforced (e.g. some systems only allow one CPU, and
some other systems only allow one NUMA node).

If HWLOC_CPUBIND_STRICT was not passed, the function may fail as well, or the operating system may use a slightly
different operation (with side-effects, smaller binding set, etc.) when the requested operation is not exactly supported.
The most portable version that should be preferred over the others, whenever possible, is the following one which just
binds the current program, assuming it is single-threaded:

hwloc_set_cpubind(topology, set, 0),

If the program may be multithreaded, the following one should be preferred to only bind the current thread:
hwloc_set_cpubind(topology, set, HWLOC_CPUBIND_THREAD),

See also

Some example codes are available under doc/examples/ in the source tree.

Note

To unbind, just call the binding function with either a full cpuset or a cpuset equal to the system cpuset.
On some operating systems, CPU binding may have effects on memory binding, see HWLOC_CPUBIND_NOMEMBIND
Running Istopo --top or hwloc-ps can be a very convenient tool to check how binding actually happened.

24.10.2 Enumeration Type Documentation
24.10.2.1 hwloc_cpubind_flags_t

enum hwloc_cpubind_flags_t

Process/Thread binding flags.

These bit flags can be used to refine the binding policy.

The default (0) is to bind the current process, assumed to be single-threaded, in a non-strict way. This is the most
portable way to bind as all operating systems usually provide it.

Note

Not all systems support all kinds of binding. See the "Detailed Description" section of CPU binding for a description
of errors that can occur.

Enumerator

HWLOC_CPUBIND_PROCESS Bind all threads of the current (possibly) multithreaded process.
HWLOC_CPUBIND_THREAD Bind current thread of current process.

Generated by Doxygen

118

Topic Documentation

HWLOC_CPUBIND_STRICT

Request for strict binding from the OS. By default, when the designated CPUs
are all busy while other CPUs are idle, operating systems may execute the
thread/process on those other CPUs instead of the designated CPUs, to let
them progress anyway. Strict binding means that the thread/process will _«+
never_ execute on other CPUs than the designated CPUs, even when those
are busy with other tasks and other CPUs are idle.

Note

Depending on the operating system, strict binding may not be possible
(e.g., the OS does not implement it) or not allowed (e.g., for an admin-
istrative reasons), and the function will fail in that case.

When retrieving the binding of a process, this flag checks whether all its
threads actually have the same binding. If the flag is not given, the binding of
each thread will be accumulated.

Note

This flag is meaningless when retrieving the binding of a thread.

HWLOC_CPUBIND_NOMEMBIND

Avoid any effect on memory binding. On some operating systems, some CPU
binding function would also bind the memory on the corresponding NUMA
node. It is often not a problem for the application, but if it is, setting this flag
will make hwloc avoid using OS functions that would also bind memory. This
will however reduce the support of CPU bindings, i.e. potentially return -1
with errno set to ENOSYS in some cases.

This flag is only meaningful when used with functions that set the CPU bind-
ing. It is ignored when used with functions that get CPU binding information.

24.10.3 Function Documentation

24.10.3.1 hwloc_get_cpubind()

int hwloc_get_cpubind (

hwloc_topology_t topology,

hwloc_cpuset_t set,
int flags)
Get current process or thread binding.

The CPU-set set (previously allocated by the caller) is filled with the list of PUs which the process or thread (according

to flags) was last bound to.
Returns

0 on success, -1 on error.

24.10.3.2 hwloc_get_last_cpu_location()

int hwloc_get_last_cpu_location

(

hwloc_topology_t topology,

hwloc_cpuset_t set,

int flags)

Get the last physical CPU where the current process or thread ran.
The CPU-set set (previously allocated by the caller) is filled with the list of PUs which the process or thread (according

to flags) last ran on.

Generated by Doxygen

24.10 CPU binding 119

The operating system may move some tasks from one processor to another at any time according to their binding, so
this function may return something that is already outdated.

flags can include either HWLOC_CPUBIND_PROCESS or HWLOC_CPUBIND_THREAD to specify whether the
query should be for the whole process (union of all CPUs on which all threads are running), or only the current thread. If
the process is single-threaded, flags can be set to zero to let hwloc use whichever method is available on the underlying
(O}

Returns

0 on success, -1 on error.

24.10.3.3 hwloc_get_proc_cpubind()

int hwloc_get_proc_cpubind (
hwloc_topology_t topology,
hwloc_pid_t pid,
hwloc_cpuset_t set,
int flags)
Get the current physical binding of process pid.
The CPU-set set (previously allocated by the caller) is filled with the list of PUs which the process was last bound to.

Returns

0 on success, -1 on error.

Note

hwloc_pid_t is pid_t on Unix platforms, and HANDLE on native Windows platforms.

As a special case on Linux, if a tid (thread ID) is supplied instead of a pid (process ID) and HWLOC_CPUBIND
_THREAD is passed in flags, the binding for that specific thread is returned.

On non-Linux systems, HWLOC_CPUBIND_THREAD can not be used in f1ags.

24.10.3.4 hwloc_get_proc_last_cpu_location()

int hwloc_get_proc_last_cpu_location (
hwloc_topology_t topology,
hwloc_pid_t pid,
hwloc_cpuset_t set,
int flags)
Get the last physical CPU where a process ran.
The CPU-set set (previously allocated by the caller) is filled with the list of PUs which the process last ran on.
The operating system may move some tasks from one processor to another at any time according to their binding, so
this function may return something that is already outdated.

Returns

0 on success, -1 on error.

Note

hwloc_pid_t is pid_t on Unix platforms, and HANDLE on native Windows platforms.

As a special case on Linux, if a tid (thread ID) is supplied instead of a pid (process ID) and HWLOC_CPUBIND_THREAD

is passed in flags, the last CPU location of that specific thread is returned.
On non-Linux systems, HWLOC_CPUBIND_THREAD can not be used in f1ags.

Generated by Doxygen

120 Topic Documentation

24.10.3.5 hwloc_get_thread_cpubind()

int hwloc_get_thread_cpubind (
hwloc_topology_t topology,
hwloc_thread_t thread,
hwloc_cpuset_t set,
int flags)
Get the current physical binding of thread t 1d.
The CPU-set set (previously allocated by the caller) is filled with the list of PUs which the thread was last bound to.

Returns

0 on success, -1 on error.

Note

hwloc_thread_t is pthread_t on Unix platforms, and HANDLE on native Windows platforms.
HWLOC_CPUBIND_PROCESS can not be used in f1ags.

24.10.3.6 hwloc_set_cpubind()

int hwloc_set_cpubind (
hwloc_topology_t topology,
hwloc_const_cpuset_t set,
int flags)

Bind current process or thread on CPUs given in physical bitmap set.

Returns

0 on success.
-1 with errno set to ENOSYS if the action is not supported.

-1 with errno set to EXDEV if the binding cannot be enforced.

24.10.3.7 hwloc_set_proc_cpubind()

int hwloc_set_proc_cpubind (
hwloc_topology_t topology,
hwloc_pid_t pid,
hwloc_const_cpuset_t set,
int flags)
Bind a process pid on CPUs given in physical bitmap set.

Returns

0 on success, -1 on error.

Note

hwloc_pid_t is pid_t on Unix platforms, and HANDLE on native Windows platforms.

As a special case on Linux, if a tid (thread ID) is supplied instead of a pid (process ID) and HWLOC_CPUBIND_THREAD
is passed in flags, the binding is applied to that specific thread.

On non-Linux systems, HWLOC_CPUBIND_THREAD can not be used in f1ags.

Generated by Doxygen

24.11 Memory binding 121

24.10.3.8 hwloc_set_thread_cpubind()

int hwloc_set_thread_cpubind (
hwloc_topology_t topology,
hwloc_thread_t thread,
hwloc_const_cpuset_t set,
int flags)

Bind a thread thread on CPUs given in physical bitmap set.

Returns

0 on success, -1 on error.

Note

hwloc_thread_t is pthread_t on Unix platforms, and HANDLE on native Windows platforms.
HWLOC_CPUBIND_PROCESS can not be used in f1ags.

24.11 Memory binding

Enumerations

» enum hwloc_membind_policy_t {
HWLOC_MEMBIND_DEFAULT , HWLOC_MEMBIND_FIRSTTOUCH , HWLOC_MEMBIND_BIND , HWLOC MEMBIND_INTERLE

HWLOC_MEMBIND_WEIGHTED_INTERLEAVE , HWLOC_MEMBIND _NEXTTOUCH , HWLOC_ MEMBIND_MIXED
1
» enum hwloc_membind_flags_t {
HWLOC_MEMBIND_PROCESS , HWLOC_ MEMBIND_ THREAD , HWLOC_ MEMBIND_STRICT , HWLOC_ MEMBIND MIGRATE

HWLOC_MEMBIND_NOCPUBIND , HWLOC_MEMBIND_BYNODESET }

Functions

+ int hwloc_set_membind (hwloc_topology_t topology, hwloc_const_bitmap_t set, hwloc_membind_policy_t policy,
int flags)

« int hwloc_get_membind (hwloc_topology_t topology, hwloc_bitmap_t set, hwloc_membind_policy_t xpolicy, int
flags)

« int hwloc_set_proc_membind (hwloc_topology_t topology, hwloc_pid t pid, hwloc_const bitmap_t set,
hwloc_membind_policy_t policy, int flags)

« inthwloc_get_proc_membind (hwloc_topology_t topology, hwloc_pid_t pid, hwloc_bitmap_t set, hwloc_membind_policy_t
xpolicy, int flags)

* int hwloc_set_area_membind (hwloc_topology_t topology, const void xaddr, size_t len, hwloc_const_bitmap_t
set, hwloc_membind_policy_t policy, int flags)

+ int hwloc_get_area_membind (hwloc_topology_t topology, const void xaddr, size_t len, hwloc_bitmap_t set,
hwloc_membind_policy_t xpolicy, int flags)

« int hwloc_get_area_memlocation (hwloc_topology_t topology, const void xaddr, size_t len, hwloc_bitmap_t set,
int flags)

« void *x hwloc_alloc (hwloc_topology_t topology, size_t len)

« void * hwloc_alloc_membind (hwloc_topology_t topology, size_t len, hwloc_const_bitmap_t set, hwloc_membind_policy_t
policy, int flags)

« void * hwloc_alloc_membind_policy (hwloc_topology t topology, size_t len, hwloc_const_bitmap_t set,
hwloc_membind_policy_t policy, int flags)

+ int hwloc_free (hwloc_topology_t topology, void xaddr, size_t len)

Generated by Doxygen

122 Topic Documentation

24.11.1 Detailed Description
Memory binding can be done three ways:

« explicit memory allocation thanks to hwloc_alloc_membind() and friends: the binding will have effect on the mem-
ory allocated by these functions.

+ implicit memory binding through binding policy: hwloc_set_membind() and friends only define the current policy
of the process, which will be applied to the subsequent calls to malloc() and friends.

* migration of existing memory ranges, thanks to hwloc_set_area_membind() and friends, which move already-
allocated data.

Not all operating systems support all three ways. hwloc_topology_get_support() may be used to query about the actual
memory binding support in the currently used operating system.

When the requested binding operation is not available and the HWLOC_MEMBIND_STRICT flag was passed, the
function returns -1. errno will be set to ENOSYS when the system does support the specified action or policy (e.g.,
some systems only allow binding memory on a per-thread basis, whereas other systems only allow binding memory for
all threads in a process). errno will be set to EXDEV when the requested set can not be enforced (e.g., some systems
only allow binding memory to a single NUMA node).

If HWLOC_MEMBIND_STRICT was not passed, the function may fail as well, or the operating system may use a slightly
different operation (with side-effects, smaller binding set, etc.) when the requested operation is not exactly supported.
The most portable form that should be preferred over the others whenever possible is as follows. It allocates some
memory hopefully bound to the specified set. To do so, hwloc will possibly have to change the current memory binding
policy in order to actually get the memory bound, if the OS does not provide any other way to simply allocate bound
memory without changing the policy for all allocations. That is the difference with hwloc_alloc_membind(), which will
never change the current memory binding policy.

hwloc_alloc_membind_policy (topology, size, set,
HWLOC_MEMBIND_BIND, O0);

Each hwloc memory binding function takes a bitmap argument that is a CPU set by default, or a NUMA memory node
set if the flag HWLOC_MEMBIND_BYNODESET is specified. See Object Sets (hwloc_cpuset_t and hwloc_nodeset_t)
and The bitmap API for a discussion of CPU sets and NUMA memory node sets. It is also possible to convert between
CPU set and node set using hwloc_cpuset_to_nodeset() or hwloc_cpuset_from_nodeset().

Memory binding by CPU set cannot work for CPU-less NUMA memory nodes. Binding by nodeset should therefore be
preferred whenever possible.

See also

Some example codes are available under doc/examples/ in the source tree.

Note
On some operating systems, memory binding affects the CPU binding; see HWLOC_MEMBIND_NOCPUBIND

24.11.2 Enumeration Type Documentation
24.11.2.1 hwloc_membind_flags_t

enum hwloc_membind_flags_t

Memory binding flags.

These flags can be used to refine the binding policy. All flags can be logically OR'ed together with the exception of
HWLOC_MEMBIND_PROCESS and HWLOC_MEMBIND_THREAD; these two flags are mutually exclusive.

Not all systems support all kinds of binding. hwloc_topology_get_support() may be used to query about the actual mem-
ory binding support in the currently used operating system. See the "Detailed Description" section of Memory binding
for a description of errors that can occur.

Enumerator

Generated by Doxygen

24.11 Memory binding 123

HWLOC_MEMBIND_PROCESS Set policy for all threads of the specified (possibly multithreaded) process.
This flag is mutually exclusive with HWLOC_MEMBIND_THREAD.

HWLOC_MEMBIND_THREAD Set policy for a specific thread of the current process. This flag is mutually
exclusive with HWLOC_MEMBIND_PROCESS.
HWLOC_MEMBIND_STRICT Request strict binding from the OS. The function will fail if the binding can not

be guaranteed / completely enforced.
This flag has slightly different meanings depending on which function it is
used with.

HWLOC_MEMBIND_MIGRATE Migrate existing allocated memory. If the memory cannot be migrated and
the HWLOC_MEMBIND_STRICT flag is passed, an error will be returned.

HWLOC_MEMBIND_NOCPUBIND | Avoid any effect on CPU binding. On some operating systems, some underly-
ing memory binding functions also bind the application to the corresponding
CPU(s). Using this flag will cause hwloc to avoid using OS functions that
could potentially affect CPU bindings. Note, however, that using NOCPU-
BIND may reduce hwloc's overall memory binding support. Specifically:
some of hwloc's memory binding functions may fail with errno set to ENOSYS
when used with NOCPUBIND.

HWLOC_MEMBIND_BYNODESET | Consider the bitmap argument as a nodeset. The bitmap argument is con-
sidered a nodeset if this flag is given, or a cpuset otherwise by default.
Memory binding by CPU set cannot work for CPU-less NUMA memory
nodes. Binding by nodeset should therefore be preferred whenever possi-
ble.

24.11.2.2 hwloc_membind_policy_t

enum hwloc_membind policy_t

Memory binding policy.

These constants can be used to choose the binding policy. Only one policy can be used at a time (i.e., the values cannot
be OR'ed together).

Not all systems support all kinds of binding. hwloc_topology_get support() may be used to query about the actual
memory binding policy support in the currently used operating system. See the "Detailed Description" section of
Memory binding for a description of errors that can occur.

Enumerator

HWLOC_MEMBIND_DEFAULT Reset the memory allocation policy to the system default.
Depending on the operating system, this may correspond
to HWLOC_MEMBIND_FIRSTTOUCH (Linux, FreeBSD), or
HWLOC_MEMBIND_BIND (AIX, HP-UX, Solaris, Windows).
This policy is never returned by get membind functions. The
nodeset argument is ignored.

HWLOC_MEMBIND_FIRSTTOUCH Allocate each memory page individually on the local NUMA
node of the thread that touches it. The given nodeset should
usually be hwloc_topology_get_topology nodeset() so that the
touching thread may run and allocate on any node in the sys-
tem.

On AIX, if the nodeset is smaller, pages are allocated locally
(if the local node is in the nodeset) or from a random non-local
node (otherwise).

Generated by Doxygen

124 Topic Documentation

HWLOC_MEMBIND_BIND Allocate memory on the specified nodes. The actual behavior
may slightly vary between operating systems, especially when
(some of) the requested nodes are full. On Linux, by default, the
MPOL_PREFERRED_MANY (or MPOL_PREFERRED) policy
is used. However, if the hwloc strict flag is also given, the Linux
MPOL_BIND policy is rather used.

HWLOC_MEMBIND_INTERLEAVE Allocate memory on the given nodes in an interleaved / round-
robin manner. The precise layout of the memory across multiple
NUMA nodes is OS/system specific. Interleaving can be useful
when threads distributed across the specified NUMA nodes will
all be accessing the whole memory range concurrently, since
the interleave will then balance the memory references.

HWLOC_MEMBIND_WEIGHTED_INTERLEAVE | Allocate memory on the given nodes in an interleaved /
weighted manner. The precise layout of the memory across
multiple NUMA nodes is OS/system specific. Weighted inter-
leaving can be useful when threads distributed across the spec-
ified NUMA nodes with different bandwidth capabilities will all
be accessing the whole memory range concurrently, since the
interleave will then balance the memory references.

HWLOC_MEMBIND_NEXTTOUCH For each page bound with this policy, by next time it is touched
(and next time only), it is moved from its current location to the
local NUMA node of the thread where the memory reference
occurred (if it needs to be moved at all).

HWLOC_MEMBIND_MIXED Returned by get_membind() functions when multiple threads
or parts of a memory area have differing memory binding poli-
cies. Also returned when binding is unknown because binding
hooks are empty when the topology is loaded from XML without
HWLOC_THISSYSTEM=1, etc.

24.11.3 Function Documentation
24.11.3.1 hwloc_alloc()

void * hwloc_alloc (
hwloc_topology_t topology,
size_t len)
Allocate some memory.
This is equivalent to malloc(), except that it tries to allocate page-aligned memory from the OS.

Returns

a pointer to the allocated area, or NULL on error.

Note

The allocated memory should be freed with hwloc_free().

24.11.3.2 hwloc_alloc_membind()

void * hwloc_alloc_membind (
hwloc_topology_t topology,

size_t len,

Generated by Doxygen

24.11 Memory binding 125

hwloc_const_bitmap_t set,
hwloc_membind_policy_t policy,
int flags)

Allocate some memory on NUMA memory nodes specified by set.

Returns

a pointer to the allocated area.

NULL with errno set to ENOSYS if the action is not supported and HWLOC_MEMBIND_STRICT is given.
NULL with errno set to EXDEV if the binding cannot be enforced and HWLOC_MEMBIND_STRICT is given.
NULL with errno set to ENOMEM if the memory allocation failed even before trying to bind.

If HWLOC_MEMBIND_BYNODESET is specified, set is considered a nodeset. Otherwise it's a cpuset.
Note

The allocated memory should be freed with hwloc_free().

24.11.3.3 hwloc_alloc_membind_policy()

void * hwloc_alloc_membind_policy (

hwloc_topology_t topology,

size_t len,

hwloc_const_bitmap_t set,

hwloc_membind_policy_t policy,

int flags) [inline]
Allocate some memory on NUMA memory nodes specified by set.
First, try to allocate properly with hwloc_alloc_membind(). On failure, the current process or thread memory binding
policy is changed with hwloc_set_membind() before allocating memory. Thus this function works in more cases, at the
expense of changing the current state (possibly affecting future allocations that would not specify any policy).
If HWLOC_MEMBIND_BYNODESET is specified, set is considered a nodeset. Otherwise it's a cpuset.

Returns

a pointer to the allocated area, or NULL on error.

24.11.3.4 hwloc_free()

int hwloc_free (
hwloc_topology_t topology,
void x addr,
size_t len)
Free memory that was previously allocated by hwloc_alloc() or hwloc_alloc_membind().

Returns

0 on success, -1 on error.

24.11.3.5 hwloc_get_area_membind()

int hwloc_get_area_membind (
hwloc_topology_t topology,
const void *x addr,
size_t len,

hwloc_bitmap_t set,

Generated by Doxygen

126 Topic Documentation

hwloc_membind_policy_t * policy,

int flags)
Query the CPUs near the physical NUMA node(s) and binding policy of the memory identified by (addr, 1en).
The bitmap set (previously allocated by the caller) is filled with the memory area binding.
This function has two output parameters: set and policy. The values returned in these parameters depend on both
the f1ags passed in and the memory binding policies and nodesets of the pages in the address range.
If HWLOC_MEMBIND_STRICT is specified, the target pages are first checked to see if they all have the same memory
binding policy and nodeset. If they do not, -1 is returned and errno is set to EXDEV. If they are identical across all pages,
the set and policy are returned in set and policy, respectively.
If HWLOC_MEMBIND_STRICT is not specified, the union of all NUMA node(s) containing pages in the address range
is calculated. If all pages in the target have the same policy, it is returned in policy. Otherwise, policy is set to
HWLOC_MEMBIND_MIXED.
If HWLOC_MEMBIND_BYNODESET is specified, set is considered a nodeset. Otherwise it's a cpuset.
If any other flags are specified, -1 is returned and errno is set to EINVAL.

Returns

0 on success.
-1 with errno set to EINVAL if 1en is 0.

24.11.3.6 hwloc_get_area_memlocation()

int hwloc_get_area_memlocation (
hwloc_topology_t topology,
const void *x addr,
size_t len,
hwloc_bitmap_t set,
int flags)
Get the NUMA nodes where memory identified by (addzr, 1en) is physically allocated.
The bitmap set (previously allocated by the caller) is filled according to the NUMA nodes where the memory area
pages are physically allocated. If no page is actually allocated yet, set may be empty.
If pages spread to multiple nodes, it is not specified whether they spread equitably, or whether most of them are on a
single node, etc.
The operating system may move memory pages from one processor to another at any time according to their binding,
so this function may return something that is already outdated.
If HWLOC_MEMBIND_BYNODESET is specified in £1ags, set is considered a nodeset. Otherwise it's a cpuset.
If lenis 0, set is emptied.

Returns

0 on success, -1 on error.

24.11.3.7 hwloc_get_membind()

int hwloc_get_membind (

hwloc_topology_t topology,

hwloc_bitmap_t set,

hwloc_membind_policy_t * policy,

int flags)
Query the default memory binding policy and physical locality of the current process or thread.
The bitmap set (previously allocated by the caller) is filled with the process or thread memory binding.
This function has two output parameters: set and policy. The values returned in these parameters depend on both
the f1ags passed in and the current memory binding policies and nodesets in the queried target.
Passing the HWLOC_MEMBIND_PROCESS flag specifies that the query target is the current policies and nodesets
for all the threads in the current process. Passing HWLOC_MEMBIND_THREAD specifies that the query target is the
current policy and nodeset for only the thread invoking this function.

Generated by Doxygen

24.11 Memory binding 127

If neither of these flags are passed (which is the most portable method), the process is assumed to be single threaded.
This allows hwloc to use either process-based OS functions or thread-based OS functions, depending on which are
available.

HWLOC_MEMBIND_STRICT is only meaningful when HWLOC_MEMBIND_PROCESS is also specified. In this case,
hwloc will check the default memory policies and nodesets for all threads in the process. If they are not identical, -1 is
returned and errno is set to EXDEV. If they are identical, the values are returned in set and policy.

Otherwise, if HWLOC_MEMBIND_PROCESS is specified (and HWLOC_MEMBIND_STRICT is not specified), the de-
fault set from each thread is logically OR'ed together. If all threads' default policies are the same, policy is set to that
policy. If they are different, policy is set to HWLOC_MEMBIND_MIXED.

In the HWLOC_MEMBIND_THREAD case (or when neither HWLOC_MEMBIND_PROCESS or HWLOC_MEMBIND_THREAD
is specified), there is only one set and policy; they are returned in set and policy, respectively.

If HWLOC_MEMBIND_BYNODESET is specified, set is considered a nodeset. Otherwise it's a cpuset.

If any other flags are specified, -1 is returned and errno is set to EINVAL.

Returns

0 on success, -1 on error.

24.11.3.8 hwloc_get_proc_membind()

int hwloc_get_proc_membind (

hwloc_topology_t topology,

hwloc_pid_t pid,

hwloc_bitmap_t set,

hwloc_membind policy_t * policy,

int flags)
Query the default memory binding policy and physical locality of the specified process.
The bitmap set (previously allocated by the caller) is filled with the process memory binding.
This function has two output parameters: set and policy. The values returned in these parameters depend on both
the f1lags passed in and the current memory binding policies and nodesets in the queried target.
Passing the HWLOC_MEMBIND_PROCESS flag specifies that the query target is the current policies and nodesets for
all the threads in the specified process. If HWLOC_MEMBIND_PROCESS is not specified (which is the most portable
method), the process is assumed to be single threaded. This allows hwloc to use either process-based OS functions or
thread-based OS functions, depending on which are available.
Note that it does not make sense to pass HWLOC_MEMBIND_THREAD to this function.
If HWLOC_MEMBIND_STRICT is specified, hwloc will check the default memory policies and nodesets for all threads in
the specified process. If they are not identical, -1 is returned and errno is set to EXDEV. If they are identical, the values
are returned in set and policy.
Otherwise, set is set to the logical OR of all threads' default set. If all threads' default policies are the same, policy
is set to that policy. If they are different, policy is set to HWLOC_MEMBIND_MIXED.
If HWLOC_MEMBIND_BYNODESET is specified, set is considered a nodeset. Otherwise it's a cpuset.
If any other flags are specified, -1 is returned and errno is set to EINVAL.

Returns

0 on success, -1 on error.

Note

hwloc_pid_t is pid_t on Unix platforms, and HANDLE on native Windows platforms.

24.11.3.9 hwloc_set_area_membind()

int hwloc_set_area_membind (

hwloc_topology_t topology,

Generated by Doxygen

128 Topic Documentation

const void x addr,
size_t len,
hwloc_const_bitmap_t set,
hwloc_membind_policy_t policy,
int flags)
Bind the already-allocated memory identified by (addr, len) to the NUMA node(s) specified by set.
If HWLOC_MEMBIND_BYNODESET is specified, set is considered a nodeset. Otherwise it's a cpuset.

Returns

0 on success orif 1lenis 0.
-1 with errno set to ENOSYS if the action is not supported.

-1 with errno set to EXDEV if the binding cannot be enforced.

24.11.3.10 hwloc_set_membind()

int hwloc_set_membind (

hwloc_topology_t topology,

hwloc_const_bitmap_t set,

hwloc_membind_policy_t policy,

int flags)
Set the default memory binding policy of the current process or thread to prefer the NUMA node(s) specified by set.
If neither HWLOC_MEMBIND_PROCESS nor HWLOC_MEMBIND_THREAD is specified, the current process is as-
sumed to be single-threaded. This is the most portable form as it permits hwloc to use either process-based OS
functions or thread-based OS functions, depending on which are available.
If HWLOC_MEMBIND_BYNODESET is specified, set is considered a nodeset. Otherwise it's a cpuset.

Returns

0 on success.
-1 with errno set to ENOSYS if the action is not supported.

-1 with errno set to EXDEV if the binding cannot be enforced.

24.11.3.11 hwloc_set_proc_membind()

int hwloc_set_proc_membind (

hwloc_topology_t topology,

hwloc_pid_t pid,

hwloc_const_bitmap_t set,

hwloc_membind_policy_t policy,

int flags)
Set the default memory binding policy of the specified process to prefer the NUMA node(s) specified by set.
If HWLOC_MEMBIND_BYNODESET is specified, set is considered a nodeset. Otherwise it's a cpuset.

Returns

0 on success.
-1 with errno set to ENOSYS if the action is not supported.

-1 with errno set to EXDEV if the binding cannot be enforced.

Note

hwloc_pid_t is pid_t on Unix platforms, and HANDLE on native Windows platforms.

Generated by Doxygen

24.12 Changing the Source of Topology Discovery 129

24.12 Changing the Source of Topology Discovery

Enumerations

» enum hwloc_topology_components_flag_e { HWLOC_TOPOLOGY_COMPONENTS_FLAG_BLACKLIST }

Functions

« int hwloc_topology_set_pid (hwloc_topology_t restrict topology, hwloc_pid_t pid)

« int hwloc_topology_set_synthetic (hwloc_topology_t restrict topology, const char xrestrict description)

« int hwloc_topology_set_xml (hwloc_topology _t restrict topology, const char xrestrict xmlpath)

« int hwloc_topology_set_xmlibuffer (hwloc_topology_t restrict topology, const char xrestrict buffer, int size)

« int hwloc_topology_set_components (hwloc_topology_t restrict topology, unsigned long flags, const char xrestrict
name)

24.12.1 Detailed Description

These functions must be called between hwloc_topology_init() and hwloc_topology_load(). Otherwise, they will return
-1 with errno set to EBUSY.

If none of the functions below is called, the default is to detect all the objects of the machine that the caller is allowed to
access.

This default behavior may also be modified through environment variables if the application did not modify it already.
Setting HWLOC_XMLFILE in the environment enforces the discovery from a XML file as if hwloc_topology_set_xml()
had been called. Setting HWLOC_SYNTHETIC enforces a synthetic topology as if hwloc_topology_set_synthetic() had
been called.

Finally, HWLOC_THISSYSTEM enforces the return value of hwloc_topology _is_thissystem().

24.12.2 Enumeration Type Documentation
24.12.2.1 hwloc_topology_components_flag_e

enum hwloc_topology_components_flag_e
Flags to be passed to hwloc_topology set_components().

Enumerator

HWLOC_TOPOLOGY_COMPONENTS_FLAG_BLACKLIST | Blacklist the target component from being used.

24.12.3 Function Documentation
24.12.3.1 hwloc_topology_set_components()

int hwloc_topology_set_components (
hwloc_topology_t restrict topology,
unsigned long flags,
const char xrestrict name)
Prevent a discovery component from being used for a topology.
name is the name of the discovery component that should not be used when loading topology t opology. The name
is a string such as "cuda".
For components with multiple phases, it may also be suffixed with the name of a phase, for instance "linux:io".
flags should be HWLOC_TOPOLOGY_COMPONENTS_FLAG_BLACKLIST.
This may be used to avoid expensive parts of the discovery process. For instance, CUDA-specific discovery may be
expensive and unneeded while generic 1/O discovery could still be useful.

Generated by Doxygen

130 Topic Documentation

Returns

0 on success.

-1 on error, for instance if flags are invalid.

24.12.3.2 hwloc_topology_set_pid()

int hwloc_topology_set_pid (

hwloc_topology_t restrict topology,

hwloc_pid_t pid)
Change which process the topology is viewed from.
On some systems, processes may have different views of the machine, for instance the set of allowed CPUs. By default,
hwloc exposes the view from the current process. Calling hwloc_topology_set_pid() permits to make it expose the
topology of the machine from the point of view of another process.

Note

hwloc_pid_t is pid_t on Unix platforms, and HANDLE on native Windows platforms.
-1 is returned and errno is set to ENOSYS on platforms that do not support this feature.

The PID will not actually be used until hwloc_topology_load(). If the corresponding process exits in the meantime,
hwloc will ignore the PID. If another process reuses the PID, the view of that process will be used.

Returns

0 on success, -1 on error.

24.12.3.3 hwloc_topology_set_synthetic()

int hwloc_topology_set_synthetic (

hwloc_topology_t restrict topology,

const char *restrict description)
Enable synthetic topology.
Gather topology information from the given description, a space-separated string of <type:number> describing
the object type and arity at each level. All types may be omitted (space-separated string of numbers) so that hwloc
chooses all types according to usual topologies. See also the Synthetic topologies.
Setting the environment variable HWLOC_SYNTHETIC may also result in this behavior.
If description was properly parsed and describes a valid topology configuration, this function returns 0. Otherwise
-1 is returned and errno is set to EINVAL.
Note that this function does not actually load topology information; it just tells hwloc where to load it from. You'll still
need to invoke hwloc_topology_load() to actually load the topology information.

Returns

0 on success.

-1 with errno set to EINVAL if the description was invalid.

Note

For convenience, this backend provides empty binding hooks which just return success.

On success, the synthetic component replaces the previously enabled component (if any), but the topology is not
actually modified until hwloc_topology_load().

Generated by Doxygen

24.12 Changing the Source of Topology Discovery 131

24.12.3.4 hwloc_topology_set_xml()

int hwloc_topology_set_xml (

hwloc_topology_t restrict topology,

const char *restrict xmlpath)
Enable XML-file based topology.
Gather topology information from the XML file given at xmlpath. Setting the environment variable HWLOC_+«
XMLFILE may also result in this behavior. This file may have been generated earlier with hwloc_topology_export_xml()
in hwloc/export.h, or Istopo file.xml.
Note that this function does not actually load topology information; it just tells hwloc where to load it from. You'll still
need to invoke hwloc_topology_load() to actually load the topology information.

Returns

0 on success.
-1 with errno set to EINVAL on failure to read the XML file.

Note

See also hwloc_topology_set_userdata_import_callback() for importing application-specific object userdata.

For convenience, this backend provides empty binding hooks which just return success. To have hwloc still actually
call OS-specific hooks, the HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM has to be set to assert that the loaded
file is really the underlying system.

On success, the XML component replaces the previously enabled component (if any), but the topology is not
actually modified until hwloc_topology_load().

If an invalid XML input file is given, the error may be reported either here or later by hwloc_topology_load()
depending on the XML library used by hwloc.

24.12.3.5 hwloc_topology_set_xmlbuffer()

int hwloc_topology_set_xmlbuffer (

hwloc_topology_t restrict topology,

const char x*restrict buffer,

int size)
Enable XML based topology using a memory buffer (instead of a file, as with hwloc_topology_set_xml()).
Gather topology information from the XML memory buffer given at buf fer and of length size (including an ending
\ 0). This buffer may have been filled earlier with hwloc_topology_export_xmilbuffer() in hwloc/export.h.
Note that this function does not actually load topology information; it just tells hwloc where to load it from. You'll still
need to invoke hwloc_topology_load() to actually load the topology information.

Returns

0 on success.

-1 with errno set to EINVAL on failure to read the XML buffer.

Note

See also hwloc_topology_set_userdata_import_callback() for importing application-specific object userdata.

For convenience, this backend provides empty binding hooks which just return success. To have hwloc still actually
call OS-specific hooks, the HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM has to be set to assert that the loaded
file is really the underlying system.

On success, the XML component replaces the previously enabled component (if any), but the topology is not
actually modified until hwloc_topology_load().

If an invalid XML input file is given, the error may be reported either here or later by hwloc_topology_load()
depending on the XML library used by hwloc.

Generated by Doxygen

132 Topic Documentation

24.13 Topology Detection Configuration and Query

Data Structures

« struct hwloc_topology_discovery_support
« struct hwloc_topology_cpubind_support
« struct hwloc_topology _membind_support
« struct hwloc_topology misc_support

« struct hwloc_topology_support

Enumerations

» enum hwloc_topology_flags_e {
HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED , HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM
HWLOC_TOPOLOGY_FLAG_THISSYSTEM_ALLOWED_RESOURCES , HWLOC_TOPOLOGY_FLAG_IMPORT_SUPPORT
= (1UL<<3),
HWLOC_TOPOLOGY_FLAG_RESTRICT_TO_CPUBINDING = (1UL<<4), HWLOC_TOPOLOGY_FLAG_RESTRICT_TO_MEME
= (1UL<<5), HWLOC_TOPOLOGY_FLAG_DONT_CHANGE_BINDING = (1UL<<6) , HWLOC_TOPOLOGY_FLAG_NO_DISTAN
= (1UL<<7),
HWLOC_TOPOLOGY_FLAG_NO_MEMATTRS = (1UL<<8) , HWLOC_TOPOLOGY_FLAG_NO_CPUKINDS =
(1UL<<9) }

« enum hwloc_type_filter e { HWLOC_TYPE_FILTER_KEEP_ALL , HWLOC_TYPE_FILTER_KEEP_NONE ,
HWLOC_TYPE_FILTER_KEEP_STRUCTURE , HWLOC_TYPE_FILTER_KEEP_IMPORTANT }

Functions

« int hwloc_topology_set_flags (hwloc_topology_t topology, unsigned long flags)

« unsigned long hwloc_topology_get_flags (hwloc_topology_t topology)

« int hwloc_topology_is_thissystem (hwloc_topology_t restrict topology)

« const struct hwloc_topology_support x hwloc_topology_get_support (hwloc_topology_t restrict topology)

+ int hwloc_topology_set_type_filter (hwloc_topology_t topology, hwloc_obj_type_t type, enum hwloc_type_filter_e
filter)

+ int hwloc_topology_get_type_filter (hwloc_topology_t topology, hwloc_obj_type_t type, enum hwloc_type_filter_e
«filter)

« int hwloc_topology_set_all_types_filter (hwloc_topology_t topology, enum hwloc_type_filter_e filter)

« int hwloc_topology_set_cache_types_filter (hwloc_topology_t topology, enum hwloc_type_filter_e filter)

« int hwloc_topology_set_icache_types_filter (hwloc_topology_t topology, enum hwloc_type_filter_e filter)

« int hwloc_topology_set_io_types_filter (hwloc_topology_t topology, enum hwloc_type_filter_e filter)

« void hwloc_topology_set_userdata (hwloc_topology_t topology, const void xuserdata)

« void *x hwloc_topology_get_userdata (hwloc_topology_t topology)

24.13.1 Detailed Description

Several functions can optionally be called between hwloc_topology_init() and hwloc_topology load() to configure how
the detection should be performed, e.g. to ignore some objects types, define a synthetic topology, etc.

24.13.2 Enumeration Type Documentation

24.13.2.1 hwloc_topology_flags_e

enum hwloc_topology_flags_e
Flags to be set onto a topology context before load.
Flags should be given to hwloc_topology_set_flags(). They may also be returned by hwloc_topology_get_flags().

Generated by Doxygen

24.13 Topology Detection Configuration and Query

133

Enumerator

HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED

Detect the whole system, ignore reser-
vations, include disallowed objects.
Gather all online resources, even if
some were disabled by the admin-
istrator. For instance, ignore Linux
Cgroup/Cpusets and gather all proces-
sors and memory nodes. However of-
fline PUs and NUMA nodes are still ig-
nored.

When this flag is not set, PUs and
NUMA nodes that are disallowed are
not added to the topology. Parent ob-
jects (package, core, cache, etc.) are
added only if some of their children are
allowed. All existing PUs and NUMA
nodes in the topology are allowed.
hwloc_topology_get_allowed_cpuset()
and hwloc_topology_get_allowed_nodeg
are equal to the root object cpuset and
nodeset.

When this flag is set, the ac-
tual sets of allowed PUs and
NUMA nodes are given by
hwloc_topology_get_allowed_cpuset()
and hwloc_topology _get_allowed_nodes
They may be smaller than the root ob-
ject cpuset and nodeset.

If the current topology is exported to
XML and reimported later, this flag
should be set again in the reimported
topology so that disallowed resources
are reimported as well.

Generated by Doxygen

134

Topic Documentation

HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM

Assume that the selected backend pro-
vides the topology for the system on
which we are running. This forces
hwloc_topology_is_thissystem() to re-
turn 1, i.e. makes hwloc assume
that the selected backend provides the
topology for the system on which we
are running, even if it is not the OS-
specific backend but the XML back-
end for instance. This means making
the binding functions actually call the
OS-specific system calls and really do
binding, while the XML backend would
otherwise provide empty hooks just re-
turning success.

Setting the environment variable
HWLOC_THISSYSTEM may also
result in the same behavior.

This can be used for efficiency reasons
to first detect the topology once, save
it to an XML file, and quickly reload
it later through the XML backend, but
still having binding functions actually
do bind.

HWLOC_TOPOLOGY_FLAG_THISSYSTEM_ALLOWED_RESOURCES

Get the set of allowed resources from
the local operating system even if the
topology was loaded from XML or syn-
thetic description. If the topology was
loaded from XML or from a synthetic
string, restrict it by applying the cur-
rent process restrictions such as Linux
Cgroup/Cpuset.

This is useful when the topology is not
loaded directly from the local machine
(e.g. for performance reason) and it
comes with all resources, while the run-
ning process is restricted to only parts
of the machine.

This flag is ignored unless

HWLOC_TOPOLOGY_FLAG_IS_THISS

is also set since the loaded topology
must match the underlying machine
where restrictions will be gathered
from.

Setting the environment variable
HWLOC_THISSYSTEM_ALLOWED«-

_RESOURCES would result in the

same behavior.

Generated by Doxygen

YSTEM

24.13 Topology Detection Configuration and Query

135

HWLOC_TOPOLOGY_FLAG_IMPORT_SUPPORT

Import support from the imported
topology. When importing a XML
topology from a remote machine,
binding is disabled by default (see
HWLOC_TOPOLOGY_FLAG_IS_THISS
This disabling is also marked by
putting zeroes in the corresponding
supported feature bits reported by
hwloc_topology_get_support().

The flag
HWLOC_TOPOLOGY_FLAG_IMPORT |
actually imports support bits from the
remote machine. It also sets the flag
imported_support in the struct
hwloc_topology_misc_support array. If
the imported XML did not contain any
support information (exporter hwloc is
too old), this flag is not set.

Note that these supported features are
only relevant for the hwloc installation
that actually exported the XML topol-
ogy (it may vary with the operating sys-
tem, or with how hwloc was compiled).
Note that setting this flag however does
not enable binding for the locally im-
ported hwloc topology, it only reports
what the remote hwloc and machine
support.

YSTEM).

ISUPPORT

Generated by Doxygen

136

Topic Documentation

HWLOC_TOPOLOGY_FLAG_RESTRICT_TO_CPUBINDING

Do not consider resources outside of
the process CPU binding. If the bind-
ing of the process is limited to a subset
of cores, ignore the other cores during
discovery.

The resulting topology is identical to
what a call to hwloc_topology_restrict()
would generate, but this flag also pre-
vents hwloc from ever touching other
resources during the discovery.

This flag especially tells the x86 back-
end to never temporarily rebind a
thread on any excluded core. This is
useful on Windows because such tem-
porary rebinding can change the pro-
cess binding. Another use-case is to
avoid cores that would not be able to
perform the hwloc discovery anytime
soon because they are busy executing
some high-priority real-time tasks.

If process CPU binding is not sup-
ported, the thread CPU binding is con-
sidered instead if supported, or the flag
is ignored.

This flag requires
HWLOC_TOPOLOGY_FLAG_IS_THISS
as well since binding support is re-
quired.

HWLOC_TOPOLOGY_FLAG_RESTRICT_TO_MEMBINDING

Do not consider resources outside of
the process memory binding. If the
binding of the process is limited to
a subset of NUMA nodes, ignore the
other NUMA nodes during discovery.
The resulting topology is identical to
what a call to hwloc_topology_ restrict()
would generate, but this flag also pre-
vents hwloc from ever touching other
resources during the discovery.

This flag is meant to
be used together with
HWLOC_TOPOLOGY_FLAG_RESTRI(Q
when both cores and NUMA nodes
should be ignored outside of the
process binding.

If process memory binding is not sup-
ported, the thread memory binding is
considered instead if supported, or the
flag is ignored.

This flag requires
HWLOC_TOPOLOGY_FLAG_IS_THISS
as well since binding support is re-
quired.

Generated by Doxygen

YSTEM

T_TO_CPUBINDI

YSTEM

24.13 Topology Detection Configuration and Query

137

HWLOC_TOPOLOGY_FLAG_DONT_CHANGE_BINDING

Do not ever modify the process or
thread binding during discovery. This
flag disables all hwloc discovery steps
that require a change of the process or
thread binding. This currently only af-
fects the x86 backend which gets en-
tirely disabled.

This is useful when
hwloc_topology_load() is called while
the application also creates additional
threads or modifies the binding.

This flag is also a strict way to
make sure the process binding
will not change to due thread
binding changes on Windows (see
HWLOC_TOPOLOGY_FLAG_RESTRICQ

HWLOC_TOPOLOGY_FLAG_NO_DISTANCES

Ignore distances. Ignore distance in-
formation from the operating systems
(and from XML) and hence do not use
distances for grouping.

HWLOC_TOPOLOGY_FLAG_NO_MEMATTRS

Ignore memory attributes and tiers. Ig-
nore memory attribues from the oper-
ating systems (and from XML) Hence
also do not try to build memory tiers.

HWLOC_TOPOLOGY_FLAG_NO_CPUKINDS

Ignore CPU Kinds. Ignore CPU kind in-
formation from the operating systems
(and from XML).

24.13.2.2 hwloc_type_filter_e

enum hwloc_type_filter_e

Type filtering flags.

By default, most objects are kept (HWLOC_TYPE_FILTER_KEEP_ALL). Instruction caches, memory-side caches, 1/O
and Misc objects are ignored by default (HWLOC_TYPE_FILTER_KEEP_NONE). Group levels are ignored unless they

bring structure (HWLOC_TYPE_FILTER_KEEP_STRUCTURE).

Note that group objects are also ignored individually (without the entire level) when they do not bring structure.

Enumerator

HWLOC_TYPE_FILTER KEEP_ALL

Keep all objects of this type. Cannot be set for
HWLOC_OBJ_GROUP (groups are designed only to add
more structure to the topology).

HWLOC_TYPE_FILTER_KEEP_NONE

Ignore all objects of this type. The bottom-level type
HWLOC_OBJ_PU, the HWLOC_OBJ_NUMANODE type, and
the top-level type HWLOC_OBJ_MACHINE may not be ignored.

Generated by Doxygen

T_TO_CPUBINDI

138 Topic Documentation

HWLOC_TYPE_FILTER_KEEP_STRUCTURE | Only ignore objects if their entire level does not bring any struc-
ture. Keep the entire level of objects if at least one of these objects
adds structure to the topology. An object brings structure when it
has multiple children and it is not the only child of its parent.

If all objects in the level are the only child of their parent, and if
none of them has multiple children, the entire level is removed.
Cannot be set for I/0O and Misc objects since the topology struc-
ture does not matter there.

HWLOC_TYPE_FILTER_KEEP_IMPORTANT | Only keep likely-important objects of the given type. It is only
useful for I/O object types. For HWLOC_OBJ_PCI_DEVICE
and HWLOC_OBJ_OS_DEVICE, it means that only objects of
major/common kinds are kept (storage, network, OpenFabrics,
CUDA, OpenCL, RSMI, NVML, and displays). Also, only OS de-
vices directly attached on PCI (e.g. no USB) are reported. For
HWLOC_OBJ_BRIDGE, it means that bridges are kept only if
they have children.

This flag equivalent to HWLOC_TYPE_FILTER_KEEP_ALL for
Normal, Memory and Misc types since they are likely important.

24.13.3 Function Documentation
24.13.3.1 hwloc_topology_get_flags()

unsigned long hwloc_topology_get_flags (
hwloc_topology_t topology)
Get OR'ed flags of a topology.
Get the OR'ed set of hwloc_topology_flags_e of a topology.
If hwloc_topology_set_flags() was not called earlier, no flags are set (0 is returned).

Returns

the flags previously set with hwloc_topology_set_flags().

Note

This function may also be called after hwloc_topology_load().

24.13.3.2 hwloc_topology_get_support()

const struct hwloc_topology_support * hwloc_topology_get_support (

hwloc_topology_t restrict topology)
Retrieve the topology support.
Each flag indicates whether a feature is supported. If set to 0, the feature is not supported. If set to 1, the feature is
supported, but the corresponding call may still fail in some corner cases.
These features are also listed by hwloc-info --support
The reported features are what the current topology supports on the current machine. If the topology was ex-
ported to XML from another machine and later imported here, support still describes what is supported for
this imported topology after import. By default, binding will be reported as unsupported in this case (see
HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM).
Topology flag HWLOC_TOPOLOGY_FLAG_IMPORT_SUPPORT may be used to report the supported features of the
original remote machine instead. If it was successfully imported, imported_support will be set in the struct
hwloc_topology_misc_support array.

Generated by Doxygen

24.13 Topology Detection Configuration and Query 139

Returns

A pointer to a support structure.

Note

The function cannot return NULL.
The returned pointer should not be freed, it belongs to the hwloc library.

This function may be called before or after hwloc_topology_load() but the support structure only contains valid
information after.

24.13.3.3 hwloc_topology_get_type_filter()

int hwloc_topology_get_type_filter (
hwloc_topology_t topology,
hwloc_obj_type_t type,
enum hwloc_type_filter_e % filter)
Get the current filtering for the given object type.

Returns

0 on success, -1 on error.

24.13.3.4 hwloc_topology_get_userdata()

void * hwloc_topology_get_userdata (
hwloc_topology_t topology)
Retrieve the topology-specific userdata pointer.
Retrieve the application-given private data pointer that was previously set with hwloc_topology_set_userdata().

Returns

A pointer to the private-data if any.

NULL if no private-data was previoulsy set.

24.13.3.5 hwloc_topology_is_thissystem()

int hwloc_topology_is_thissystem (
hwloc_topology_t restrict topology)
Does the topology context come from this system?

Returns

1 if this topology context was built using the system running this program.

0 instead (for instance if using another file-system root, a XML topology file, or a synthetic topology).

Note

This function may also be called after hwloc_topology_load().

Generated by Doxygen

140

Topic Documentation

24.13.3.6 hwloc_topology_set_all_types_filter()

int hwloc_topology_set_all_types_filter (
hwloc_topology_t topology,
enum hwloc_type_filter_e filter)

Set the filtering for all object types.

If some types do not support this filtering, they are silently ignored.

Returns

0 on success, -1 on error.

24.13.3.7 hwloc_topology_set_cache_types_filter()

int hwloc_topology_set_cache_types_filter (
hwloc_topology_t topology,
enum hwloc_type_filter_e filter)

Set the filtering for all CPU cache object types.

Memory-side caches are not involved since they are not CPU caches.

Returns

0 on success, -1 on error.

24.13.3.8 hwloc_topology_set_flags()

int hwloc_topology_set_flags (
hwloc_topology_t topology,
unsigned long flags)

Set OR'ed flags to non-yet-loaded topology.

Set a OR'ed set of hwloc_topology_flags_e onto a topology that was not yet loaded.

If this function is called multiple times, the last invocation will erase and replace the set of flags that was previously set.

By default, no flags are set (0).

The flags set in a topology may be retrieved with hwloc_topology get_flags().

Returns

0 on success.

-1 on error, for instance if flags are invalid.

24.13.3.9 hwloc_topology_set_icache_types_filter()

int hwloc_topology_set_icache_types_filter (
hwloc_topology_t topology,
enum hwloc_type_filter_e filter)
Set the filtering for all CPU instruction cache object types.

Memory-side caches are not involved since they are not CPU caches.

Returns

0 on success, -1 on error.

Generated by Doxygen

24.14 Modifying a loaded Topology 14

24.13.3.10 hwloc_topology_set_io_types_filter()

int hwloc_topology_set_io_types_filter (
hwloc_topology_t topology,
enum hwloc_type_filter_e filter)

Set the filtering for all /O object types.

Returns

0 on success, -1 on error.

24.13.3.11 hwloc_topology_set_type_filter()

int hwloc_topology_set_type_filter (
hwloc_topology_t topology,
hwloc_obj_type_t type,
enum hwloc_type_filter_e filter)

Set the filtering for the given object type.

Returns

0 on success, -1 on error.

24.13.3.12 hwloc_topology_set_userdata()

void hwloc_topology_set_userdata (
hwloc_topology_t topology,
const void *x userdata)
Set the topology-specific userdata pointer.
Each topology may store one application-given private data pointer. It is initialized to NULL. hwloc will never modify it.
Use it as you wish, after hwloc_topology_init() and until hwloc_topolog_destroy().
This pointer is not exported to XML.

24.14 Modifying a loaded Topology

Enumerations

» enum hwloc_restrict_flags_e {
HWLOC_RESTRICT_FLAG_REMOVE_CPULESS , HWLOC_RESTRICT_FLAG_BYNODESET = (1UL<<3) ,
HWLOC_RESTRICT_FLAG_REMOVE_MEMLESS , HWLOC RESTRICT _FLAG_ADAPT_MISC,
HWLOC_RESTRICT_FLAG_ADAPT_IO}

« enum hwloc_allow_flags_e { HWLOC_ALLOW_FLAG_ALL , HWLOC_ALLOW_FLAG_LOCAL_RESTRICTIONS
, HWLOC_ALLOW_FLAG_CUSTOM }

Functions

« int hwloc_topology_restrict (hwloc_topology_t restrict topology, hwloc_const_bitmap_t set, unsigned long flags)

« int hwloc_topology_allow (hwloc_topology_t restrict topology, hwloc_const_cpuset_t cpuset, hwloc_const_nodeset_t
nodeset, unsigned long flags)

» hwloc_obj_t hwloc_topology_insert_misc_object (hwloc_topology_t topology, hwloc_obj_t parent, const char
*name)

» hwloc_obj_t hwloc_topology_alloc_group_object (hwloc_topology_t topology)

« int hwloc_topology_free_group_object (hwloc_topology_t topology, hwloc_obj_t group)

» hwloc_obj_t hwloc_topology_insert_group_object (hwloc_topology_t topology, hwloc_obj_t group)

« int hwloc_obj_add_other_obj_sets (hwloc_obj_t dst, hwloc_obj_t src)

« int hwloc_topology_refresh (hwloc_topology_t topology)

Generated by Doxygen

142 Topic Documentation

24.14.1 Detailed Description

24.14.2 Enumeration Type Documentation
24.14.2.1 hwloc_allow_flags_e

enum hwloc_allow_flags_e
Flags to be given to hwloc_topology_allow().

Enumerator

HWLOC_ALLOW_FLAG_ALL Mark all objects as allowed in the topology. cpuset and
nodeset given to hwloc_topology_allow() must be NULL.

HWLOC_ALLOW_FLAG_LOCAL_RESTRICTIONS | Only allow objects that are available to the
current process. The topology must have
HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM so that
the set of available resources can actually be retrieved from
the operating system.

cpuset and nodeset given to hwloc_topology_allow()
must be NULL.

HWLOC_ALLOW_FLAG_CUSTOM Allow a custom set of objects, given to
hwloc_topology_allow() as cpuset and/or nodeset
parameters.

24.14.2.2 hwloc_restrict_flags_e

enum hwloc_restrict_flags_e
Flags to be given to hwloc_topology_restrict().

Enumerator

HWLOC_RESTRICT_FLAG_REMOVE_CPULESS | Remove all objects that became CPU-less. By de-
fault, only objects that contain no PU and no mem-
ory are removed. This flag may not be used with
HWLOC_RESTRICT_FLAG_BYNODESET.

HWLOC_RESTRICT_FLAG_BYNODESET Restrict by nodeset instead of CPU set. Only keep
objects whose nodeset is included or partially included
in the given set. This flag may not be used with
HWLOC_RESTRICT_FLAG_REMOVE_CPULESS.

HWLOC_RESTRICT_FLAG_REMOVE_MEMLESS | Remove all objects that became Memory-less. By de-
fault, only objects that contain no PU and no mem-
ory are removed. This flag may only be used with
HWLOC_RESTRICT_FLAG_BYNODESET.

HWLOC_RESTRICT_FLAG_ADAPT_MISC Move Misc objects to ancestors if their parents are removed
during restriction. If this flag is not set, Misc objects are re-
moved when their parents are removed.

HWLOC_RESTRICT_FLAG_ADAPT_IO Move /O objects to ancestors if their parents are removed
during restriction. If this flag is not set, /O devices and
bridges are removed when their parents are removed.

Generated by Doxygen

24.14 Modifying a loaded Topology 143

24.14.3 Function Documentation
24.14.3.1 hwloc_obj_add_other_obj_sets()

int hwloc_obj_add_other_obj_sets (

hwloc_obj_t dst,

hwloc_obj_t src)
Setup object cpusets/nodesets by OR'ing another object's sets.
For each defined cpuset or nodeset in src, allocate the corresponding set in dst and add src to it by OR'ing sets.
This function is convenient between hwloc_topology_alloc_group_object() and hwloc_topology_insert_group_object().
It builds the sets of the new Group that will be inserted as a new intermediate parent of several objects.

Returns

0 on success.
-1 with errno set to ENOMEM if some internal reallocation failed.

24.14.3.2 hwloc_topology_alloc_group_object()

hwloc_obj_t hwloc_topology_alloc_group_object (
hwloc_topology_t topology)
Allocate a Group object to insert later with hwloc_topology_insert_group_object().
This function returns a new Group object.
The caller should (at least) initialize its sets before inserting the object in the topology, see hwloc_topology_insert_group_object().
Or it may decide not to insert and just free the group object by calling hwloc_topology_free_group_object().

Returns

The allocated object on success.
NULL on error.

Note

If successfully inserted by hwloc_topology_insert_group_object(), the object will be freed when the entire topology
is freed. If insertion failed (e.g. NULL or empty CPU and node-sets), it is freed before returning the error.

24.14.3.3 hwloc_topology_allow()

int hwloc_topology_allow (
hwloc_topology_t restrict topology,
hwloc_const_cpuset_t cpuset,
hwloc_const_nodeset_t nodeset,
unsigned long flags)
Change the sets of allowed PUs and NUMA nodes in the topology.
This function only works if the HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED was set on the topology.
It does not modify any object, it only changes the sets returned by hwloc_topology_get_allowed_cpuset() and
hwloc_topology_get_allowed_nodeset().
It is notably useful when importing a topology from another process running in a different Linux Cgroup.
flags must be set to one flag among hwloc_allow_flags_e.

Returns

0 on success, -1 on error.

Note

Removing objects from a topology should rather be performed with hwloc_topology_restrict().

Generated by Doxygen

144 Topic Documentation

24.14.3.4 hwloc_topology_free_group_object()

int hwloc_topology_free_group_object (
hwloc_topology_t topology,
hwloc_obj_t group)
Free a group object allocated with hwloc_topology_alloc_group_object().
This function is only useful if the group object was not given to hwloc_topology_insert_group_object() as planned.

Note

topology must be the same as the one previously passed to hwloc_topology_alloc_group_object().

Returns

0 on success.
-1 on error, for instance if an invalid topology is given.

24.14.3.5 hwloc_topology_insert_group_object()

hwloc_obj_t hwloc_topology_insert_group_object (

hwloc_topology_t topology,

hwloc_obj_t group)
Add more structure to the topology by adding an intermediate Group.
The caller should first allocate a new Group object with hwloc_topology_alloc_group_object(). Then it must setup at
least one of its CPU or node sets to specify the final location of the Group in the topology. Then the object can be
passed to this function for actual insertion in the topology.
The main use case for this function is to group a subset of siblings among the list of children below a single parent.
For instance, if grouping 4 cores out of a 8-core socket, the logical list of cores will be reordered so that the 4 grouped
ones are consecutive. Then, if needed, a new depth is added between the parent and those children, and the Group is
inserted there. At the end, the 4 grouped cores are now children of the Group, which replaces them as a child of the
original parent.
In practice, the grouped objects are specified through cpusets and/or nodesets, for instance using hwloc_obj_add_other_obj_sets()
iteratively. Hence it is possible to group objects that are not children of the same parent, for instance some PUs below
the 4 cores in example above. However this general case may fail if the expected Group conflicts with the existing
hierarchy. For instance if each core has two PUs, it is not possible to insert a Group containing a single PU of each
core.
To specify the objects to group, either the cpuset or nodeset field (or both, if compatible) must be set to a non-empty
bitmap. The complete_cpuset or complete_nodeset may be set instead if inserting with respect to the complete topology
(including disallowed, offline or unknown objects). These sets cannot be larger than the current topology, or they would
get restricted silently. The core will setup the other sets after actual insertion.
The subtype object attribute may be defined with hwloc_obj_set_subtype() to display something else than "Group"
as the type name for this object in Istopo. Custom name-value info pairs may be added with hwloc_obj_add_info() after
insertion.
The group dont_merge attribute may be set to 1 to prevent the hwloc core from ever merging this object with another
hierarchically-identical object. This is useful when the Group itself describes an important feature that cannot be exposed
anywhere else in the hierarchy.
The group kind attribute may be set to a high value such as Oxf££f£fff to tell hwloc that this new Group should
always be discarded in favor of any existing Group with the same locality.

Note

Inserting a group adds some locality information to the topology, hence the existing objects may get reordered
(including PUs and NUMA nodes), and their logical indexes may change.
If the insertion fails, the input group object is freed.

If the group object should be discarded instead of inserted, it may be passed to hwloc_topology_free_group_object()
instead.

Generated by Doxygen

24.14 Modifying a loaded Topology 145

topology must be the same as the one previously passed to hwloc_topology_alloc_group_object().

Returns

The inserted object if it was properly inserted.

An existing object if the Group was merged or discarded because the topology already contained an object at the
same location (the Group did not add any hierarchy information).

NULL if the insertion failed because of conflicting sets in topology tree.
NULL if Group objects are filtered-out of the topology (HWLOC_TYPE_FILTER_KEEP_NONE).

NULL if the object was discarded because no set was initialized in the Group before insert, or all of them were
empty.

24.14.3.6 hwloc_topology_insert_misc_object()

hwloc_obj_t hwloc_topology_insert_misc_object (

hwloc_topology_t topology,

hwloc_obj_t parent,

const char * name)
Add a MISC object as a leaf of the topology.
A new MISC object will be created and inserted into the topology at the position given by parent. It is appended to
the list of existing Misc children, without ever adding any intermediate hierarchy level. This is useful for annotating the
topology without actually changing the hierarchy.
name is supposed to be unique across all Misc objects in the topology. It will be duplicated to setup the new object
attributes.
The new leaf object will not have any cpuset.
The subt ype object attribute may be defined with hwloc_obj_set_subtype() after successful insertion.

Returns

the newly-created object
NULL on error.
NULL if Misc objects are filtered-out of the topology (HWLOC_TYPE_FILTER_KEEP_NONE).

Note

If name contains some non-printable characters, they will be dropped when exporting to XML, see
hwloc_topology_export_xml() in hwloc/export.h.

24.14.3.7 hwloc_topology_refresh()

int hwloc_topology_refresh (

hwloc_topology_t topology)
Refresh internal structures after topology modification.
Modifying the topology (by restricting, adding objects, modifying structures such as distances or memory attributes, etc.)
may cause some internal caches to become invalid. These caches are automatically refreshed when accessed but this
refreshing is not thread-safe.
This function is not thread-safe either, but it is a good way to end a non-thread-safe phase of topology modification.
Once this refresh is done, multiple threads may concurrently consult the topology, objects, distances, attributes, etc.
See also Thread Safety

Returns

0 on success.

-1 on error, for instance if some internal reallocation failed.

Generated by Doxygen

146 Topic Documentation

24.14.3.8 hwloc_topology_restrict()

int hwloc_topology_restrict (

hwloc_topology_t restrict topology,

hwloc_const_bitmap_t set,

unsigned long flags)
Restrict the topology to the given CPU set or nodeset.
Topology topology is modified so as to remove all objects that are not included (or partially included) in the CPU set
set. All objects CPU and node sets are restricted accordingly.
By default, set is a CPU set. It means that the set of PUs in the topology is restricted. Once some PUs got removed,
their parents may also get removed recursively if they became child-less.
If HWLOC_RESTRICT_FLAG_BYNODESET is passed in flags, set is considered a nodeset instead of a CPU set.
It means that the set of NUMA nodes in the topology is restricted (instead of PUs). Once some NUMA nodes got
removed, their parents may also get removed recursively if they became child-less.
flags is a OR'ed set of hwloc_restrict_flags_e.

Note
Restricting the topology removes some locality information, hence the remaining objects may get reordered (in-
cluding PUs and NUMA nodes), and their logical indexes may change.

This call may not be reverted by restricting back to a larger set. Once dropped during restriction, objects may not
be brought back, except by loading another topology with hwloc_topology_load().

Returns

0 on success.
-1 with errno set to EINVAL if the input set is invalid. The topology is not modified in this case.

-1 with errno set to ENOMEM on failure to allocate internal data. The topology is reinitialized in this case. It should
be either destroyed with hwloc_topology_destroy() or configured and loaded again.

24.15 Kinds of object Type

Functions

« int hwloc_obj_type_is_normal (hwloc_obj_type_t type)
« int hwloc_obj_type_is_io (hwloc_obj_type_t type)

* int hwloc_obj_type_is_memory (hwloc_obj_type_t type)
« int hwloc_obj_type_is_cache (hwloc_obj_type_t type)

« int hwloc_obj_type_is_dcache (hwloc_obj_type_t type)
« int hwloc_obj_type_is_icache (hwloc_obj_type_t type)

24.15.1 Detailed Description

Each object type is either Normal (i.e. hwloc_obj_type_is_normal() returns 1), or Memory (i.e. hwloc_obj_type_is_memory()
returns 1) or I/O (i.e. hwloc_obj_type_is_io() returns 1) or Misc (i.e. equal to HWLOC_OBJ_MISC). It cannot be of more
than one of these kinds.

See also Object Kind in Terms and Definitions.

24.15.2 Function Documentation
24.15.2.1 hwloc_obj_type_is_cache()

int hwloc_obj_type_is_cache (

hwloc_obij_type_t type)
Check whether an object type is a CPU Cache (Data, Unified or Instruction).
Memory-side caches are not CPU caches.

Generated by Doxygen

24.15 Kinds of object Type 147

Returns

1 if an object of type t ype is a Cache, 0 otherwise.

24.15.2.2 hwloc_obj_type_is_dcache()

int hwloc_obj_type_is_dcache (

hwloc_obij_type_t type)
Check whether an object type is a CPU Data or Unified Cache.
Memory-side caches are not CPU caches.

Returns

1 if an object of type t ype is a CPU Data or Unified Cache, 0 otherwise.

24.15.2.3 hwloc_obj_type_is_icache()

int hwloc_obj_type_is_icache (

hwloc_obij_type_t type)
Check whether an object type is a CPU Instruction Cache,.
Memory-side caches are not CPU caches.

Returns

1 if an object of type t ype is a CPU Instruction Cache, 0 otherwise.

24.15.2.4 hwloc_obj_type_is_io()

int hwloc_obj_type_is_io (
hwloc_obj_type_t type)
Check whether an object type is I/0.
I/O objects are objects attached to their parents in the 1/O children list. This current includes Bridges, PCI and OS
devices.

Returns

1 if an object of type t ype is a I/O object, 0 otherwise.

24.15.2.5 hwloc_obj_type_is_memory()

int hwloc_obj_type_is_memory (
hwloc_obij_type_t type)
Check whether an object type is Memory.
Memory objects are objects attached to their parents in the Memory children list. This current includes NUMA nodes
and Memory-side caches.

Returns

1 if an object of type t ype is a Memory object, 0 otherwise.

24.15.2.6 hwloc_obj_type_is_normal()

int hwloc_obj_type_is_normal (
hwloc_obj_type_t type)
Check whether an object type is Normal.
Normal objects are objects of the main CPU hierarchy (Machine, Package, Core, PU, CPU caches, etc.), but they are
not NUMA nodes, I/O devices or Misc objects.
They are attached to parent as Normal children, not as Memory, I/O or Misc children.

Generated by Doxygen

148 Topic Documentation

Returns

1 if an object of type t ype is a Normal object, 0 otherwise.

24.16 Finding Objects inside a CPU set

Functions

» hwloc_obj_t hwloc_get_first_largest_obj_inside_cpuset (hwloc_topology_t topology, hwloc_const_cpuset_t set)

« int hwloc_get_largest_objs_inside_cpuset (hwloc_topology_t topology, hwloc_const_cpuset_t set, hwloc_obj_t
xrestrict objs, int max)

» hwloc_obj_t hwloc_get_next_obj_inside_cpuset_by_depth (hwloc_topology t topology, hwloc_const cpuset_t
set, int depth, hwloc_obj_t prev)

» hwloc_obj_t hwloc_get_next_obj_inside_cpuset_by_type (hwloc_topology_t topology, hwloc_const_cpuset_t set,
hwloc_obj_type_t type, hwloc_obj_t prev)

» hwloc_obj_t hwloc_get_obj_inside_cpuset_by_depth (hwloc_topology_t topology, hwloc_const_cpuset_t set, int
depth, unsigned idx)

» hwloc_obj_t hwloc_get obj_inside_cpuset_by type (hwloc_topology t topology, hwloc_const_cpuset_t set,
hwloc_obj_type_t type, unsigned idx)

+ unsigned hwloc_get_nbobjs_inside_cpuset_by_depth (hwloc_topology_t topology, hwloc_const_cpuset_t set, int
depth)

« int hwloc_get_nbobjs_inside_cpuset_by_type (hwloc_topology_t topology, hwloc_const_cpuset_t set, hwloc_obj_type_t
type)

« int hwloc_get_obj_index_inside_cpuset (hwloc_topology_t topology, hwloc_const_cpuset_t set, hwloc_obj_t obj)

24.16.1 Detailed Description

24.16.2 Function Documentation
24.16.2.1 hwloc_get_first_largest_obj_inside_cpuset()

hwloc_obj_t hwloc_get_first_largest_obj_inside_cpuset (
hwloc_topology_t topology,
hwloc_const_cpuset_t set) [inline]

Get the first largest object included in the given cpuset set.

Returns
the first object that is included in set and whose parent is not.
NULL if no such object exists.

This is convenient for iterating over all largest objects within a CPU set by doing a loop getting the first largest object
and clearing its CPU set from the remaining CPU set.

24.16.2.2 hwloc_get_largest_objs_inside_cpuset()

int hwloc_get_largest_objs_inside_cpuset (
hwloc_topology_t topology,
hwloc_const_cpuset_t set,
hwloc_obj_t *restrict objs,
int max)

Get the set of largest objects covering exactly a given cpuset set.

Returns

the number of objects returned in objs.
-1 if no set of objects may cover that cpuset.

Generated by Doxygen

24.16 Finding Objects inside a CPU set 149

24.16.2.3 hwloc_get_nbobjs_inside_cpuset_by_depth()

unsigned hwloc_get_nbobjs_inside_cpuset_by_depth (
hwloc_topology_t topology,
hwloc_const_cpuset_t set,
int depth) [inline]

Return the number of objects at depth depth included in CPU set set.

Returns

the number of objects.
0 if the depth is invalid.

Note

Objects with empty CPU sets are ignored (otherwise they would be considered included in any given set).
This function cannot work if objects at the given depth do not have CPU sets (/O or Misc objects).

24.16.2.4 hwloc_get_nbobjs_inside_cpuset_by_type()

int hwloc_get_nbobjs_inside_cpuset_by_type (
hwloc_topology_t topology,
hwloc_const_cpuset_t set,
hwloc_obij_type_t type) [inline]

Return the number of objects of type t ype included in CPU set set.

Returns

the number of objects.
0 if there are no objects of that type in the topology.
-1 if there are multiple levels of objects of that type, the caller should fallback to hwloc_get_nbobjs_inside_cpuset_by_depth().

Note

Objects with empty CPU sets are ignored (otherwise they would be considered included in any given set).
This function cannot work if objects of the given type do not have CPU sets (I/O objects).

24.16.2.5 hwloc_get_next_obj_inside_cpuset_by depth()

hwloc_obj_t hwloc_get_next_obj_inside_cpuset_by_depth (
hwloc_topology_t topology,
hwloc_const_cpuset_t set,
int depth,
hwloc_obj_t prev) [inline]
Return the next object at depth depth included in CPU set set.
The next invokation should pass the previous return value in prev so as to obtain the next object in set.

Returns

the first object at depth depth included in set if prev is NULL.
the next object at depth depth included in set if prev is not NULL.
NULL if there is no next object.

Note

Objects with empty CPU sets are ignored (otherwise they would be considered included in any given set).
This function cannot work if objects at the given depth do not have CPU sets (/O or Misc objects).

Generated by Doxygen

150 Topic Documentation

24.16.2.6 hwloc_get_next_obj_inside_cpuset_by type()

hwloc_obj_t hwloc_get_next_obj_inside_cpuset_by_type (
hwloc_topology_t topology,
hwloc_const_cpuset_t set,
hwloc_obj_type_t type,
hwloc_obj_t prev) [inline]
Return the next object of type t ype included in CPU set set.
The next invokation should pass the previous return value in prev so as to obtain the next object in set.

Returns

the first object of type t ype included in set if prev is NULL.

the next object of type t ype included in set if prev is not NULL.

NULL if there is no next object.

NULL if there is no depth for the given type.

NULL if there are multiple depths for the given type, the caller should fallback to hwloc_get_next_obj_inside_cpuset_by_depth().

Note

Objects with empty CPU sets are ignored (otherwise they would be considered included in any given set).

This function cannot work if objects of the given type do not have CPU sets (/O or Misc objects).

24.16.2.7 hwloc_get_obj_index_inside_cpuset()

int hwloc_get_obj_index_inside_cpuset (

hwloc_topology_t topology,

hwloc_const_cpuset_t set,

hwloc_obj_t obj) [inline]
Return the logical index among the objects included in CPU set set.
Consult all objects in the same level as ob j and inside CPU set set in the logical order, and return the index of ob j
within them. If set covers the entire topology, this is the logical index of obj. Otherwise, this is similar to a logical
index within the part of the topology defined by CPU set set.

Returns

the logical index among the objects included in the set if any.

-1 if the object is not included in the set.

Note

Objects with empty CPU sets are ignored (otherwise they would be considered included in any given set).

This function cannot work if obj does not have CPU sets (I/O objects).

24.16.2.8 hwloc_get_obj_inside_cpuset_by_depth()

hwloc_obj_t hwloc_get_obj_inside_cpuset_by_depth (
hwloc_topology_t topology,
hwloc_const_cpuset_t set,
int depth,
unsigned idx) [inline]

Return the (logically) 1 dx -th object at depth depth included in CPU set set.

Generated by Doxygen

24.17 Finding Objects covering at least CPU set 151

Returns

the object if any, NULL otherwise.

Note

Objects with empty CPU sets are ignored (otherwise they would be considered included in any given set).

This function cannot work if objects at the given depth do not have CPU sets (I/O or Misc objects).

24.16.2.9 hwloc_get_obj_inside_cpuset_by_type()

hwloc_obj_t hwloc_get_obj_inside_cpuset_by_type (
hwloc_topology_t topology,
hwloc_const_cpuset_t set,
hwloc_obj_type_t type,
unsigned idx) [inline]

Return the idx -th object of type t ype included in CPU set set.
Returns

the object if any.

NULL if there is no such object.

NULL if there is no depth for given type.

NULL if there are multiple depths for given type, the caller should fallback to hwloc_get_obj_inside_cpuset_by_depth().

Note

Objects with empty CPU sets are ignored (otherwise they would be considered included in any given set).

This function cannot work if objects of the given type do not have CPU sets (/O or Misc objects).

24.17 Finding Objects covering at least CPU set

Functions

* hwloc_obj_t hwloc_get_child_covering_cpuset (hwloc_topology_t topology, hwloc_const cpuset t set,
hwloc_obj_t parent)

» hwloc_obj_t hwloc_get_obj_covering_cpuset (hwloc_topology_t topology, hwloc_const_cpuset_t set)

» hwloc_obj_t hwloc_get_next_obj_covering_cpuset_by_depth (hwloc_topology_t topology, hwloc_const_cpuset_t
set, int depth, hwloc_obj_t prev)

» hwloc_obj_t hwloc_get_next_obj_covering_cpuset_by_type (hwloc_topology_t topology, hwloc_const_cpuset_t
set, hwloc_obj_type_t type, hwloc_obj_t prev)

24.17.1 Detailed Description

24.17.2 Function Documentation
24.17.2.1 hwloc_get_child_covering_cpuset()

hwloc_obj_t hwloc_get_child_covering_cpuset (
hwloc_topology_t topology,
hwloc_const_cpuset_t set,
hwloc_obij_t parent) [inline]
Get the child covering at least CPU set set.

Generated by Doxygen

152 Topic Documentation

Returns

the child that covers the set entirely.

NULL if no child matches or if set is empty.

Note

This function cannot work if parent does not have a CPU set (I/O or Misc objects).

24.17.2.2 hwloc_get_next_obj_covering_cpuset_by_ depth()

hwloc_obj_t hwloc_get_next_obj_covering_cpuset_by_depth (
hwloc_topology_t topology,
hwloc_const_cpuset_t set,
int depth,
hwloc_obj_t prev) [inline]
Iterate through same-depth objects covering at least CPU set set.
The next invokation should pass the previous return value in prev so as to obtain the next object covering at least
another part of set.

Returns

the first object at depth depth covering at least part of CPU set set if object prev is NULL.
the next one if prev is not NULL.

NULL if there is no next object.

Note

This function cannot work if objects at the given depth do not have CPU sets (/O or Misc objects).

24.17.2.3 hwloc_get_next_obj_covering_cpuset_by type()

hwloc_obj_t hwloc_get_next_obj_covering cpuset_by_type (
hwloc_topology_t topology,
hwloc_const_cpuset_t set,
hwloc_obj_type_t type,
hwloc_obj_t prev) [inline]
Iterate through same-type objects covering at least CPU set set.
The next invokation should pass the previous return value in prev so as to obtain the next object of type t ype covering
at least another part of set.

Returns

the first object of type t ype covering at least part of CPU set set if object prev is NULL.

the next one if prev is not NULL.

NULL if there is no next object.

NULL if there is no depth for the given type.

NULL if there are multiple depths for the given type, the caller should fallback to hwloc_get_next_obj_covering_cpuset_by_depth().

Note

This function cannot work if objects of the given type do not have CPU sets (/O or Misc objects).

Generated by Doxygen

24.18 Looking at Ancestor and Child Objects 153

24.17.2.4 hwloc_get_obj_covering_cpuset()

hwloc_obj_t hwloc_get_obj_covering_cpuset (

hwloc_topology_t topology,

hwloc_const_cpuset_t set) [inline]

Get the lowest object covering at least CPU set set.

Returns

the lowest object covering the set entirely.
NULL if no object matches or if set is empty.

24.18 Looking at Ancestor and Child Objects

Functions

hwloc_obj_t hwloc_get_ancestor_obj_by_depth (hwloc_topology_t topology, int depth, hwloc_obj_t obj)
hwloc_obj_t hwloc_get_ancestor_obj_by_type (hwloc_topology_t topology, hwloc_obj_type_t type, hwloc_obj_t
obj)

hwloc_obj_t hwloc_get_common_ancestor_obj (hwloc_topology_t topology, hwloc_obj_t obj1, hwloc_obj_t obj2)
int hwloc_obj_is_in_subtree (hwloc_topology_t topology, hwloc_obj_t obj, hwloc_obj_t subtree_root)

hwloc_obj_t hwloc_get_next_child (hwloc_topology_t topology, hwloc_obj_t parent, hwloc_obj_t prev)

24.18.1 Detailed Description

Be sure to see the figure in Terms and Definitions that shows a complete topology tree, including depths,
child/sibling/cousin relationships, and an example of an asymmetric topology where one package has fewer caches
than its peers.

24.18.2 Function Documentation

24.18.2.1 hwloc_get_ancestor_obj_by_depth()

hwloc_obj_t hwloc_get_ancestor_obj_by_depth (

hwloc_topology_t topology,
int depth,
hwloc_obj_t obj) [inline]

Returns the ancestor object of ob j at depth depth.

Returns

Note

the ancestor if any.
NULL if no such ancestor exists.

depth should not be the depth of PU or NUMA objects since they are ancestors of no objects (except Misc or
1/0). This function rather expects an intermediate level depth, such as the depth of Packages, Cores, or Caches.

24.18.2.2 hwloc_get_ancestor_obj_by_type()

hwloc_obj_t hwloc_get_ancestor_obj_by_type (

hwloc_topology_t topology,
hwloc_obij_type_t type,
hwloc_obij_t obj) [inline]

Returns the ancestor object of ob j with type type.

Generated by Doxygen

154 Topic Documentation

Returns

the ancestor if any.
NULL if no such ancestor exists.

Note

if multiple matching ancestors exist (e.g. multiple levels of HWLOC_OBJ_GROUP) the lowest one is returned.

type should not be HWLOC_OBJ_PU or HWLOC_OBJ_NUMANODE since these objects are ances-
tors of no objects (except Misc or I/O). This function rather expects an intermediate object type, such as
HWLOC_OBJ_PACKAGE, HWLOC_OBJ_CORE, etc.

24.18.2.3 hwloc_get_common_ancestor_obij()

hwloc_obj_t hwloc_get_common_ancestor_obj (
hwloc_topology_t topology,
hwloc_obij_t objl,
hwloc_obij_t obj2) [inline]

Returns the common parent object to objects obj1 and obj2.

Returns

the common ancestor.

Note

This function cannot return NULL.

24.18.2.4 hwloc_get_next_child()

hwloc_obj_t hwloc_get_next_child (
hwloc_topology_t topology,
hwloc_obj_t parent,
hwloc_obj_t prev) [inline]
Return the next child.
Return the next child among the normal children list, then among the memory children list, then among the 1/O children
list, then among the Misc children list.

Returns
the first child if prev is NULL.

the next child if prev is not NULL.
NULL when there is no next child.

24.18.2.5 hwloc_obj_is_in_subtree()

int hwloc_obj_is_in_subtree (
hwloc_topology_t topology,
hwloc_obj_t obj,
hwloc_obij_t subtree_root) [inline]
Returns true if ob j is inside the subtree beginning with ancestor object subtree_root.

Returns

1 is the object is in the subtree, 0 otherwise.

Note

This function cannot work if obj and subtree_root objects do not have CPU sets (I/O or Misc objects).

Generated by Doxygen

24.19 Looking at Cache Objects 155

24.19 Looking at Cache Objects

Functions

« int hwloc_get_cache_type_depth (hwloc_topology_t topology, unsigned cachelevel, hwloc_obj_cache_type_t ca-
chetype)

» hwloc_obj_t hwloc_get cache_covering_cpuset (hwloc_topology_t topology, hwloc_const_cpuset_t set)

» hwloc_obj_t hwloc_get_shared_cache_covering_obj (hwloc_topology_t topology, hwloc_obj_t obj)

24.19.1 Detailed Description

24.19.2 Function Documentation
24.19.2.1 hwloc_get_cache_covering_cpuset()

hwloc_obj_t hwloc_get_cache_covering_cpuset (
hwloc_topology_t topology,
hwloc_const_cpuset_t set) [inline]

Get the first data (or unified) cache covering a cpuset set.

Returns

a covering cache, or NULL if no cache matches.

24.19.2.2 hwloc_get_cache_type_depth()

int hwloc_get_cache_type_depth (

hwloc_topology_t topology,

unsigned cachelevel,

hwloc_obj_cache_type_t cachetype) [inline]
Find the depth of cache objects matching cache level and type.
Return the depth of the topology level that contains cache objects whose attributes match cachelevel and
cachetype.
This function is identical to calling hwloc_get_type_depth() with the corresponding type such as HWLOC_OBJ_L1ICACHE,
except that it may also return a Unified cache when looking for an instruction cache.

Returns

the depth of the unique matching unified cache level is returned if cachet ype is HWLOC_OBJ_CACHE_UNIFIED.

the depth of either a matching cache level or a unified cache level if cachet ype is HWLOC_OBJ_CACHE_DATA
or HWLOC_OBJ_CACHE_INSTRUCTION.

the depth of the matching level if cachetype is —1 but only one level matches.
HWLOC_TYPE_DEPTH_MULTIPLE if cachetype is —1 but multiple levels match.
HWLOC_TYPE_DEPTH_UNKNOWN if no cache level matches.

24.19.2.3 hwloc_get_shared_cache_covering_obij()

hwloc_obj_t hwloc_get_shared_cache_covering obj (
hwloc_topology_t topology,
hwloc_obj_t obj) [inline]
Get the first data (or unified) cache shared between an object and somebody else.

Returns

a shared cache.

NULL if no cache matches or if an invalid object is given (e.g. 1/0O object).

Generated by Doxygen

156 Topic Documentation

24.20 Finding objects, miscellaneous helpers

Functions

« int hwloc_bitmap_singlify_per_core (hwloc_topology_t topology, hwloc_bitmap_t cpuset, unsigned which)

» hwloc_obj_t hwloc_get_pu_obj_by_os_index (hwloc_topology_t topology, unsigned os_index)

» hwloc_obj_t hwloc_get_numanode_obj_by_os_index (hwloc_topology_t topology, unsigned os_index)

 unsigned hwloc_get_closest_objs (hwloc_topology_t topology, hwloc_obj_t src, hwloc_obj_t xrestrict objs, un-
signed max)

» hwloc_obj_t hwloc_get_obj_below_by_type (hwloc_topology_t topology, hwloc_obj_type_t type1, unsigned idx1,
hwloc_obj_type_t type2, unsigned idx2)

» hwloc_obj_t hwloc_get_obj_below_array_by type (hwloc_topology t topology, int nr, hwloc_obj type_t xtypey,
unsigned *idxv)

» hwloc_obj_t hwloc_get_obj_with_same_locality (hwloc_topology_t topology, hwloc_obj_t src, hwloc_obj_type_t
type, const char xsubtype, const char xnameprefix, unsigned long flags)

24.20.1 Detailed Description

Be sure to see the figure in Terms and Definitions that shows a complete topology tree, including depths,
child/sibling/cousin relationships, and an example of an asymmetric topology where one package has fewer caches
than its peers.

24.20.2 Function Documentation
24.20.2.1 hwloc_bitmap_singlify_per_core()

int hwloc_bitmap_singlify_per_core (
hwloc_topology_t topology,
hwloc_bitmap_t cpuset,
unsigned which)
Remove simultaneous multithreading PUs from a CPU set.
For each core in topology, if cpuset contains some PUs of that core, modify cpuset to only keep a single PU for
that core.
which specifies which PU will be kept. PU are considered in physical index order. If 0, for each core, the function
keeps the first PU that was originally set in cpuset.
If which is larger than the number of PUs in a core there were originally set in cpuset, no PU is kept for that core.

Returns

0.

Note

PUs that are not below a Core object are ignored (for instance if the topology does not contain any Core object).
None of them is removed from cpuset.

24.20.2.2 hwloc_get_closest_objs()

unsigned hwloc_get_closest_objs (
hwloc_topology_t topology,
hwloc_obj_t src,
hwloc_obj_t *restrict objs,
unsigned max)
Do a depth-first traversal of the topology to find and sort.
all objects that are at the same depth than src. Report in objs up to max physically closest ones to src.

Generated by Doxygen

24.20 Finding objects, miscellaneous helpers 157

Returns

the number of objects returned in objs.

0if srcis an I/O object.

Note

This function requires the src object to have a CPU set.

24.20.2.3 hwloc_get_numanode_obj_by os_index()

hwloc_obj_t hwloc_get_numanode_obj_by_os_index (

hwloc_topology_t topology,

unsigned os_index) [inline]
Returns the object of type HWLOC_OBJ_NUMANODE with os_index.
This function is useful for converting a nodeset into the NUMA node objects it contains. When retrieving the current
binding (e.g. with hwloc_get_membind() with HWLOC_MEMBIND_BYNODESET), one may iterate over the bits of the
resulting nodeset with hwloc_bitmap_foreach_begin(), and find the corresponding NUMA nodes with this function.

Returns

the NUMA node object, or NULL if none matches.

24.20.2.4 hwloc_get_obj_below_array_by_type()

hwloc_obj_t hwloc_get_obj_below_array_by_type (

hwloc_topology_t topology,

int nr,

hwloc_obj_type_t * typev,

unsigned * idxv) [inline]
Find an object below a chain of objects specified by types and indexes.
This is a generalized version of hwloc_get_obj_below_by_type().
Arrays t ypev and 1dxv must contain nr types and indexes.
Start from the top system object and walk the arrays t ypev and idxv. For each type and logical index couple in the
arrays, look under the previously found object to find the index-th object of the given type. Indexes are specified within
the parent, not withing the entire system.
For instance, if nr is 3, typev contains NODE, PACKAGE and CORE, and idxv contains 0, 1 and 2, return the third core
object below the second package below the first NUMA node.

Returns

a matching object if any, NULL otherwise.

Note

This function requires all these objects and the root object to have a CPU set.

24.20.2.5 hwloc_get_obj_below_by_type()

hwloc_obj_t hwloc_get_obj_below_by_type (
hwloc_topology_t topology,
hwloc_obj_type_t typel,
unsigned idxI,
hwloc_obij_type_t type2,

unsigned idx2) [inline]

Generated by Doxygen

158 Topic Documentation

Find an object below another object, both specified by types and indexes.

Start from the top system object and find object of type typel and logical index idx1. Then look below this object
and find another object of type t ype2 and logical index 1dx2. Indexes are specified within the parent, not withing the
entire system.

For instance, if type1 is PACKAGE, idx1 is 2, type2 is CORE and idx2 is 3, return the fourth core object below the third
package.

Returns

a matching object if any, NULL otherwise.

Note

This function requires these objects to have a CPU set.

24.20.2.6 hwloc_get_obj_with_same_locality()

hwloc_obj_t hwloc_get_obj_with_same_locality (

hwloc_topology_t topology,

hwloc_obj_t src,

hwloc_obij_type_t type,

const char * subtype,

const char * nameprefix,

unsigned long flags)
Return an object of a different type with same locality.
If the source object src is a normal or memory type, this function returns an object of type t ype with same CPU and
node sets, either below or above in the hierarchy.
If the source object src is a PCl or an OS device within a PCI device, the function may either return that PCI device,
or another OS device in the same PCI parent. This may for instance be useful for converting between OS devices
such as "nvml0" or "rsmi1" used in distance structures into the the PCI device, or the CUDA or OpenCL OS device that
correspond to the same physical card.
If not NULL, parameter subtype only select objects whose subtype attribute exists and is subtype (case-
insensitively), for instance "OpenCL" or "CUDA".
If not NULL, parameter namepre fix only selects objects whose name attribute exists and starts with nameprefix
(case-insensitively), for instance "rsmi" for matching "rsmi0".
If multiple objects match, the first one is returned.
This function will not walk the hierarchy across bridges since the PCl locality may become different. This function cannot
also convert between normal/memory objects and 1/0 or Misc objects.
flags must be 0 for now.

Returns

An object with identical locality, matching subt ype and nameprefix if any.

NULL if no matching object could be found, or if the source object and target type are incompatible, for instance if
converting between CPU and I/O objects.

24.20.2.7 hwloc_get_pu_obj_by os_index()

hwloc_obj_t hwloc_get_pu_obj_by_os_index (

hwloc_topology_t topology,

unsigned os_index) [inline]
Returns the object of type HWLOC_OBJ_PU with os_ index.
This function is useful for converting a CPU set into the PU objects it contains. When retrieving the current binding (e.g.
with hwloc_get_cpubind()), one may iterate over the bits of the resulting CPU set with hwloc_bitmap_foreach_begin(),
and find the corresponding PUs with this function.

Generated by Doxygen

24.21 Distributing items over a topology 159

Returns

the PU object, or NULL if none matches.

24.21 Distributing items over a topology

Enumerations

+ enum hwloc_distrib_flags_e { HWLOC_DISTRIB_FLAG_REVERSE }

Functions
+ int hwloc_distrib (hwloc_topology_t topology, hwloc_obj_t xroots, unsigned n_roots, hwloc_cpuset_t *set, un-
signed n, int until, unsigned long flags)
24.21.1 Detailed Description
24.21.2 Enumeration Type Documentation
24.21.2.1 hwloc_distrib_flags_e

enum hwloc_distrib_flags_e

Flags to be given to hwloc_distrib().

Enumerator

HWLOC_DISTRIB_FLAG_REVERSE | Distrib in reverse order, starting from the last objects.

24.21.3 Function Documentation
24.21.3.1 hwloc_distrib()

int hwloc_distrib (

hwloc_topology_t topology,

hwloc_obj_t * roots,

unsigned n_roots,

hwloc_cpuset_t x* set,

unsigned n,

int until,

unsigned long flags) [inline]
Distribute n items over the topology under roots.
Array set will be filled with n cpusets recursively distributed linearly over the topology under objects root s, down to
depth unt i1 (which can be INT_MAX to distribute down to the finest level).
n_roots isusually 1 and roots only contains the topology root object so as to distribute over the entire topology.
This is typically useful when an application wants to distribute n threads over a machine, giving each of them as much
private cache as possible and keeping them locally in number order.
The caller may typically want to also call hwloc_bitmap_singlify() before binding a thread so that it does not move at all.
flags should be 0 or a OR'ed set of hwloc_distrib_flags_e.

Returns

0 on success, -1 on error.

Generated by Doxygen

160 Topic Documentation

Note

On hybrid CPUs (or asymmetric platforms), distribution may be suboptimal since the number of cores or PUs inside
packages or below caches may vary (the top-down recursive partitioning ignores these numbers until reaching their
levels). Hence it is recommended to distribute only inside a single homogeneous domain. For instance on a CPU
with energy-efficient E-cores and high-performance P-cores, one should distribute separately N tasks on E-cores
and M tasks on P-cores instead of trying to distribute directly M+N tasks on the entire CPUs.

This function requires the root s objects to have a CPU set.

24.22 CPU and node sets of entire topologies

Functions

» hwloc_const_cpuset_t hwloc_topology_get _complete_cpuset (hwloc_topology_t topology)

» hwloc_const_cpuset_t hwloc_topology_get topology_cpuset (hwloc_topology_t topology)

» hwloc_const_cpuset_t hwloc_topology_get_allowed_cpuset (hwloc_topology_t topology)

» hwloc_const_nodeset_t hwloc_topology_get_complete_nodeset (hwloc_topology_t topology)
» hwloc_const_nodeset_t hwloc_topology_get_topology_nodeset (hwloc_topology_t topology)
» hwloc_const_nodeset_t hwloc_topology_get_allowed_nodeset (hwloc_topology_t topology)

24.22.1 Detailed Description

24.22.2 Function Documentation
24.22.2.1 hwloc_topology_get_allowed_cpuset()

hwloc_const_cpuset_t hwloc_topology_get_allowed_cpuset (

hwloc_topology_t topology)
Get allowed CPU set.

Returns

the CPU set of allowed processors of the system.

Note

This function cannot return NULL.

If the topology flag HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED was not set, this is identical to
hwloc_topology_get_topology_cpuset(), which means all PUs are allowed.

If HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED was set, applying hwloc_bitmap_intersects() on the re-
sult of this function and on an object cpuset checks whether there are allowed PUs inside that object. Applying
hwloc_bitmap_and() returns the list of these allowed PUs.

The returned cpuset is not newly allocated and should thus not be changed or freed, hwloc_bitmap_dup() must be
used to obtain a local copy.

24.22.2.2 hwloc_topology_get_allowed_nodeset()

hwloc_const_nodeset_t hwloc_topology_get_allowed_nodeset (
hwloc_topology_t topology)
Get allowed node set.

Returns

the node set of allowed memory of the system.

Generated by Doxygen

24.22 CPU and node sets of entire topologies 161

Note

This function cannot return NULL.

If the topology flag HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED was not set, this is identical to
hwloc_topology_get_topology nodeset(), which means all NUMA nodes are allowed.

If HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED was set, applying hwloc_bitmap_intersects() on the re-
sult of this function and on an object nodeset checks whether there are allowed NUMA nodes inside that object.
Applying hwloc_bitmap_and() returns the list of these allowed NUMA nodes.

The returned nodeset is not newly allocated and should thus not be changed or freed, hwloc_bitmap_dup() must
be used to obtain a local copy.

24.22.2.3 hwloc_topology_get complete_cpuset()

hwloc_const_cpuset_t hwloc_topology_get_complete_cpuset (
hwloc_topology_t topology)
Get complete CPU set.

Returns

the complete CPU set of processors of the system.

Note

This function cannot return NULL.

The returned cpuset is not newly allocated and should thus not be changed or freed; hwloc_bitmap_dup() must be
used to obtain a local copy.

This is equivalent to retrieving the root object complete CPU-set.

24.22.2.4 hwloc_topology_get_complete_nodeset()

hwloc_const_nodeset_t hwloc_topology_get_complete_nodeset (
hwloc_topology_t topology)
Get complete node set.

Returns

the complete node set of memory of the system.

Note

This function cannot return NULL.

The returned nodeset is not newly allocated and should thus not be changed or freed; hwloc_bitmap_dup() must
be used to obtain a local copy.

This is equivalent to retrieving the root object complete nodeset.

24.22.2.5 hwloc_topology_get_topology cpuset()

hwloc_const_cpuset_t hwloc_topology_get_topology_cpuset (
hwloc_topology_t topology)
Get topology CPU set.

Generated by Doxygen

162 Topic Documentation

Returns

the CPU set of processors of the system for which hwloc provides topology information. This is equivalent to the
cpuset of the system object.

Note

This function cannot return NULL.

The returned cpuset is not newly allocated and should thus not be changed or freed; hwloc_bitmap_dup() must be
used to obtain a local copy.

This is equivalent to retrieving the root object CPU-set.

24.22.2.6 hwloc_topology_get_topology nodeset()

hwloc_const_nodeset_t hwloc_topology_get_topology_nodeset (
hwloc_topology_t topology)
Get topology node set.

Returns

the node set of memory of the system for which hwloc provides topology information. This is equivalent to the
nodeset of the system object.

Note

This function cannot return NULL.

The returned nodeset is not newly allocated and should thus not be changed or freed; hwloc_bitmap_dup() must
be used to obtain a local copy.

This is equivalent to retrieving the root object nodeset.

24.23 Converting between CPU sets and node sets

Functions

+ int hwloc_cpuset_to_nodeset (hwloc_topology t topology, hwloc_const_cpuset t _cpuset, hwloc_nodeset_t
nodeset)

« int hwloc_cpuset_from_nodeset (hwloc_topology t topology, hwloc_cpuset_t _cpuset, hwloc_const_nodeset_t
nodeset)

24.23.1 Detailed Description

24.23.2 Function Documentation
24.23.2.1 hwloc_cpuset_from_nodeset()

int hwloc_cpuset_from_nodeset (
hwloc_topology_t topology,
hwloc_cpuset_t _cpuset,
hwloc_const_nodeset_t nodeset) [inline]
Convert a NUMA node set into a CPU set.
For each NUMA node included in the input nodeset, set the corresponding local PUs in the output _cpuset.
If some CPUs have no local NUMA nodes, this function never sets their indexes in the output CPU set, even if a full
node set is given in input.
Hence the entire topology node set is converted into the set of all CPUs that have some local NUMA nodes.

Generated by Doxygen

24.24 Finding /O objects

163

Returns

0 on success.

-1 with errno set to ENOMEM on internal reallocation failure.

24.23.2.2 hwloc_cpuset_to_nodeset()

int hwloc_cpuset_to_nodeset (
hwloc_topology_t topology,
hwloc_const_cpuset_t _cpuset,
hwloc_nodeset_t nodeset) [inline]

Convert a CPU set into a NUMA node set.

For each PU included in the input _cpuset, set the corresponding local NUMA node(s) in the output nodeset.

If some NUMA nodes have no CPUs at all, this function never sets their indexes in the output node set, even if a full

CPU set is given in input.

Hence the entire topology CPU set is converted into the set of all nodes that have some local CPUs.

Returns

0 on success.

-1 with errno set to ENOMEM on internal reallocation failure.

24.24 Finding /O objects

Functions

» hwloc_obj_t hwloc_get_non_io_ancestor_obj (hwloc_topology t topology, hwloc_obj_t ioobj)
» hwloc_obj_t hwloc_get_next_pcidev (hwloc_topology_t topology, hwloc_obj_t prev)

» hwloc_obj_t hwloc_get_pcidev_by busid (hwloc_topology_t topology, unsigned domain, unsigned bus, unsigned

dev, unsigned func)

» hwloc_obj_t hwloc_get_pcidev_by_busidstring (hwloc_topology_t topology, const char xbusid)
» hwloc_obj_t hwloc_get_next_osdev (hwloc_topology_t topology, hwloc_obj_t prev)

» hwloc_obj_t hwloc_get_next_bridge (hwloc_topology_t topology, hwloc_obj_t prev)

+ int hwloc_bridge_covers_pcibus (hwloc_obj_t bridge, unsigned domain, unsigned bus)

24.24.1 Detailed Description

24.24.2 Function Documentation
24.24.2.1 hwloc_bridge_covers_pcibus()

int hwloc_bridge_covers_pcibus (
hwloc_obj_t bridge,
unsigned domain,

unsigned bus) [inline]

24.24.2.2 hwloc_get_next_bridge()

hwloc_obj_t hwloc_get_next_bridge (
hwloc_topology_t topology,
hwloc_obij_t prev) [inline]
Get the next bridge in the system.

Generated by Doxygen

164 Topic Documentation

Returns
the first bridge if prev is NULL.
the next bridge if prev is not NULL.
NULL if there is no next bridge.

24.24.2.3 hwloc_get_next_osdev()

hwloc_obj_t hwloc_get_next_osdev (
hwloc_topology_t topology,
hwloc_obj_t prev) [inline]
Get the next OS device in the system.

Returns
the first OS device if prev is NULL.

the next OS device if prev is not NULL.
NULL if there is no next OS device.

24.24.2.4 hwloc_get_next_pcidev()

hwloc_obj_t hwloc_get_next_pcidev (
hwloc_topology_t topology,
hwloc_obij_t prev) [inline]
Get the next PCl device in the system.

Returns
the first PCI device if prev is NULL.

the next PCl device if prev is not NULL.
NULL if there is no next PCI device.

24.24.2.5 hwloc_get_non_io_ancestor_obij()

hwloc_obj_t hwloc_get_non_io_ancestor_obj (
hwloc_topology_t topology,
hwloc_obij_t ioobj) [inline]
Get the first non-I/O ancestor object.
Given the I/O object ioobj, find the smallest non-I/O ancestor object. This object (normal or memory) may then be
used for binding because it has non-NULL CPU and node sets and because its locality is the same as i00bj.

Returns

a non-1/O object.

Note

This function cannot return NULL.

The resulting object is usually a normal object but it could also be a memory object (e.g. NUMA node) in future
platforms if I/O objects ever get attached to memory instead of CPUs.

Generated by Doxygen

24.25 The bitmap API

165

24.24.2.6 hwloc_get_pcidev_by busid()

hwloc_obj_t hwloc_get_pcidev_by_busid (
hwloc_topology_t topology,
unsigned domain,
unsigned bus,
unsigned dev,
unsigned func) [inline]
Find the PCI device object matching the PCI bus id given domain, bus device and function PCI bus id.

Returns

a matching PCI device object if any, NULL otherwise.

24.24.2.7 hwloc_get_pcidev_by_busidstring()

hwloc_obj_t hwloc_get_pcidev_by_busidstring (
hwloc_topology_t topology,
const char *x busid) [inline]
Find the PCI device object matching the PCI bus id given as a string xxxx:yy:zz.t or yy:zz.t.

Returns

a matching PCI device object if any, NULL otherwise.

24.25 The bitmap API

Macros

« #define hwloc_bitmap_foreach_begin(id, bitmap)
+ #define hwloc_bitmap_foreach_end()

Typedefs

« typedef struct hwloc_bitmap_s * hwloc_bitmap_t
» typedef const struct hwloc_bitmap_s * hwloc_const_bitmap_t

Functions

» hwloc_bitmap_t hwloc_bitmap_alloc (void)

» hwloc_bitmap_t hwloc_bitmap_alloc_full (void)

« void hwloc_bitmap_free (hwloc_bitmap_t bitmap)

» hwloc_bitmap_t hwloc_bitmap_dup (hwloc_const_bitmap_t bitmap)

+ int hwloc_bitmap_copy (hwloc_bitmap_t dst, hwloc_const_bitmap_t src)

« int hwloc_bitmap_snprintf (char xrestrict buf, size_t buflen, hwloc_const_bitmap_t bitmap)

« int hwloc_bitmap_asprintf (char *xstrp, hwloc_const_bitmap_t bitmap)

« int hwloc_bitmap_sscanf (hwloc_bitmap_t bitmap, const char xrestrict string)

« int hwloc_bitmap_list_snprintf (char xrestrict buf, size_t buflen, hwloc_const_bitmap_t bitmap)
« int hwloc_bitmap_list_asprintf (char xxstrp, hwloc_const_bitmap_t bitmap)

« int hwloc_bitmap_list_sscanf (hwloc_bitmap_t bitmap, const char xrestrict string)

« int hwloc_bitmap_taskset_snprintf (char xrestrict buf, size_t buflen, hwloc_const_bitmap_t bitmap)
« int hwloc_bitmap_taskset_asprintf (char xxstrp, hwloc_const_bitmap_t bitmap)

« int hwloc_bitmap_taskset_sscanf (hwloc_bitmap_t bitmap, const char xrestrict string)

+ void hwloc_bitmap_zero (hwloc_bitmap_t bitmap)

« void hwloc_bitmap_fill (hwloc_bitmap_t bitmap)

Generated by Doxygen

166 Topic Documentation

« int hwloc_bitmap_only (hwloc_bitmap_t bitmap, unsigned id)

« int hwloc_bitmap_allbut (hwloc_bitmap_t bitmap, unsigned id)

« int hwloc_bitmap_from_ulong (hwloc_bitmap_t bitmap, unsigned long mask)

« int hwloc_bitmap_from_ith_ulong (hwloc_bitmap_t bitmap, unsigned i, unsigned long mask)

« int hwloc_bitmap_from_ulongs (hwloc_bitmap_t bitmap, unsigned nr, const unsigned long xmasks)

« int hwloc_bitmap_set (hwloc_bitmap_t bitmap, unsigned id)

« int hwloc_bitmap_set_range (hwloc_bitmap_t bitmap, unsigned begin, int end)

« int hwloc_bitmap_set_ith_ulong (hwloc_bitmap_t bitmap, unsigned i, unsigned long mask)

« int hwloc_bitmap_clr (hwloc_bitmap_t bitmap, unsigned id)

« int hwloc_bitmap_clr_range (hwloc_bitmap_t bitmap, unsigned begin, int end)

« int hwloc_bitmap_singlify (hwloc_bitmap_t bitmap)

+ unsigned long hwloc_bitmap_to_ulong (hwloc_const_bitmap_t bitmap)

+ unsigned long hwloc_bitmap_to_ith_ulong (hwloc_const_bitmap_t bitmap, unsigned i)

+ int hwloc_bitmap_to_ulongs (hwloc_const_bitmap_t bitmap, unsigned nr, unsigned long xmasks)

« int hwloc_bitmap_nr_ulongs (hwloc_const_bitmap_t bitmap)

« int hwloc_bitmap_isset (hwloc_const_bitmap_t bitmap, unsigned id)

« int hwloc_bitmap_iszero (hwloc_const_bitmap_t bitmap)

« int hwloc_bitmap_isfull (hwloc_const_bitmap_t bitmap)

« int hwloc_bitmap_first (hwloc_const_bitmap_t bitmap)

« int hwloc_bitmap_next (hwloc_const_bitmap_t bitmap, int prev)

« int hwloc_bitmap_last (hwloc_const_bitmap_t bitmap)

« int hwloc_bitmap_weight (hwloc_const_bitmap_t bitmap)

« int hwloc_bitmap_first_unset (hwloc_const_bitmap_t bitmap)

« int hwloc_bitmap_next_unset (hwloc_const_bitmap_t bitmap, int prev)

« int hwloc_bitmap_last_unset (hwloc_const_bitmap_t bitmap)

« int hwloc_bitmap_or (hwloc_bitmap_t res, hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap_t bitmap2)
« int hwloc_bitmap_and (hwloc_bitmap_t res, hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap_t bitmap2)
« int hwloc_bitmap_andnot (hwloc_bitmap_t res, hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap_t bitmap2)
« int hwloc_bitmap_xor (hwloc_bitmap_t res, hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap_t bitmap?2)
« int hwloc_bitmap_not (hwloc_bitmap_t res, hwloc_const_bitmap_t bitmap)

« int hwloc_bitmap_intersects (hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap_t bitmap?2)

« int hwloc_bitmap_isincluded (hwloc_const_bitmap_t sub_bitmap, hwloc_const_bitmap_t super_bitmap)

« int hwloc_bitmap_isequal (hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap_t bitmap?2)

« int hwloc_bitmap_compare_first (hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap_t bitmap2)

« int hwloc_bitmap_compare (hwloc_const_bitmap_t bitmap1, hwloc_const_bitmap_t bitmap2)

24.25.1 Detailed Description

The hwloc_bitmap_t type represents a set of integers (positive or null). A bitmap may be of infinite size (all bits are set
after some point). A bitmap may even be full if all bits are set.

Bitmaps are used by hwloc for sets of OS processors (which may actually be hardware threads) as by
hwloc_cpuset_t (a typedef for hwloc_bitmap_t), or sets of NUMA memory nodes as hwloc_nodeset_t (also a
typedef for hwloc_bitmap_t). Those are used for cpuset and nodeset fields in the hwloc_obj structure, see
Object Sets (hwloc_cpuset_t and hwloc_nodeset_t).

Both CPU and node sets are always indexed by OS physical number. However users should usually not build CPU and
node sets manually (e.g. with hwloc_bitmap_set()). One should rather use existing object sets and combine them with
hwloc_bitmap_or(), etc. For instance, binding the current thread on a pair of cores may be performed with:

hwloc_obj_t corel = ... , core2 = ... ;

hwloc_bitmap_t set = hwloc_bitmap_alloc();
hwloc_bitmap_or (set, corel->cpuset, core2->cpuset);
hwloc_set_cpubind(topology, set, HWLOC_CPUBIND_THREAD) ;
hwloc_bitmap_free (set);

Generated by Doxygen

24.25 The bitmap API 167

Note

Most functions below return 0 on success and -1 on error. The usual error case would be an internal failure to
realloc/extend the storage of the bitmap (errno would be set to ENOMEM). See also Error reporting in the APL.

Several examples of using the bitmap API are available under the doc/examples/ directory in the source tree.
Regression tests such as tests/hwloc/hwloc_bitmapx*.c also make intensive use of this API.

24.25.2 Macro Definition Documentation
24.25.2.1 hwloc_bitmap_foreach_begin

#define hwloc_bitmap_foreach_begin(

id,

bitmap)
Loop macro iterating on bitmap bitmap.
The loop must start with hwloc_bitmap_foreach_begin() and end with hwloc_bitmap_foreach_end() followed by a termi-
nating ';'.
id is the loop variable; it should be an unsigned int. The first iteration will set 1d to the lowest index in the bitmap.
Successive iterations will iterate through, in order, all remaining indexes set in the bitmap. To be specific: each iteration
will return a value for id such that hwloc_bitmap_isset(bitmap, id) is true.
The assert prevents the loop from being infinite if the bitmap is infinitely set.

24.25.2.2 hwloc_bitmap_foreach_end

#define hwloc_bitmap_foreach_end()
End of loop macro iterating on a bitmap.
Needs a terminating ;.

See also

hwloc_bitmap_foreach_begin()

24.25.3 Typedef Documentation
24.25.3.1 hwloc_bitmap_t

typedef struct hwloc_bitmap_s* hwloc_bitmap_t
Set of bits represented as an opaque pointer to an internal bitmap.

24.25.3.2 hwloc_const_bitmap_t

typedef const struct hwloc_bitmap_s* hwloc_const_bitmap_t
a non-modifiable hwloc_bitmap_t

24.25.4 Function Documentation
24.25.4.1 hwloc_bitmap_allbut()

int hwloc_bitmap_allbut (
hwloc_bitmap_t bitmap,
unsigned id)

Fill the bitmap and clear the index id.

Generated by Doxygen

168 Topic Documentation

24.25.4.2 hwloc_bitmap_alloc()

hwloc_bitmap_t hwloc_bitmap_alloc (
void)
Allocate a new empty bitmap.

Returns
A valid bitmap or NULL.

The bitmap should be freed by a corresponding call to hwloc_bitmap_free().

24.25.4.3 hwloc_bitmap_alloc_full()

hwloc_bitmap_t hwloc_bitmap_alloc_full (
void)
Allocate a new full bitmap.

Returns
A valid bitmap or NULL.

The bitmap should be freed by a corresponding call to hwloc_bitmap_free().

24.25.4.4 hwloc_bitmap_and()

int hwloc_bitmap_and (
hwloc_bitmap_t res,
hwloc_const_bitmap_t bitmapl,
hwloc_const_bitmap_t bitmap2)
And bitmaps bitmapl and bitmap?2 and store the result in bitmap res.
res can be the same as bitmapl or bitmap?2

24.25.4.5 hwloc_bitmap_andnot()

int hwloc_bitmap_andnot (

hwloc_bitmap_t res,

hwloc_const_bitmap_t bitmapl,

hwloc_const_bitmap_t bitmap2)
And bitmap bitmapl and the negation of bitmap2 and store the result in bitmap res.
res can be the same as bitmapl or bitmap?2

24.25.4.6 hwloc_bitmap_asprintf()

int hwloc_bitmap_asprintf (
char *x strp,
hwloc_const_bitmap_t bitmap)
Stringify a bitmap into a newly allocated string in the default hwloc format.
Print the bits set inside a bitmap as a comma-separated list of hexadecimal 32-bit blocks. A bitmap containing bits 1,
33, 34, and all from 64 to 95 is printed as "Oxffffffff, 0x00000006, 0x00000002™".

Returns

the number of characters that were written (not including the ending \ 0).

-1 on error, for instance with errno set to ENOMEM on failure to allocate the output string.
Note

If the bitmap is a CPU or nodeset, it contains physical indexes. This should be clearly indicated when dis-
playing such bitmaps to end users. See also How do | convert between logical and OS/physical indexes?

Generated by Doxygen

24.25 The bitmap API 169

24.25.4.7 hwloc_bitmap_clr()

int hwloc_bitmap_clr (
hwloc_bitmap_t bitmap,
unsigned id)

Remove index id from bitmap bitmap.

24.25.4.8 hwloc_bitmap_clr_range()

int hwloc_bitmap_clr_range (

hwloc_bitmap_t bitmap,

unsigned begin,

int end)
Remove indexes from begin to end in bitmap bitmap.
If end is —1, the range is infinite.

24.25.4.9 hwloc_bitmap_compare()

int hwloc_bitmap_compare (
hwloc_const_bitmap_t bitmapl,
hwloc_const_bitmap_t bitmap2)
Compare bitmaps bitmapl and bitmap?2 in lexicographic order.
Lexicographic comparison of bitmaps, starting for their highest indexes. Compare last indexes first, then second, etc.
The empty bitmap is considered lower than anything.

Returns
-1ifbitmapl is considered smaller than bitmap?2.
1if bitmapl is considered larger than bitmap2.
0 if bitmaps are equal (contrary to hwloc_bitmap_compare_first()).

For instance comparing binary bitmaps 0011 and 0110 returns -1 (hence 0011 is considered smaller than 0110). Com-
paring 00101 and 01010 returns -1 too.

Note

This is different from the non-existing hwloc_bitmap_compare_last() which would only compare the highest index
of each bitmap.

24.25.4.10 hwloc_bitmap_compare_first()

int hwloc_bitmap_compare_first (
hwloc_const_bitmap_t bitmapl,
hwloc_const_bitmap_t bitmap2)
Compare bitmaps bitmapl and bitmap?2 using their lowest index.
A bitmap is considered smaller if its least significant bit is smaller. The empty bitmap is considered higher than anything
(because its least significant bit does not exist).

Returns
-1if bitmapl is considered smaller than bitmap?2.

1ifbitmapl is considered larger than bitmap?2.

For instance comparing binary bitmaps 0011 and 0110 returns -1 (hence 0011 is considered smaller than 0110) because
least significant bit of 0011 (0001) is smaller than least significant bit of 0110 (0010). Comparing 01001 and 00110 would
also return -1 for the same reason.

Generated by Doxygen

170 Topic Documentation

Returns

0 if bitmaps are considered equal, even if they are not strictly equal. They just need to have the same least
significant bit. For instance, comparing binary bitmaps 0010 and 0110 returns 0 because they have the same
least significant bit.

24.25.4.11 hwloc_bitmap_copy()

int hwloc_bitmap_copy (
hwloc_bitmap_t dst,
hwloc_const_bitmap_t src)
Copy the contents of bitmap src into the already allocated bitmap dst.

24.25.4.12 hwloc_bitmap_dup()

hwloc_bitmap_t hwloc_bitmap_dup (

hwloc_const_bitmap_t bitmap)
Duplicate bitmap bitmap by allocating a new bitmap and copying bitmap contents.
If bitmap is NULL, NULL is returned.

24.25.4.13 hwloc_bitmap_fill()

void hwloc_bitmap_fill (
hwloc_bitmap_t bitmap)
Fill bitmap bitmap with all possible indexes (even if those objects don't exist or are otherwise unavailable).

24.25.4.14 hwloc_bitmap_first()

int hwloc_bitmap_first (
hwloc_const_bitmap_t bitmap)
Compute the first index (least significant bit) in bitmap bitmap.

Returns

the first index set in bitmap.

-1 if bitmap is empty.

24.25.4.15 hwloc_bitmap_first_unset()

int hwloc_bitmap_first_unset (
hwloc_const_bitmap_t bitmap)
Compute the first unset index (least significant bit) in bitmap bitmap.

Returns

the first unset index in bitmap.

-1if bitmap is full.

24.25.4.16 hwloc_bitmap_free()

void hwloc_bitmap_free (
hwloc_bitmap_t bitmap)
Free bitmap bitmap.
If bitmap is NULL, no operation is performed.

Generated by Doxygen

24.25 The bitmap API

171

24.25.4.17 hwloc_bitmap_from_ith_ulong()

int hwloc_bitmap_from_ith_ulong (
hwloc_bitmap_t bitmap,
unsigned 1,
unsigned long mask)
Setup bitmap bitmap from unsigned long ma sk used as i -th subset.

24.25.4.18 hwloc_bitmap_from_ulong()

int hwloc_bitmap_from_ulong (
hwloc_bitmap_t bitmap,
unsigned long mask)

Setup bitmap bitmap from unsigned long mask.

24.25.4.19 hwloc_bitmap_from_ulongs()

int hwloc_bitmap_from_ulongs (
hwloc_bitmap_t bitmap,
unsigned nr,

const unsigned long * masks)

Setup bitmap bitmap from unsigned longs masks used as first nr subsets.

24.25.4.20 hwloc_bitmap_intersects()

int hwloc_bitmap_intersects (
hwloc_const_bitmap_t bitmapl,
hwloc_const_bitmap_t bitmap2)

Test whether bitmaps bitmapl and bitmap?2 intersects.

Returns

1 if bitmaps intersect, 0 otherwise.

Note

The empty bitmap does not intersect any other bitmap.

24.25.4.21 hwloc_bitmap_isequal()

int hwloc_bitmap_isequal (
hwloc_const_bitmap_t bitmapl,
hwloc_const_bitmap_t bitmap2)

Test whether bitmap bitmapl is equal to bitmap bitmap2.

Returns

1 if bitmaps are equal, 0 otherwise.

24.25.4.22 hwloc_bitmap_isfull()

int hwloc_bitmap_isfull (
hwloc_const_bitmap_t bitmap)
Test whether bitmap bitmap is completely full.

Generated by Doxygen

172 Topic Documentation

Returns

1 if bitmap is full, 0 otherwise.

Note

A full bitmap is always infinitely set.

24.25.4.23 hwloc_bitmap_isincluded()

int hwloc_bitmap_isincluded (
hwloc_const_bitmap_t sub_bitmap,
hwloc_const_bitmap_t super._bitmap)

Test whether bitmap sub_bitmap is part of bitmap super_bitmap.

Returns

1if sub_bitmap isincluded in super_bitmap, 0 otherwise.

Note

The empty bitmap is considered included in any other bitmap.

24.25.4.24 hwloc_bitmap_isset()

int hwloc_bitmap_isset (
hwloc_const_bitmap_t bitmap,
unsigned id)

Test whether index 1d is part of bitmap bitmap.

Returns

1 if the bit at index id is set in bitmap bitmap, 0 otherwise.

24.25.4.25 hwloc_bitmap_iszero()

int hwloc_bitmap_iszero (
hwloc_const_bitmap_t bitmap)
Test whether bitmap bitmap is empty.

Returns

1 if bitmap is empty, 0 otherwise.

24.25.4.26 hwloc_bitmap_last()

int hwloc_bitmap_last (
hwloc_const_bitmap_t bitmap)
Compute the last index (most significant bit) in bitmap bitmap.

Returns

the last index set in bitmap.

-1 if bitmap is empty, or if bitmap is infinitely set.

Generated by Doxygen

24.25 The bitmap API 173

24.25.4.27 hwloc_bitmap_last_unset()

int hwloc_bitmap_last_unset (
hwloc_const_bitmap_t bitmap)
Compute the last unset index (most significant bit) in bitmap bitmap.

Returns

the last index unset in bitmap.

-1 if bitmap is full, or if bitmap is not infinitely set.

24.25.4.28 hwloc_bitmap_list_asprintf()

int hwloc_bitmap_list_asprintf (

char ** strp,

hwloc_const_bitmap_t bitmap)
Stringify a bitmap into a newly allocated list string.
Lists are comma-separated indexes or ranges. Ranges are dash separated indexes. A bitmap containing bits 1, 33, 34,
and all from 64 to 95 is printed as "1, 33-34, 64-95". The last range may not have an ending index if the bitmap is
infinitely set.

Returns

the number of characters that were written (not including the ending \ 0).

-1 on error, for instance with errno set to ENOMEM on failure to allocate the output string.

Note

If the bitmap is a CPU or nodeset, it contains physical indexes. This should be clearly indicated when dis-
playing such bitmaps to end users. See also How do | convert between logical and OS/physical indexes?

24.25.4.29 hwloc_bitmap_list_snprintf()

int hwloc_bitmap_list_snprintf (
char xrestrict buf,
size_t buflen,
hwloc_const_bitmap_t bitmap)
Stringify a bitmap in the list format.
Lists are comma-separated indexes or ranges. Ranges are dash separated indexes. A bitmap containing bits 1, 33, 34,
and all from 64 to 95 is printed as "1, 33-34, 64-95". The last range may not have an ending index if the bitmap is
infinitely set.
Up to buflen characters may be written in buffer bu .
Ifbuflenis 0, buf may safely be NULL.

Returns

the number of characters that were actually written if not truncating, or that would have been written (not including
the ending \ 0).

-1 on error.

Note

If the bitmap is a CPU or nodeset, it contains physical indexes. This should be clearly indicated when dis-
playing such bitmaps to end users. See also How do | convert between logical and OS/physical indexes?

Generated by Doxygen

174 Topic Documentation

24.25.4.30 hwloc_bitmap_list_sscanf()

int hwloc_bitmap_list_sscanf (

hwloc_bitmap_t bitmap,

const char *restrict string)
Parse a list string and stores it in bitmap bitmap.
Lists are comma-separated indexes or ranges. Ranges are dash separated indexes. String "1, 33-34, 64-95" is
parsed as a bitmap containing bits 1, 33, 34, and all from 64 to 95. The last range may not have an ending index if the
bitmap is infinitely set.

Returns

0 on success, -1 on error.

Note

If the bitmap is a CPU or nodeset, the input string must contain physical indexes.

24.25.4.31 hwloc_bitmap_next()

int hwloc_bitmap_next (
hwloc_const_bitmap_t bitmap,
int prev)
Compute the next index in bitmap bitmap which is after index prev.

Returns

the first index setin bitmap if previs - 1.
the next index setin bitmap if previs not 1.

-1 if no index with higher index is set in bitmap.

24.25.4.32 hwloc_bitmap_next_unset()

int hwloc_bitmap_next_unset (
hwloc_const_bitmap_t bitmap,
int prev)
Compute the next unset index in bitmap bitmap which is after index prev.

Returns

the first index unset in bitmap if previs —1.
the next index unset in bitmap if prev is not —1.

-1 if no index with higher index is unset in bitmap.

24.25.4.33 hwloc_bitmap_not()

int hwloc_bitmap_not (
hwloc_bitmap_t res,
hwloc_const_bitmap_t bitmap)
Negate bitmap bitmap and store the result in bitmap res.
res can be the same as bitmap

Generated by Doxygen

24.25 The bitmap API 175

24.25.4.34 hwloc_bitmap_nr_ulongs()

int hwloc_bitmap_nr_ulongs (

hwloc_const_bitmap_t bitmap)
Return the number of unsigned longs required for storing bitmap bitmap entirely.
This is the number of contiguous unsigned longs from the very first bit of the bitmap (even if unset) up to the
last set bit. This is useful for knowing the nr parameter to pass to hwloc_bitmap_to_ulongs() (or which calls to
hwloc_bitmap_to_ith_ulong() are needed) to entirely convert a bitmap into multiple unsigned longs.
When called on the output of hwloc_topology_get topology_cpuset(), the returned number is large enough for all
cpusets of the topology.

Returns

the number of unsigned longs required.

-1 if bitmap is infinite.

24.25.4.35 hwloc_bitmap_only()

int hwloc_bitmap_only (
hwloc_bitmap_t bitmap,
unsigned id)

Empty the bitmap bitmap and add bit 1d.

24.25.4.36 hwloc_bitmap_or()

int hwloc_bitmap_or (
hwloc_bitmap_t res,
hwloc_const_bitmap_t bitmapl,
hwloc_const_bitmap_t bitmap2)
Or bitmaps bitmapl and bitmap2 and store the result in bitmap res.
res can be the same as bitmapl or bitmap?2

24.25.4.37 hwloc_bitmap_set()

int hwloc_bitmap_set (
hwloc_bitmap_t bitmap,
unsigned id)

Add index id in bitmap bitmap.

24.25.4.38 hwloc_bitmap_set_ith_ulong()

int hwloc_bitmap_set_ith_ulong (
hwloc_bitmap_t bitmap,
unsigned 1,
unsigned long mask)
Replace i -th subset of bitmap bitmap with unsigned long mask.

24.25.4.39 hwloc_bitmap_set_range()

int hwloc_bitmap_set_range (

hwloc_bitmap_t bitmap,

unsigned begin,

int end)
Add indexes from begin to end in bitmap bitmap.
If end is —1, the range is infinite.

Generated by Doxygen

176 Topic Documentation

24.25.4.40 hwloc_bitmap_singlify()

int hwloc_bitmap_singlify (

hwloc_bitmap_t bitmap)
Keep a single index among those set in bitmap bitmap.
May be useful before binding so that the process does not have a chance of migrating between multiple processors in
the original mask. Instead of running the task on any PU inside the given CPU set, the operating system scheduler will
be forced to run it on a single of these PUs. It avoids a migration overhead and cache-line ping-pongs between PUs.

Note

This function is NOT meant to distribute multiple processes within a single CPU set. It always return the same
single bit when called multiple times on the same input set. hwloc_distrib() may be used for generating CPU sets
to distribute multiple tasks below a single multi-PU object.

This function cannot be applied to an object set directly. It should be applied to a copy (which may be obtained
with hwloc_bitmap_dup()).

24.25.4.41 hwloc_bitmap_snprintf()

int hwloc_bitmap_snprintf (
char xrestrict buf,
size_t buflen,
hwloc_const_bitmap_t bitmap)
Stringify a bitmap in the default hwloc format.
Print the bits set inside a bitmap as a comma-separated list of hexadecimal 32-bit blocks. A bitmap containing bits 1,
33, 34, and all from 64 to 95 is printed as "Oxffffffff, 0x00000006, 0x00000002™".
Up to buflen characters may be written in buffer bu .
Ifbuflenis 0, buf may safely be NULL.

Returns

the number of characters that were actually written if not truncating, or that would have been written (not including
the ending \ 0).

-1 on error.

Note

If the bitmap is a CPU or nodeset, it contains physical indexes. This should be clearly indicated when dis-
playing such bitmaps to end users. See also How do | convert between logical and OS/physical indexes?

24.25.4.42 hwloc_bitmap_sscanf()

int hwloc_bitmap_sscanf (
hwloc_bitmap_t bitmap,
const char *restrict string)
Parse a bitmap string as the default hwloc format and stores it in bitmap bitmap.
The input string should be a comma-separared list of hexadecimal 32-bit blocks. String "Oxffffffff, 0x6, 0x2"
is parsed as a bitmap containing all bits between 64 and 95, and bits 33, 34 and 1.

Returns

0 on success, -1 on error.

Note

If the bitmap is a CPU or nodeset, the input string must contain physical indexes.

Generated by Doxygen

24.25 The bitmap API 177

24.25.4.43 hwloc_bitmap_taskset_asprintf()

int hwloc_bitmap_taskset_asprintf (
char **x strp,
hwloc_const_bitmap_t bitmap)
Stringify a bitmap into a newly allocated taskset-specific string.
The taskset program manipulates bitmap strings that contain a single (possible very long) hexadecimal number starting
with Ox. A bitmap containing bits 1, 33, 34, and all from 64 to 95 is printedas "Oxfffff£££0000000600000002".

Returns

the number of characters that were written (not including the ending \ 0).
-1 on error, for instance with errno set to ENOMEM on failure to allocate the output string.

Note

If the bitmap is a CPU or nodeset, it contains physical indexes. This should be clearly indicated when dis-
playing such bitmaps to end users. See also How do | convert between logical and OS/physical indexes?

24.25.4.44 hwloc_bitmap_taskset_snprintf()

int hwloc_bitmap_taskset_snprintf (

char xrestrict buf,

size_t buflen,

hwloc_const_bitmap_t bitmap)
Stringify a bitmap in the taskset-specific format.
The taskset program manipulates bitmap strings that contain a single (possible very long) hexadecimal number starting
with Ox. A bitmap containing bits 1, 33, 34, and all from 64 to 95 is printed as "0xfffff£££0000000600000002".
Up to buflen characters may be written in buffer buf.
Ifbuflenis 0, buf may safely be NULL.

Returns

the number of characters that were actually written if not truncating, or that would have been written (not including
the ending \ 0).

-1 on error.
Note

If the bitmap is a CPU or nodeset, it contains physical indexes. This should be clearly indicated when dis-
playing such bitmaps to end users. See also How do | convert between logical and OS/physical indexes?

24.25.4.45 hwloc_bitmap_taskset_sscanf()

int hwloc_bitmap_taskset_sscanf (

hwloc_bitmap_t bitmap,

const char *restrict string)
Parse a taskset-specific bitmap string and stores it in bitmap bitmap.
The taskset program manipulates bitmap strings that contain a single (possible very long) hexadecimal number starting
with Ox. String "Oxfffff£££0000000600000002" is parsed as a bitmap containing all bits between 64 and 95,
and bits 33, 34 and 1.

Returns
0 on success, -1 on error.
Note

If the bitmap is a CPU or nodeset, the input string must contain physical indexes.

Generated by Doxygen

178

Topic Documentation

24.25.4.46 hwloc_bitmap_to_ith_ulong()

unsigned long hwloc_bitmap_to_ith_ulong (
hwloc_const_bitmap_t bitmap,
unsigned 1)

Convert the i -th subset of bitmap bitmap into unsigned long mask.

24.25.4.47 hwloc_bitmap_to_ulong()

unsigned long hwloc_bitmap_to_ulong (
hwloc_const_bitmap_t bitmap)
Convert the beginning part of bitmap bitmap into unsigned long mask.

24.25.4.48 hwloc_bitmap_to_ulongs()

int hwloc_bitmap_to_ulongs (

hwloc_const_bitmap_t bitmap,

unsigned nr,

unsigned long * masks)
Convert the first nr subsets of bitmap bitmap into the array of nr unsigned long masks.
nr may be determined earlier with hwloc_bitmap_nr_ulongs().

Returns

0

24.25.4.49 hwloc_bitmap_weight()

int hwloc_bitmap_weight (
hwloc_const_bitmap_t bitmap)
Compute the "weight" of bitmap bitmap (i.e., number of indexes that are in the bitmap).

Returns

the number of indexes that are in the bitmap.
-1 if bitmap is infinitely set.

24.25.4.50 hwloc_bitmap_xor()

int hwloc_bitmap_xor (
hwloc_bitmap_t res,
hwloc_const_bitmap_t bitmapl,
hwloc_const_bitmap_t bitmap2)
Xor bitmaps bitmapl and bitmap2 and store the result in bitmap res.
res can be the same as bitmapl or bitmap?2

24.25.4.51 hwloc_bitmap_zero()

void hwloc_bitmap_zero (
hwloc_bitmap_t bitmap)
Empty the bitmap bitmap.

24.26 Exporting Topologies to XML

Enumerations

» enum hwloc_topology_export_xml_flags_e { HWLOC_TOPOLOGY_EXPORT_XML_FLAG_V1}

Generated by Doxygen

24.26 Exporting Topologies to XML 179

Functions

« int hwloc_topology_export_xml (hwloc_topology_t topology, const char sxmlpath, unsigned long flags)

« int hwloc_topology_export_xmilbuffer (hwloc_topology_t topology, char xxxmlbuffer, int xbuflen, unsigned long
flags)

« void hwloc_free_xmlbuffer (hwloc_topology_t topology, char xxmibuffer)

» void hwloc_topology_set_userdata_export_callback (hwloc_topology_t topology, void(xexport_cb)(void
xreserved, hwloc_topology_t topology, hwloc_obj_t obj))

+ int hwloc_export_obj_userdata (void xreserved, hwloc_topology_t topology, hwloc_obj_t obj, const char xname,
const void xbuffer, size_t length)

« int hwloc_export_obj_userdata_base64 (void xreserved, hwloc_topology_t topology, hwloc_obj_t obj, const char
xname, const void xbuffer, size_t length)

« void hwloc_topology_set_userdata_import_callback (hwloc_topology_t topology, void(ximport_cb)(hwloc_topology_t
topology, hwloc_obj_t obj, const char xname, const void xbuffer, size_t length))

24.26.1 Detailed Description

24.26.2 Enumeration Type Documentation
24.26.2.1 hwloc_topology_export_xml_flags_e

enum hwloc_topology_export_xml_flags_e
Flags for exporting XML topologies.
Flags to be given as a OR'ed set to hwloc_topology_export_xml().

Enumerator

HWLOC_TOPOLOGY_EXPORT_XML_FLAG_V1 | Export XML that is loadable by hwloc v1.x. However, the ex-
port may miss some details about the topology.

24.26.3 Function Documentation
24.26.3.1 hwloc_export_obj_userdata()

int hwloc_export_obj_userdata (

void * reserved,

hwloc_topology_t topology,

hwloc_obj_t obj,

const char *x name,

const void x buffer,

size_t length)
Export some object userdata to XML.
This function may only be called from within the export() callback passed to hwloc_topology_set _userdata_export_callback().
It may be invoked one of multiple times to export some userdata to XML. The buf fer content of length 1ength is
stored with optional name name.
When importing this XML file, the import() callback (if set) will be called exactly as many times as hwloc_export_obj_userdata()
was called during export(). It will receive the corresponding name, buffer and 1length arguments.
reserved, topology and obj must be the first three parameters that were given to the export callback.
Only printable characters may be exported to XML string attributes.
If exporting binary data, the application should first encode into printable characters only (or use hwloc_export_obj_userdata_base64()).
It should also take care of portability issues if the export may be reimported on a different architecture.

Generated by Doxygen

180 Topic Documentation

Returns

0 on success.

-1 with errno set to EINVAL if a non-printable character is passed in name or buffer.

24.26.3.2 hwloc_export_obj_userdata_base64()

int hwloc_export_obj_userdata_base6d (
void * reserved,
hwloc_topology_t topology,
hwloc_obj_t obj,
const char * name,
const void *x buffer,
size_t length)
Encode and export some object userdata to XML.
This function is similar to hwloc_export_obj_userdata() but it encodes the input buffer into printable characters before
exporting. On import, decoding is automatically performed before the data is given to the import() callback if any.
This function may only be called from within the export() callback passed to hwloc_topology_set_userdata_export_callback().
The name must be made of printable characters for export to XML string attributes.
The function does not take care of portability issues if the export may be reimported on a different architecture.

Returns

0 on success.

-1 with errno set to EINVAL if a non-printable character is passed in name.

24.26.3.3 hwloc_free_xmlibuffer()

void hwloc_free_xmlbuffer (
hwloc_topology_t topology,
char *x xmlbuffer)
Free a buffer allocated by hwloc_topology_export_xmlbuffer().

24.26.3.4 hwloc_topology_export_xmil()

int hwloc_topology_export_xml (

hwloc_topology_t topology,

const char * xmlpath,

unsigned long flags)
Export the topology into an XML file.
This file may be loaded later through hwloc_topology_set_xml().
By default, the latest export format is used, which means older hwloc releases (e.g. v1.x) will not be able to import
it. Exporting to v1.x specific XML format is possible using flag HWLOC_TOPOLOGY_EXPORT_XML_FLAG_V1 but it
may miss some details about the topology. If there is any chance that the exported file may ever be imported back by a
process using hwloc 1.x, one should consider detecting it at runtime and using the corresponding export format.
flags is a OR'ed set of hwloc_topology_export_xml_flags_e.

Returns

0 on success, or -1 on error.

Generated by Doxygen

24.26 Exporting Topologies to XML 181

Note

See also hwloc_topology_set_userdata_export_callback() for exporting application-specific object userdata.
The topology-specific userdata pointer is ignored when exporting to XML.

Only printable characters may be exported to XML string attributes. Any other character, especially any non-ASCI|
character, will be silently dropped.

If name is "-", the XML output is sent to the standard output.

24.26.3.5 hwloc_topology_export_xmlbuffer()

int hwloc_topology_export_xmlbuffer (
hwloc_topology_t topology,
char *xx xmlbuffer,
int % buflen,
unsigned long flags)
Export the topology into a newly-allocated XML memory buffer.
xmlbuf fer is allocated by the callee and should be freed with hwloc_free_xmlbuffer() later in the caller.
This memory buffer may be loaded later through hwloc_topology_set_xmilbuffer().
By default, the latest export format is used, which means older hwloc releases (e.g. v1.x) will not be able to import it.
Exporting to v1.x specific XML format is possible using flag HWLOC_TOPOLOGY_EXPORT_XML_FLAG_V1 but it may
miss some details about the topology. If there is any chance that the exported buffer may ever be imported back by a
process using hwloc 1.x, one should consider detecting it at runtime and using the corresponding export format.
The returned buffer ends with a \0 that is included in the returned length.
flags is a OR'ed set of hwloc_topology_export_xml_flags_e.

Returns

0 on success, or -1 on error.

Note

See also hwloc_topology_set_userdata_export_callback() for exporting application-specific object userdata.
The topology-specific userdata pointer is ignored when exporting to XML.

Only printable characters may be exported to XML string attributes. Any other character, especially any non-ASCII
character, will be silently dropped.

24.26.3.6 hwloc_topology_set_userdata_export_callback()

void hwloc_topology_set_userdata_export_callback (

hwloc_topology_t topology,

void (¥ export_cb) (void xreserved, hwloc_topology_t topology, hwloc_obj_t obj))
Set the application-specific callback for exporting object userdata.
The object userdata pointer is not exported to XML by default because hwloc does not know what it contains.
This function lets applications set export_cb to a callback function that converts this opaque userdata into an ex-
portable string.
export_cb is invoked during XML export for each object whose userdata pointer is not NULL. The callback
should use hwloc_export_obj_userdata() or hwloc_export_obj_userdata_base64() to actually export something to XML
(possibly multiple times per object).
export_cb may be set to NULL if userdata should not be exported to XML.

Note

The topology-specific userdata pointer is ignored when exporting to XML.

Generated by Doxygen

182 Topic Documentation

24.26.3.7 hwloc_topology_set_userdata_import_callback()

void hwloc_topology_set_userdata_import_callback (

hwloc_topology_t topology,

void (x import_ch) (hwloc_topology_t topology, hwloc_obj_t obj, const char *name,
const void *buffer, size_t length))
Set the application-specific callback for importing userdata.
On XML import, userdata is ignored by default because hwloc does not know how to store it in memory.
This function lets applications set import_cb to a callback function that will get the XML-stored userdata and store it
in the object as expected by the application.
import_cb is called during hwloc_topology_load() as many times as hwloc_export_obj_userdata() was called during
export. The topology is not entirely setup yet. Object attributes are ready to consult, but links between objects are not.
import_cb may be NULL if userdata should be ignored during import.

Note

buffer contains length characters followed by a null byte (\0').
This function should be called before hwloc_topology_load().

The topology-specific userdata pointer is ignored when importing from XML.

24.27 Exporting Topologies to Synthetic

Enumerations

» enum hwloc_topology_export_synthetic_flags_e { HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_NO_EXTENDED_TYPES
, HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_NO_ATTRS, HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_V1
, HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_IGNORE_MEMORY }

Functions

« int hwloc_topology_export_synthetic (hwloc_topology_t topology, char xbuffer, size_t buflen, unsigned long flags)

24.27.1 Detailed Description

24.27.2 Enumeration Type Documentation
24.27.2.1 hwloc_topology_export_synthetic_flags_e

enum hwloc_topology_export_synthetic_flags_e
Flags for exporting synthetic topologies.
Flags to be given as a OR'ed set to hwloc_topology_export_synthetic().

Enumerator

HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_NO_EXTENDED_TYPES | Export extended types such as
L2dcache as basic types such
as Cache. This is required if
loading the synthetic descrip-
tion with hwloc < 1.9.

Generated by Doxygen

24.27 Exporting Topologies to Synthetic

183

HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_NO_ATTRS

Do not export level attributes.
Ignore level attributes such as
memory/cache sizes or PU in-
dexes. This is required if load-
ing the synthetic description
with hwloc < 1.10.

HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_V1

Export the memory hierarchy
as expected in hwloc 1.
x. Instead of attaching memory
children to levels, export single
NUMA node child as normal in-
termediate levels, when possi-
ble. This is required if loading
the synthetic description with
hwloc 1.x. However this may
fail if some objects have multi-
ple local NUMA nodes.

HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_IGNORE_MEMORY

Do not export memory infor-
mation. Only export the ac-
tual hierarchy of normal CPU-
side objects and ignore where
memory is attached. This is
useful for when the hierarchy
of CPUs is what really matters,
but it behaves as if there was
a single machine-wide NUMA
node.

24.27.3 Function Documentation
24.27.3.1 hwloc_topology_export_synthetic()

int hwloc_topology_export_synthetic (
hwloc_topology_t topology,
char * buffer,
size_t buflen,
unsigned long flags)
Export the topology as a synthetic string.

At most buflen characters will be written in buf fer, including the terminating \0.

This exported string may be given back to hwloc_topology_set_synthetic().
flags is a OR'ed set of hwloc_topology_export_synthetic_flags_e.

Returns

The number of characters that were written, not including the terminating \0.

-1 if the topology could not be exported, for instance if it is not symmetric.

Note

I/0 and Misc children are ignored, the synthetic string only describes normal children.

A 1024-byte buffer should be large enough for exporting topologies in the vast majority of cases.

Generated by Doxygen

184 Topic Documentation

24.28 Retrieve distances between objects

Data Structures

« struct hwloc_distances_s

Enumerations

» enum hwloc_distances_kind_e {
HWLOC_DISTANCES_KIND_FROM_OS , HWLOC_DISTANCES_KIND_FROM_USER , HWLOC_DISTANCES_KIND_MEANS_L.
, HWLOC_DISTANCES_KIND_MEANS_BANDWIDTH ,
HWLOC_DISTANCES_KIND_HETEROGENEOUS_TYPES }

+ enum hwloc_distances_transform_e { HWLOC_DISTANCES_TRANSFORM_REMOVE_NULL , HWLOC_DISTANCES_TRANSFOI
, HWLOC_DISTANCES_TRANSFORM_MERGE_SWITCH_PORTS , HWLOC_DISTANCES_TRANSFORM_TRANSITIVE_CLOSL
1

Functions

« int hwloc_distances_get (hwloc_topology_t topology, unsigned xnr, struct hwloc_distances_s xxdistances, un-
signed long kind, unsigned long flags)

+ int hwloc_distances_get_by_ depth (hwloc_topology_t topology, int depth, unsigned xnr, struct hwloc_distances_s
xxdistances, unsigned long kind, unsigned long flags)

+ int hwloc_distances_get_by type (hwloc_topology t topology, hwloc_obj type t type, unsigned xnr, struct
hwloc_distances_s *xdistances, unsigned long kind, unsigned long flags)

« int hwloc_distances_get_by _name (hwloc_topology_t topology, const char xname, unsigned xnr, struct
hwloc_distances_s *xdistances, unsigned long flags)

« const char * hwloc_distances_get_name (hwloc_topology_t topology, struct hwloc_distances_s *distances)

+ void hwloc_distances_release (hwloc_topology_t topology, struct hwloc_distances_s xdistances)

« int hwloc_distances_transform (hwloc_topology_t topology, struct hwloc_distances_s xdistances, enum
hwloc_distances_transform_e transform, void xtransform_attr, unsigned long flags)

24.28.1 Detailed Description

24.28.2 Enumeration Type Documentation
24.28.2.1 hwloc_distances_kind_e

enum hwloc_distances_kind_e

Kinds of distance matrices.

The kind attribute of struct hwloc_distances_s is a OR'ed set of kinds.

Each distance matrix may have only one kind among HWLOC_DISTANCES_KIND_FROM_x specifying where distance
information comes from, and one kind among HWLOC_DISTANCES_KIND_MEANS_x* specifying whether values are
latencies or bandwidths.

Enumerator
HWLOC_DISTANCES_KIND_FROM_OS These distances were obtained from the operating
system or hardware.
HWLOC_DISTANCES_KIND_FROM_USER These distances were provided by the user.

Generated by Doxygen

24.28 Retrieve distances between objects

185

HWLOC_DISTANCES_KIND_MEANS_LATENCY

Distance values are similar to latencies between ob-
jects. Values are smaller for closer objects, hence
minimal on the diagonal of the matrix (distance be-
tween an object and itself). It could also be the num-
ber of network hops between objects, etc.

HWLOC_DISTANCES_KIND_MEANS_BANDWIDTH

Distance values are similar to bandwidths between
objects. Values are higher for closer objects, hence
maximal on the diagonal of the matrix (distance be-
tween an object and itself). Such values are currently
ignored for distance-based grouping.

HWLOC_DISTANCES_KIND_HETEROGENEOUS_TYPES

This distances structure covers objects of different
types. This may apply to the "NVLinkBandwidth"
structure in presence of a NVSwitch or POWER pro-
cessor NVLink port.

24.28.2.2 hwloc_distances_transform_e

enum hwloc_distances_transform_e
Transformations of distances structures.

Enumerator

HWLOC_DISTANCES TRANSFORM_REMOVE_NULL

Remove NULL objects from the distances

structure. Every object that was replaced with

NULL in the objs array is removed and the

values array is updated accordingly.

At least 2 objects must remain, otherwise

hwloc_distances_transform() will return -1

with errno setto EINVAL.

kind will be updated with or without

HWLOC_DISTANCES_KIND_HETEROGENE
according to the remaining objects.

DUS_TYPES

HWLOC_DISTANCES_TRANSFORM_LINKS

Replace bandwidth values with a number of
links. Usually all values will be either 0 (no
link) or 1 (one link). However some matrices
could get larger values if some pairs of peers
are connected by different numbers of links.
Values on the diagonal are set to 0.

This transformation only applies to bandwidth
matrices.

Generated by Doxygen

186 Topic Documentation

HWLOC_DISTANCES_TRANSFORM_MERGE_SWITCH_PORTS | Merge switches with multiple ports into a sin-
gle object. This currently only applies to
NVSwitches where GPUs seem connected
to different switch ports. Switch ports must
be objects with subtype "NVSwitch" as in the
NVLinkBandwidth matrix.

This transformation will replace all ports
with only the first one, now connected to all
GPUs. Other ports are removed by applying
HWLOC_DISTANCES_TRANSFORM_REMOVE_NULL
internally.

HWLOC_DISTANCES_TRANSFORM_TRANSITIVE_CLOSURE Apply a transitive closure to the matrix to
connect objects across switches. All pairs
of GPUs will be reported as directly con-
nected instead GPUs being only connected
to switches.

Switch ports must be objects with subtype "«
NVSwitch" as in the NVLinkBandwidth matrix.

24.28.3 Function Documentation
24.28.3.1 hwloc_distances_get()

int hwloc_distances_get (

hwloc_topology_t topology,

unsigned * nr,

struct hwloc_distances_s *x distances,

unsigned long kind,

unsigned long flags)
Retrieve distance matrices.
Retrieve distance matrices from the topology into the distances array.
flags is currently unused, should be 0.
kind serves as a filter. If 0, all distance matrices are returned. If it contains some HWLOC_ DISTANCES_KIND«
_FROM_x, only distance matrices whose kind matches one of these are returned. If it contains some HWLOC_+«
DISTANCES_KIND_MEANS_ x, only distance matrices whose kind matches one of these are returned.
On input, nr points to the number of distance matrices that may be stored in distances. On output, nr points to
the number of distance matrices that were actually found, even if some of them couldn't be stored in distances.
Distance matrices that couldn't be stored are ignored, but the function still returns success (0). The caller may find out
by comparing the value pointed by nr before and after the function call.
Each distance matrix returned in the di st ances array should be released by the caller using hwloc_distances_release().

Returns

0 on success, -1 on error.

24.28.3.2 hwloc_distances_get by depth()

int hwloc_distances_get_by_depth (
hwloc_topology_t topology,
int depth,
unsigned * nr,

struct hwloc_distances_s %% distances,

Generated by Doxygen

24.28 Retrieve distances between objects 187

unsigned long kind,

unsigned long flags)
Retrieve distance matrices for object at a specific depth in the topology.
Identical to hwloc_distances_get() with the additional depth filter.

Returns

0 on success, -1 on error.

24.28.3.3 hwloc_distances_get_by name()

int hwloc_distances_get_by_name (
hwloc_topology_t topology,
const char *x name,
unsigned * nr,
struct hwloc_distances_s *x distances,
unsigned long flags)
Retrieve a distance matrix with the given name.
Usually only one distances structure may match a given name.
The name of the most common structure is "NUMALatency". Others include "XGMIBandwidth", "XGMIHops", "XeLink«
Bandwidth", and "NVLinkBandwidth".

Returns

0 on success, -1 on error.

24.28.3.4 hwloc_distances_get_by type()

int hwloc_distances_get_by_type (
hwloc_topology_t topology,
hwloc_obij_type_t type,
unsigned * nr,
struct hwloc_distances_s %% distances,
unsigned long kind,
unsigned long flags)

Retrieve distance matrices for object of a specific type.

Identical to hwloc_distances_get() with the additional t ype filter.

Returns

0 on success, -1 on error.

24.28.3.5 hwloc_distances_get_name()

const char * hwloc_distances_get_name (
hwloc_topology_t topology,
struct hwloc_distances_s *x distances)
Get a description of what a distances structure contains.
For instance "NUMALatency" for hardware-provided NUMA distances (ACPI SLIT), or NULL if unknown.

Returns

the constant string with the name of the distance structure.

Note

The returned name should not be freed by the caller, it belongs to the hwloc library.

Generated by Doxygen

188 Topic Documentation

24.28.3.6 hwloc_distances_release()

void hwloc_distances_release (
hwloc_topology_t topology,
struct hwloc_distances_s * distances)
Release a distance matrix structure previously returned by hwloc_distances_get().

Note

This function is not required if the structure is removed with hwloc_distances_release_remove().

24.28.3.7 hwloc_distances_transform()

int hwloc_distances_transform (
hwloc_topology_t topology,
struct hwloc_distances_s x distances,
enum hwloc_distances_transform_ e transform,
void *x transform attr,
unsigned long flags)
Apply a transformation to a distances structure.
Modify a distances structure that was previously obtained with hwloc_distances_get() or one of its variants.
This modifies the local copy of the distances structures but does not modify the distances information stored inside
the topology (retrieved by another call to hwloc_distances_get() or exported to XML). To do so, one should add a new
distances structure with same name, kind, objects and values (see Add distances between objects) and then remove
this old one with hwloc_distances_release_remove().
transform must be one of the transformations listed in hwloc_distances_transform_e.
These transformations may modify the contents of the objs or values arrays.
transform_attr mustbe NULL for now.
flags must be 0 for now.

Returns

0 on success, -1 on error for instance if flags are invalid.

Note

Objects in distances array objs may be directly modified in place without using hwloc_distances_transform().
One may use hwloc_get_obj_with_same_locality() to easily convert between similar objects of different types.

24.29 Helpers for consulting distance matrices

Functions

« int hwloc_distances_obj_index (struct hwloc_distances_s xdistances, hwloc_obj_t obj)
« int hwloc_distances_obj_pair_values (struct hwloc_distances_s xdistances, hwloc_obj_t obj1, hwloc_obj_t obj2,
hwloc_uint64_t xvalue1to2, hwloc_uint64_t xvalue2to1)

24.29.1 Detailed Description

24.29.2 Function Documentation
24.29.2.1 hwloc_distances_obj_index()

int hwloc_distances_obj_index (
struct hwloc_distances_s * distances,
hwloc_obij_t obj) [inline]

Find the index of an object in a distances structure.

Generated by Doxygen

24.30 Add distances between objects 189

Returns

the index of the object in the distances structure if any.

-1 if object ol j is not involved in structure distances.

24.29.2.2 hwloc_distances_obj_pair_values()

int hwloc_distances_obj_pair_values (
struct hwloc_distances_s *x distances,
hwloc_obj_t objl,
hwloc_obj_t obj2,
hwloc_uint64_t x valueltoZ,
hwloc_uint64_t * valueltol) [inline]
Find the values between two objects in a distance matrices.
The distance from obj1 to obj2 is stored in the value pointed by valuelto2 and reciprocally.

Returns

0 on success.

-1 if object obj1 or obj2 is not involved in structure distances.

24.30 Add distances between objects

Typedefs

* typedef void x hwloc_distances_add_handle_t

Enumerations

» enum hwloc_distances_add_flag_e { HWLOC_DISTANCES_ADD_FLAG_GROUP , HWLOC_DISTANCES_ADD_FLAG_GROUP_|
1

Functions

» hwloc_distances_add_handle_t hwloc_distances_add_create (hwloc_topology_t topology, const char xname, un-
signed long kind, unsigned long flags)

« int hwloc_distances_add_values (hwloc_topology_t topology, hwloc_distances_add_handle_t handle, unsigned
nbobjs, hwloc_obj_t xobjs, hwloc_uint64_t xvalues, unsigned long flags)

« int hwloc_distances_add_commit (hwloc_topology_t topology, hwloc_distances_add_handle_t handle, unsigned
long flags)

24.30.1 Detailed Description

The usual way to add distances is:

hwloc_distances_add_handle_t handle;
int err = -1;
handle = hwloc_distances_add_create (topology, "name", kind, 0);
(handle) {
err = hwloc_distances_add_values (topology, handle, nbobjs, objs, values, 0);
if (lerr)
err = hwloc_distances_add_commit (topology, handle, flags);

}
If erris O at the end, then addition was successful.

Generated by Doxygen

190

Topic Documentation

24.30.2 Typedef Documentation
24.30.2.1 hwloc_distances_add_handle_t

typedef voidx hwloc_distances_add_handle_t

Handle to a new distances structure during its addition to the topology.

24.30.3 Enumeration Type Documentation
24.30.3.1 hwloc_distances_add_flag_e

enum hwloc_distances_add_flag_e
Flags for adding a new distances to a topology.

Enumerator

HWLOC_DISTANCES_ADD_FLAG_GROUP

Try to group objects based on the newly provided
distance information. Grouping is only performed
when the distances structure contains latencies,
and when all objects are of the same type.

HWLOC_DISTANCES_ADD_FLAG_GROUP_INACCURATE

If grouping, consider the distance values as in-
accurate and relax the comparisons during the
grouping algorithms. The actual accuracy may be
modified through the HWLOC_GROUPING+«
_ACCURACY environment variable (see
Environment variables for tweaking hwloc heuristics)

24.30.4 Function Documentation

24.30.4.1 hwloc_distances_add_commit()

int hwloc_distances_add_commit (
hwloc_topology_t topology,
hwloc_distances_add_handle_t handle,
unsigned long flags)

Commit a new distances structure.

This function finalizes the distances structure and inserts in it the topology.
Parameter hand1e was previously returned by hwloc_distances_add_create(). Then objects and values were specified

with hwloc_distances_add_values().

flags configures the behavior of the function using an optional OR'ed set of hwloc_distances_add_flag_e. It may be
used to request the grouping of existing objects based on distances.
On error, the temporary distances structure and its content are destroyed.

Returns

0 on success.

-1 on error.

24.30.4.2 hwloc_distances_add_create()

hwloc_distances_add_handle_t hwloc_distances_add_create (

hwloc_topology_t topology,

const char * name,

Generated by Doxygen

24.31 Remove distances between objects 191

unsigned long kind,

unsigned long flags)
Create a new empty distances structure.
Create an empty distances structure to be filled with hwloc_distances_add_values() and then committed with
hwloc_distances_add_commit().
Parameter name is optional, it may be NULL. Otherwise, it will be copied internally and may later be freed by the caller.
kind specifies the kind of distance as a OR'ed set of hwloc_distances_kind_e. Only one kind of meaning and
one kind of provenance may be given if appropriate (e.g. HWLOC_DISTANCES_KIND_MEANS_BANDWIDTH and
HWLOC_DISTANCES_KIND_FROM_USER). Kind HWLOC_DISTANCES_KIND_HETEROGENEOUS_TYPES will be
automatically set according to objects having different types in hwloc_distances_add_values().
flags must be O for now.

Returns

A hwloc_distances_add_handle_t that should then be passed to hwloc_distances_add_values() and
hwloc_distances_add_commit().

NULL on error.

24.30.4.3 hwloc_distances_add_values()

int hwloc_distances_add_values (
hwloc_topology_t topology,
hwloc_distances_add_handle_t handle,
unsigned nbobjs,
hwloc_obij_t * objs,
hwloc_uint64_t x values,
unsigned long flags)
Specify the objects and values in a new empty distances structure.
Specify the objects and values for a new distances structure that was returned as a handle by hwloc_distances_add_create().
The structure must then be committed with hwloc_distances_add_commit().
The number of objects is nbob js and the array of objects is objs. Distance values are stored as a one-dimension
array in values. The distance from object i to object j is in slot ixnbobjs+j.
nbob js must be at least 2.
Arrays objs and values will be copied internally, they may later be freed by the caller.
On error, the temporary distances structure and its content are destroyed.
flags must be 0 for now.

Returns

0 on success.

-1 on error.

24.31 Remove distances between objects

Functions

« int hwloc_distances_remove (hwloc_topology_t topology)

« int hwloc_distances_remove_by_depth (hwloc_topology_t topology, int depth)

« int hwloc_distances_remove_by_type (hwloc_topology_t topology, hwloc_obj_type_t type)

« int hwloc_distances_release_remove (hwloc_topology_t topology, struct hwloc_distances_s xdistances)

Generated by Doxygen

192 Topic Documentation

24.31.1 Detailed Description

24.31.2 Function Documentation
24.31.2.1 hwloc_distances_release_remove()

int hwloc_distances_release_remove (

hwloc_topology_t topology,

struct hwloc_distances_s *x distances)
Release and remove the given distance matrice from the topology.
This function includes a call to hwloc_distances_release().

Returns

0 on success, -1 on error.

24.31.2.2 hwloc_distances_remove()

int hwloc_distances_remove (
hwloc_topology_t topology)
Remove all distance matrices from a topology.
Remove all distance matrices, either provided by the user or gathered through the OS.
If these distances were used to group objects, these additional Group objects are not removed from the topology.

Returns

0 on success, -1 on error.

24.31.2.3 hwloc_distances_remove_by_depth()

int hwloc_distances_remove_by_depth (
hwloc_topology_t topology,
int depth)
Remove distance matrices for objects at a specific depth in the topology.
Identical to hwloc_distances_remove() but only applies to one level of the topology.

Returns

0 on success, -1 on error.

24.31.2.4 hwloc_distances_remove_by type()

int hwloc_distances_remove_by_type (
hwloc_topology_t topology,
hwloc_obij_type_t type) [inline]
Remove distance matrices for objects of a specific type in the topology.
Identical to hwloc_distances_remove() but only applies to one level of the topology.

Returns

0 on success, -1 on error.

24.32 Comparing memory node attributes for finding where to allocate on

Data Structures

« struct hwloc_location

Generated by Doxygen

24.32 Comparing memory node attributes for finding where to allocate on 193

Typedefs

« typedef unsigned hwloc_memattr_id_t

Enumerations

* enum hwloc_memattr_id_e {
HWLOC_MEMATTR_ID CAPACITY ,HWLOC _MEMATTR_ID LOCALITY ,HWLOC MEMATTR_ID_BANDWIDTH
, HWLOC_MEMATTR_ID_READ_BANDWIDTH ,
HWLOC_MEMATTR_ID_WRITE_BANDWIDTH , HWLOC_MEMATTR_ID_LATENCY , HWLOC MEMATTR_ID_READ_ LATENCY
, HWLOC_MEMATTR_ID_WRITE_LATENCY ,
HWLOC_MEMATTR_ID_MAX}

+ enum hwloc_location_type_e { HWLOC_LOCATION_TYPE_CPUSET , HWLOC_LOCATION_TYPE_OBJECT }

+ enum hwloc_local_numanode_flag_e { HWLOC_LOCAL_NUMANODE_FLAG_LARGER_LOCALITY , HWLOC_LOCAL_NUMANO
, HWLOC LOCAL NUMANODE_FLAG_INTERSECT LOCALITY , HWLOC LOCAL NUMANODE FLAG_ALL

}

Functions

+ int hwloc_memattr_get_by_name (hwloc_topology_t topology, const char xname, hwloc_memattr_id_t *id)

+ int hwloc_get_local_numanode_objs (hwloc_topology_t topology, struct hwloc_location *location, unsigned x*nr,
hwloc_obj_t xnodes, unsigned long flags)

« int hwloc_topology_get_default_nodeset (hwloc_topology_t topology, hwloc_nodeset_t nodeset, unsigned long
flags)

« int hwloc_memattr_get_value (hwloc_topology_t topology, hwloc_memattr_id_t attribute, hwloc_obj_t target_«
node, struct hwloc_location xinitiator, unsigned long flags, hwloc_uint64_t xvalue)

« int hwloc_memattr_get_best_target (hwloc_topology_t topology, hwloc_memattr_id_t attribute, struct
hwloc_location xinitiator, unsigned long flags, hwloc_obj_t xbest_target, hwloc_uint64_t xvalue)

+ int hwloc_memattr_get_best_initiator (hwloc_topology_t topology, hwloc_memattr_id_t attribute, hwloc_obj_t
target_node, unsigned long flags, struct hwloc_location xbest_initiator, hwloc_uint64_t xvalue)

« int hwloc_memattr_get_targets (hwloc_topology_t topology, hwloc_memattr_id_t attribute, struct hwloc_location
xinitiator, unsigned long flags, unsigned xnr, hwloc_obj_t xtargets, hwloc_uint64_t xvalues)

« int hwloc_memattr_get_initiators (hwloc_topology_t topology, hwloc_memattr_id_t attribute, hwloc_obj_t target«—
_node, unsigned long flags, unsigned *nr, struct hwloc_location xinitiators, hwloc_uint64_t xvalues)

24.32.1 Detailed Description

Platforms with heterogeneous memory require ways to decide whether a buffer should be allocated on "fast" memory
(such as HBM), "normal" memory (DDR) or even "slow" but large-capacity memory (non-volatile memory). These
memory nodes are called "Targets" while the CPU accessing them is called the "Initiator". Access performance depends
on their locality (NUMA platforms) as well as the intrinsic performance of the targets (heterogeneous platforms).

The following attributes describe the performance of memory accesses from an Initiator to a memory Target, for instance
their latency or bandwidth. Initiators performing these memory accesses are usually some PUs or Cores (described as
a CPU set). Hence a Core may choose where to allocate a memory buffer by comparing the attributes of different target
memory nodes nearby.

There are also some attributes that are system-wide. Their value does not depend on a specific initiator performing an
access. The memory node Capacity is an example of such attribute without initiator.

One way to use this APl is to start with a cpuset describing the Cores where a program is bound. The best target NUMA
node for allocating memory in this program on these Cores may be obtained by passing this cpuset as an initiator to
hwloc_memattr_get_best_target() with the relevant memory attribute. For instance, if the code is latency limited, use
the Latency attribute.

A more flexible approach consists in getting the list of local NUMA nodes by passing this cpuset to hwloc_get_local_numanode_objs().
Attribute values for these nodes, if any, may then be obtained with hwloc_memattr_get_value() and manually compared
with the desired criteria.

Generated by Doxygen

194 Topic Documentation

Memory attributes are also used internally to build Memory Tiers which provide an easy way to distinguish NUMA nodes
of different kinds, as explained in Heterogeneous Memory.

Beside tiers, hwloc defines a set of "default" nodes where normal memory allocations should be made from (see
hwloc_topology_get_default_nodeset()). This is also useful for dividing the machine into a set of non-overlapping NUMA
domains, for instance for binding tasks per domain.

See also

An example is available in doc/examples/memory-attributes.c in the source tree.

Note

The API also supports specific objects as initiator, but it is currently not used internally by hwloc. Users may for
instance use it to provide custom performance values for host memory accesses performed by GPUs.

The interface actually also accepts targets that are not NUMA nodes.

24.32.2 Typedef Documentation
24.32.2.1 hwloc_memattr_id_t

typedef unsigned hwloc_memattr_id_t

A memory attribute identifier.

hwloc predefines some commonly-used attributes in hwloc_memattr_id_e. One may then dynamically register cus-
tom ones with hwloc_memattr_register(), they will be assigned IDs immediately after the predefined ones. See
Managing memory attributes for more information about existing attribute IDs.

24.32.3 Enumeration Type Documentation
24.32.3.1 hwloc_local_numanode_flag_e

enum hwloc_local_numanode_flag_e

Flags for selecting target NUMA nodes.

Enumerator

HWLOC_LOCAL_NUMANODE_FLAG_LARGER_LOCALITY Select NUMA nodes whose locality is larger
than the given cpuset. For instance, if a sin-
gle PU (or its cpuset) is given in initiator,
select all nodes close to the package that con-
tains this PU.

HWLOC_LOCAL_NUMANODE_FLAG_SMALLER_LOCALITY Select NUMA nodes whose locality is smaller
than the given cpuset. For instance, if a pack-
age (or its cpuset) is given in initiator,
also select nodes that are attached to only a
half of that package.

HWLOC_LOCAL_NUMANODE_FLAG_INTERSECT_LOCALITY | Select NUMA nodes whose locality intersects
the given cpuset. This includes larger and
smaller localities as well as localities that are
partially included. For instance, if the locality is
one core of both packages, a NUMA node lo-
cal to one package is neither larger nor smaller
than this locality, but it intersects it.

Generated by Doxygen

24.32 Comparing memory node attributes for finding where to allocate on 195

HWLOC_LOCAL_NUMANODE_FLAG_ALL Select all NUMA nodes in the topology. The
initiator initiator is ignored.

24.32.3.2 hwloc_location_type_e

enum hwloc_location_type_e
Type of location.

Enumerator

HWLOC_LOCATION_TYPE_CPUSET | Location is given as a cpuset, in the location cpuset union field.
HWLOC_LOCATION_TYPE_OBJECT | Location is given as an object, in the location object union field.

24.32.3.3 hwloc_memattr_id_e

enum hwloc_memattr_id_e
Predefined memory attribute IDs. See hwloc_memattr_id_t for the generic definition of IDs for predefined or custom
attributes.

Enumerator

HWLOC_MEMATTR_ID_CAPACITY The "Capacity" is returned in bytes (local_memory attribute in
objects). Best capacity nodes are nodes with higher capacity.
No initiator is involved when Ilooking at this at-
tribute. The corresponding attribute flags are
HWLOC_MEMATTR_FLAG_HIGHER_FIRST.

Capacity values may not be modified using
hwloc_memattr_set_value().

HWLOC_MEMATTR_ID_LOCALITY The "Locality" is returned as the number of PUs in that locality
(e.g. the weight of its cpuset). Best locality nodes are nodes with
smaller locality (nodes that are local to very few PUs). Poor
locality nodes are nodes with larger locality (nodes that are local
to the entire machine).

No initiator is involved when Ilooking at this at-
tribute. The corresponding attribute flags are
HWLOC_MEMATTR_FLAG_HIGHER_FIRST.

Locality values may not be modified using
hwloc_memattr_set_value().

HWLOC_MEMATTR_ID_BANDWIDTH The "Bandwidth" is returned in MiB/s, as seen from the given
initiator location. Best bandwidth nodes are nodes with higher
bandwidth.

The corresponding attribute flags are
HWLOC_MEMATTR_FLAG_HIGHER_FIRST and
HWLOC_MEMATTR_FLAG_NEED_INITIATOR.

This is the average bandwidth for read and write accesses. If the
platform provides individual read and write bandwidths but no
explicit average value, hwloc computes and returns the average.

Generated by Doxygen

196 Topic Documentation

HWLOC_MEMATTR_ID_READ_BANDWIDTH The "ReadBandwidth" is returned in MiB/s, as seen from the
given initiator location. Best bandwidth nodes are nodes with
higher bandwidth.

The corresponding attribute flags are
HWLOC_MEMATTR_FLAG_HIGHER_FIRST and
HWLOC_MEMATTR_FLAG_NEED_INITIATOR.

HWLOC_MEMATTR_ID_WRITE_BANDWIDTH | The "WriteBandwidth" is returned in MiB/s, as seen from the
given initiator location. Best bandwidth nodes are nodes with
higher bandwidth.

The corresponding attribute flags are

HWLOC_MEMATTR_FLAG_HIGHER_FIRST and

HWLOC_MEMATTR_FLAG_NEED_INITIATOR.
HWLOC_MEMATTR_ID_LATENCY The "Latency" is returned as nanoseconds, as seen from the

given initiator location. Best latency nodes are nodes with
smaller latency.

The corresponding attribute flags are
HWLOC_MEMATTR_FLAG_LOWER_FIRST and
HWLOC_MEMATTR_FLAG_NEED_INITIATOR.

This is the average latency for read and write accesses. If the
platform provides individual read and write latencies but no ex-
plicit average value, hwloc computes and returns the average.

HWLOC_MEMATTR_ID_READ_LATENCY The "ReadLatency"” is returned as nanoseconds, as seen from
the given initiator location. Best latency nodes are nodes with
smaller latency.

The corresponding attribute flags are
HWLOC_MEMATTR_FLAG_LOWER_FIRST and
HWLOC_MEMATTR_FLAG_NEED_INITIATOR.

HWLOC_MEMATTR_ID_WRITE_LATENCY The "WriteLatency" is returned as nanoseconds, as seen from
the given initiator location. Best latency nodes are nodes with
smaller latency.

The corresponding attribute flags are
HWLOC_MEMATTR_FLAG_LOWER_FIRST and
HWLOC_MEMATTR_FLAG_NEED_INITIATOR.

24.32.4 Function Documentation
24.32.4.1 hwloc_get_local_numanode_obijs()

int hwloc_get_local_numanode_objs (

hwloc_topology_t topology,

struct hwloc_location * location,

unsigned * nr,

hwloc_obj_t * nodes,

unsigned long flags)
Return an array of local NUMA nodes.
By default only select the NUMA nodes whose locality is exactly the given 1ocat ion. More nodes may be selected if
additional flags are given as a OR'ed set of hwloc_local_numanode_flag_e.
If location is given as an explicit object, its CPU set is used to find NUMA nodes with the corresponding locality. If
the object does not have a CPU set (e.g. I/0O object), the CPU parent (where the I/O object is attached) is used.
On input, nr points to the number of nodes that may be stored in the nodes array. On output, nr will be changed to
the number of stored nodes, or the number of nodes that would have been stored if there were enough room.

Generated by Doxygen

24.32 Comparing memory node attributes for finding where to allocate on 197

Returns

0 on success or -1 on error.

Note

Some of these NUMA nodes may not have any memory attribute values and hence not be reported as actual
targets in other functions.

The number of NUMA nodes in the topology (obtained by hwloc_bitmap_weight() on the root object nodeset) may
be used to allocate the nodes array.

When an object CPU set is given as locality, for instance a Package, and when flags contain both
HWLOC_LOCAL_NUMANODE_FLAG_LARGER_LOCALITY and HWLOC_LOCAL_NUMANODE_FLAG_SMALLER_LOCALITY,
the returned array corresponds to the nodeset of that object.

24.32.4.2 hwloc_memattr_get_best_initiator()

int hwloc_memattr_get_best_initiator (
hwloc_topology_t topology,
hwloc_memattr_id_t attribute,
hwloc_obj_t target_node,
unsigned long flags,
struct hwloc_location *x best_initiator,
hwloc_uint64_t *x value)
Return the best initiator for the given attribute and target NUMA node.
If value is non NULL, the corresponding value is returned there.
If multiple initiators have the same attribute values, only one is returned (and there is no way to clarify how that one is
chosen). Applications that want to detect initiators with identical/similar values, or that want to look at values for multiple
attributes, should rather get all values using hwloc_memattr_get_value() and manually select the initiator they consider
the best.
The returned initiator should not be modified or freed, it belongs to the topology.
target_node cannot be NULL.
flags must be 0 for now.

Returns

0 on success.
-1 with errno set to ENOENT if there are no matching initiators.

-1 with errno set to EINVAL if the attribute does not relate to a specific initiator (it does not have the flag
HWLOC_MEMATTR_FLAG_NEED_INITIATOR).

24.32.4.3 hwloc_memattr_get_best_target()

int hwloc_memattr_get_best_target (
hwloc_topology_t topology,
hwloc_memattr_id_t attribute,
struct hwloc_location * initiator,
unsigned long flags,
hwloc_obij_t *x best_target,
hwloc_uinto64_t *x value)
Return the best target NUMA node for the given attribute and initiator.
If the attribute does not relate to a specific initiator (it does not have the flag HWLOC_MEMATTR_FLAG_NEED_INITIATOR),
location initiator isignored and may be NULL.
If value is non NULL, the corresponding value is returned there.

Generated by Doxygen

198 Topic Documentation

If multiple targets have the same attribute values, only one is returned (and there is no way to clarify how that one is
chosen). Applications that want to detect targets with identical/similar values, or that want to look at values for multiple
attributes, should rather get all values using hwloc_memattr_get_value() and manually select the target they consider
the best.

flags must be 0 for now.

Returns

0 on success.
-1 with errno set to ENOENT if there are no matching targets.

-1 with errno set to EINVAL if flags are invalid, or no such attribute exists.

Note

The initiator initiator should be of type HWLOC_LOCATION_TYPE_CPUSET when refering to accesses
performed by CPU cores. HWLOC_LOCATION_TYPE_OBJECT is currently unused internally by hwloc, but users
may for instance use it to provide custom information about host memory accesses performed by GPUs.

24.32.4.4 hwloc_memattr_get_by name()

int hwloc_memattr_get_by name (
hwloc_topology_t topology,
const char * name,
hwloc_memattr_id_t *x id)
Return the identifier of the memory attribute with the given name.

Returns

0 on success.

-1 with errno set to EINVAL if no such attribute exists.

24.32.4.5 hwloc_memattr_get_initiators()

int hwloc_memattr_get_initiators (

hwloc_topology_t topology,

hwloc_memattr_id_t attribute,

hwloc_obij_t target_node,

unsigned long flags,

unsigned * nr,

struct hwloc_location % initiators,

hwloc_uint64_t * values)
Return the initiators that have values for a given attribute for a specific target NUMA node.
Return initiators for the given attribute and target node in the initiators array. If values is not NULL, the corre-
sponding attribute values are stored in the array it points to.
On input, nr points to the number of initiators that may be stored in the array initiators (and values). On output,
nr points to the number of initiators (and values) that were actually found, even if some of them couldn't be stored in
the array. Initiators that couldn't be stored are ignored, but the function still returns success (0). The caller may find out
by comparing the value pointed by nr before and after the function call.
The returned initiators should not be modified or freed, they belong to the topology.
target_node cannot be NULL.
flags must be 0 for now.
If the attribute does not relate to a specific initiator (it does not have the flag HWLOC_MEMATTR_FLAG_NEED_INITIATOR),
no initiator is returned.

Generated by Doxygen

24.32 Comparing memory node attributes for finding where to allocate on 199

Returns

0 on success or -1 on error.

Note

This function is meant for tools and debugging (listing internal information) rather than for application queries.
Applications should rather select useful NUMA nodes with hwloc_get_local_numanode_objs() and then look at
their attribute values for some relevant initiators.

24.32.4.6 hwloc_memattr_get_targets()

int hwloc_memattr_get_targets (

hwloc_topology_t topology,

hwloc_memattr_id_t attribute,

struct hwloc_location * initiator,

unsigned long flags,

unsigned * nr,

hwloc_obj_t * targets,

hwloc_uinto64_t *x values)
Return the target NUMA nodes that have some values for a given attribute.
Return targets for the given attribute in the targets array (for the given initiator if any). If values is not NULL, the
corresponding attribute values are stored in the array it points to.
On input, nr points to the number of targets that may be stored in the array targets (and values). On output, nr
points to the number of targets (and values) that were actually found, even if some of them couldn't be stored in the
array. Targets that couldn't be stored are ignored, but the function still returns success (0). The caller may find out by
comparing the value pointed by nr before and after the function call.
The returned targets should not be modified or freed, they belong to the topology.
Argument initiator is ignored if the attribute does not relate to a specific initiator (it does not have the flag
HWLOC_MEMATTR_FLAG_NEED_INITIATOR). Otherwise initiator may be non NULL to report only targets
that have a value for that initiator.
flags must be 0 for now.

Note

This function is meant for tools and debugging (listing internal information) rather than for application queries.
Applications should rather select useful NUMA nodes with hwloc_get_local_numanode_objs() and then look at
their attribute values.

Returns

0 on success or -1 on error.

Note

The initiator initiator should be of type HWLOC_LOCATION_TYPE_CPUSET when referring to accesses
performed by CPU cores. HWLOC_LOCATION_TYPE_OBJECT is currently unused internally by hwloc, but users
may for instance use it to provide custom information about host memory accesses performed by GPUs.

24.32.4.7 hwloc_memattr_get_value()

int hwloc_memattr_get_value (
hwloc_topology_t topology,
hwloc_memattr_id_t attribute,
hwloc_obj_t target_node,

struct hwloc_location *x initiator,

Generated by Doxygen

200 Topic Documentation

unsigned long flags,

hwloc_uint64_t *x value)
Return an attribute value for a specific target NUMA node.
If the attribute does not relate to a specific initiator (it does not have the flag HWLOC_MEMATTR_FLAG_NEED_INITIATOR),
location initiator isignored and may be NULL.
target_node cannot be NULL. If attribute is HWLOC_MEMATTR_ID_CAPACITY, target_node must be a
NUMA node. If it is HWLOC_MEMATTR_ID_LOCALITY, target_node must have a CPU set.
flags must be 0 for now.

Returns

0 on success.

-1 on error, for instance with errno set to EINVAL if flags are invalid or no such attribute exists.

Note

The initiator initiator should be of type HWLOC_LOCATION_TYPE_CPUSET when refering to accesses
performed by CPU cores. HWLOC_LOCATION_TYPE_OBJECT is currently unused internally by hwloc, but users
may for instance use it to provide custom information about host memory accesses performed by GPUs.

24.32.4.8 hwloc_topology_get_default_nodeset()

int hwloc_topology_get_default_nodeset (

hwloc_topology_t topology,

hwloc_nodeset_t nodeset,

unsigned long flags)
Return the set of default NUMA nodes.
In machines with heterogeneous memory, some NUMA nodes are considered the default ones, i.e. where basic alloca-
tions should be made from. These are usually DRAM nodes.
Other nodes may be reserved for specific use (/O device memory, e.g. GPU memory), small but high performance
(HBM), large but slow memory (NVM), etc. Buffers should usually not be allocated from there unless explicitly required.
This function fills node set with the bits of NUMA nodes considered default.
It is guaranteed that these nodes have non-intersecting CPU sets, i.e. cores may not have multiple local NUMA nodes
anymore. Hence this may be used to iterate over the platform divided into separate NUMA localities, for instance for
binding one task per NUMA domain.
Any core that had some local NUMA node(s) in the initial topology should still have one in the default nodeset. Corner
cases where this would be wrong consist in asymmetric platforms with missing DRAM nodes, or topologies that were
already restricted to less NUMA nodes.
The returned nodeset may be passed to hwloc_topology_restrict() with HWLOC_RESTRICT_FLAG_BYNODESET to
remove all non-default nodes from the topology. The resulting topology will be easier to use when iterating over (now
homogeneous) NUMA nodes.
The heuristics for finding default nodes relies on memory tiers and subtypes (see Heterogeneous Memory) as well as
the assumption that hardware vendors list default nodes first in hardware tables.
flags mustbe 0 for now.

Returns

0 on success.

-1 on error.

Note

The returned nodeset usually contains all nodes from a single memory tier, likely the DRAM one.

The returned nodeset is included in the list of available nodes returned by hwloc_topology get_topology_nodeset().
It is strictly smaller if the machine has heterogeneous memory.

The heuristics may return a suboptimal set of nodes if hwloc could not guess memory types and/or if some default
nodes were removed earlier from the topology (e.g. with hwloc_topology_restrict()).

Generated by Doxygen

24.33 Managing memory attributes 201

24.33 Managing memory attributes

Enumerations

« enum hwloc_memattr_flag_e { HWLOC_MEMATTR_FLAG_HIGHER_FIRST = (1UL<<0), HWLOC_MEMATTR_FLAG_LOWER_F
= (1UL<<1), HWLOC_MEMATTR_FLAG_NEED_INITIATOR = (1UL<<2) }

Functions

« int hwloc_memattr_get_name (hwloc_topology_t topology, hwloc_memattr_id_t attribute, const char xxname)

« int hwloc_memattr_get_flags (hwloc_topology_t topology, hwloc_memattr_id_t attribute, unsigned long *flags)

« inthwloc_memattr_register (hwloc_topology_t topology, const char xname, unsigned long flags, hwloc_memattr_id_t
*id)

* int hwloc_memattr_set value (hwloc_topology_t topology, hwloc_memattr_id_t attribute, hwloc_obj_t target_«
node, struct hwloc_location xinitiator, unsigned long flags, hwloc_uint64_t value)

24.33.1 Detailed Description

Memory attribues are identified by an ID (hwloc_memattr_id_t) and a name. hwloc_memattr_get_name() and
hwloc_memattr_get_by name() convert between them (or return error if the attribute does not exist).

The set of valid hwloc_memattr_id_t is a contigous set starting at 0. It first contains predefined attributes, as listed
in hwloc_memattr_id_e (from 0 to HWLOC_MEMATTR_ID_MAX-1). Then custom attributes may be dynamically reg-
istered with hwloc_memattr_register(). They will get the following IDs (HWLOC_MEMATTR_ID_MAX for the first one,
etc.).

To iterate over all valid attributes (either predefined or dynamically registered custom ones), one may iterate over IDs
starting from O until hwloc_memattr_get_name() or hwloc_memattr_get_flags() returns an error.

The values for an existing attribute or for custom dynamically registered ones may be set or modified with
hwloc_memattr_set_value().

24.33.2 Enumeration Type Documentation
24.33.2.1 hwloc_memattr_flag_e

enum hwloc_memattr_flag_ e
Memory attribute flags. Given to hwloc_memattr_register() and returned by hwloc_memattr_get_flags().

Enumerator

HWLOC_MEMATTR_FLAG_HIGHER_FIRST The best nodes for this memory attribute are those with the higher
values. For instance Bandwidth.

HWLOC_MEMATTR_FLAG_LOWER_FIRST The best nodes for this memory attribute are those with the lower
values. For instance Latency.

HWLOC_MEMATTR_FLAG_NEED_INITIATOR | The value returned for this memory attribute depends on the
given initiator. For instance Bandwidth and Latency, but not Ca-
pacity.

24.33.3 Function Documentation
24.33.3.1 hwloc_memattr_get_flags()

int hwloc_memattr_get_flags (
hwloc_topology_t topology,

Generated by Doxygen

202 Topic Documentation

hwloc_memattr_id_t attribute,
unsigned long * flags)
Return the flags of the given attribute.
Flags are a OR'ed set of hwloc_memattr_flag_e.
The output pointer £1ags cannot be NULL.

Returns

0 on success.

-1 with errno set to EINVAL if the attribute does not exist.

24.33.3.2 hwloc_memattr_get_name()

int hwloc_memattr_get_name (
hwloc_topology_t topology,
hwloc_memattr_id_t attribute,
const char x% name)

Return the name of a memory attribute.

The output pointer name cannot be NULL.

Returns

0 on success.

-1 with errno set to EINVAL if the attribute does not exist.

24.33.3.3 hwloc_memattr_register()

int hwloc_memattr_register (

hwloc_topology_t topology,

const char * name,

unsigned long flags,

hwloc_memattr_id_t *x id)
Register a new memory attribute.
Add a new custom memory attribute. Flags are a OR'ed set of hwloc_memattr_flag_e. It must contain one of
HWLOC_MEMATTR_FLAG_HIGHER_FIRST or HWLOC_MEMATTR_FLAG_LOWER_FIRST but not both.
The new attribute id is immediately after the last existing attribute ID (which is either the ID of the last registered
attribute if any, or the ID of the last predefined attribute in hwloc_memattr_id_e).

Returns

0 on success.
-1 with errno set to EINVAL if an invalid set of flags is given.

-1 with errno set to EBUSY if another attribute already uses this name.

24.33.3.4 hwloc_memattr_set_value()

int hwloc_memattr_set_value (
hwloc_topology_t topology,
hwloc_memattr_id_t attribute,
hwloc_obj_t target_node,
struct hwloc_location *x initiator,
unsigned long flags,
hwloc_uinto64_t value)

Set an attribute value for a specific target NUMA node.

Generated by Doxygen

24.34 Kinds of CPU cores 203

If the attribute does not relate to a specific initiator (it does not have the flag HWLOC_MEMATTR_FLAG_NEED_INITIATOR),
location initiator isignored and may be NULL.

The initiator will be copied into the topology, the caller should free anything allocated to store the initiator, for instance
the cpuset.

target_node cannot be NULL.

attribute cannot be HWLOC_MEMATTR_ID_CAPACITY or HWLOC_MEMATTR_ID_LOCALITY.

flags must be 0 for now.

Note

The initiator initiator should be of type HWLOC_LOCATION_TYPE_CPUSET when referring to accesses
performed by CPU cores. HWLOC_LOCATION_TYPE_OBJECT is currently unused internally by hwloc, but users
may for instance use it to provide custom information about host memory accesses performed by GPUs.

Returns

0 on success or -1 on error.

24.34 Kinds of CPU cores

Functions

« int hwloc_cpukinds_get_nr (hwloc_topology_t topology, unsigned long flags)

« int hwloc_cpukinds_get_by_cpuset (hwloc_topology_t topology, hwloc_const_bitmap_t cpuset, unsigned long
flags)

+ int hwloc_cpukinds_get_info (hwloc_topology_t topology, unsigned kind_index, hwloc_bitmap_t cpuset, int
xefficiency, unsigned xnr_infos, struct hwloc_info_s xxinfos, unsigned long flags)

« int hwloc_cpukinds_register (hwloc_topology_t topology, hwloc_bitmap_t cpuset, int forced_efficiency, unsigned
nr_infos, struct hwloc_info_s xinfos, unsigned long flags)

24.34.1 Detailed Description

Platforms with heterogeneous CPUs may have some cores with different features or frequencies. This APl exposes
identical PUs in sets called CPU kinds. Each PU of the topology may only be in a single kind.

The number of kinds may be obtained with hwloc_cpukinds_get_nr(). If the platform is homogeneous, there may be a
single kind with all PUs. If the platform or operating system does not expose any information about CPU cores, there
may be no kind at all.

The index of the kind that describes a given CPU set (if any, and not partially) may be obtained with
hwloc_cpukinds_get_by_cpuset().

From the index of a kind, it is possible to retrieve information with hwloc_cpukinds_get_info(): an abstracted efficiency
value, and an array of info attributes (for instance the "CoreType" and "FrequencyMaxMHz", see CPU Kinds).

A higher efficiency value means greater intrinsic performance (and possibly less performance/power efficiency). Kinds
with lower efficiency values are ranked first: Passing 0 as kind_index to hwloc_cpukinds_get_info() will return
information about the CPU kind with lower performance but higher energy-efficiency. Higher kind_index values
would rather return information about power-hungry high-performance cores.

When available, efficiency values are gathered from the operating system. If so, cpukind_efficiency is setinthe
struct hwloc_topology_discovery_support array. This is currently available on Windows 10, Mac OS X (Darwin), and on
some Linux platforms where core "capacity" is exposed in sysfs.

If the operating system does not expose core efficiencies natively, hwloc tries to compute efficiencies by comparing CPU
kinds using frequencies (on ARM), or core types and frequencies (on other architectures). The environment variable
HWLOC_CPUKINDS_RANKING may be used to change this heuristics, see Environment variables for tweaking hwloc heuristics.
If hwloc fails to rank any kind, for instance because the operating system does not expose efficiencies and core frequen-
cies, all kinds will have an unknown efficiency (- 1), and they are not indexed/ordered in any specific way.

Generated by Doxygen

204

Topic Documentation

24.34.2 Function Documentation
24.34.2.1 hwloc_cpukinds_get_by_cpuset()

int hwloc_cpukinds_get_by_cpuset (
hwloc_topology_t topology,
hwloc_const_bitmap_t cpuset,
unsigned long flags)
Get the index of the CPU kind that contains CPUs listed in cpuset.
flags must be 0 for now.

Returns

The index of the CPU kind (positive integer or 0) on success.

-1 with errno set to EXDEV if cpuset is only partially included in the some kind.
-1 with errno setto ENOENT if cpuset is not included in any kind, even partially.
-1 with errno set to EINVAL if parameters are invalid.

24.34.2.2 hwloc_cpukinds_get_info()

int hwloc_cpukinds_get_info (
hwloc_topology_t topology,
unsigned kind_index,
hwloc_bitmap_t cpuset,
int % efficiency,
unsigned * nr_infos,
struct hwloc_info_s *x infos,
unsigned long flags)
Get the CPU set and infos about a CPU kind in the topology.

kind_index identifies one kind of CPU between 0 and the number of kinds returned by hwloc_cpukinds_get_nr()

minus 1.
If not NULL, the bitmap cpuset will be filled with the set of PUs of this kind.

The integer pointed by ef ficiency, if not NULL will, be filled with the ranking of this kind of CPU in term of efficiency
(see above). It ranges from 0 to the number of kinds (as reported by hwloc_cpukinds_get_nr()) minus 1.

Kinds with lower efficiency are reported first.

If there is a single kind in the topology, its efficiency 0. If the efficiency of some kinds of cores is unknown, the efficiency

of all kinds is set to —1, and kinds are reported in no specific order.

The array of info attributes (for instance the "CoreType", "FrequencyMaxMHz" or "FrequencyBaseMHz", see CPU Kinds)
and its length are returned in infos or nr_infos. The array belongs to the topology, it should not be freed or

modified.
If nr_infosorinfos is NULL, no info is returned.
flags must be O for now.

Returns

0 on success.
-1 with errno set to ENOENT if kind_index does not match any CPU kind.
-1 with errno set to EINVAL if parameters are invalid.

24.34.2.3 hwloc_cpukinds_get_nr()

int hwloc_cpukinds_get_nr (

hwloc_topology_t topology,

unsigned long flags)
Get the number of different kinds of CPU cores in the topology.
flags must be 0 for now.

Generated by Doxygen

24.35 Linux-specific helpers 205

Returns

The number of CPU kinds (positive integer) on success.
0 if no information about kinds was found.

-1 with errno setto EINVAL if flags is invalid.

24.34.2.4 hwloc_cpukinds_register()

int hwloc_cpukinds_register (

hwloc_topology_t topology,

hwloc_bitmap_t cpuset,

int forced _efficiency,

unsigned nr_infos,

struct hwloc_info_s % infos,

unsigned long flags)
Register a kind of CPU in the topology.
Mark the PUs listed in cpuset as being of the same kind with respect to the given attributes.
forced_efficiency should be -1 if unknown. Otherwise it is an abstracted efficiency value to enforce the ranking
of all kinds if all of them have valid (and different) efficiencies.
The array infos of size nr_infos may be used to provide info names and values describing this kind of PUs.
flags must be 0 for now.
Parameters cpuset and infos will be duplicated internally, the caller is responsible for freeing them.
If couset overlaps with some existing kinds, those might get modified or split. For instance if existing kind A contains
PUs 0 and 1, and one registers another kind for PU 1 and 2, there will be 3 resulting kinds: existing kind A is restricted
to only PU 0; new kind B contains only PU 1 and combines information from A and from the newly-registered kind; new
kind C contains only PU 2 and only gets information from the newly-registered kind.

Note

The efficiency forced_efficiency provided to this function may be different from the one reported later by
hwloc_cpukinds_get_info() because hwloc will scale efficiency values down to between 0 and the number of kinds
minus 1.

Returns

0 on success.

-1 with errno set to EINVAL if some parameters are invalid, for instance if cpuset is NULL or empty.

24.35 Linux-specific helpers

Functions

« int hwloc_linux_set_tid_cpubind (hwloc_topology_t topology, pid_t tid, hwloc_const_cpuset_t set)

« int hwloc_linux_get_tid_cpubind (hwloc_topology_t topology, pid_t tid, hwloc_cpuset_t set)

+ int hwloc_linux_get_tid_last_cpu_location (hwloc_topology_t topology, pid_t tid, hwloc_bitmap_t set)
« int hwloc_linux_read_path_as_cpumask (const char xpath, hwloc_bitmap_t set)

24.35.1 Detailed Description

This includes helpers for manipulating Linux kernel cpumap files, and hwloc equivalents of the Linux sched_setaffinity
and sched_getaffinity system calls.

Generated by Doxygen

206 Topic Documentation

24.35.2 Function Documentation
24.35.2.1 hwloc_linux_get_tid_cpubind()

int hwloc_linux_get_tid_cpubind (
hwloc_topology_t topology,
pid_t tid,
hwloc_cpuset_t set)
Get the current binding of thread tid.
The CPU-set set (previously allocated by the caller) is filled with the list of PUs which the thread was last bound to.
The behavior is exactly the same as the Linux sched_getaffinity system call, but uses a hwloc cpuset.

Returns

0 on success, -1 on error.

Note
This is equivalent to calling hwloc_get_proc_cpubind() with HWLOC_CPUBIND_THREAD as flags.

24.35.2.2 hwloc_linux_get_tid_last_cpu_location()

int hwloc_linux_get_tid_last_cpu_location (
hwloc_topology_t topology,
pid_t tid,
hwloc_bitmap_t set)
Get the last physical CPU where thread t id ran.
The CPU-set set (previously allocated by the caller) is filled with the PU which the thread last ran on.

Returns

0 on success, -1 on error.

Note

This is equivalent to calling hwloc_get_proc_last_cpu_location() with HWLOC_CPUBIND_THREAD as flags.

24.35.2.3 hwloc_linux_read_path_as_cpumask()

int hwloc_linux_read_path_as_cpumask (
const char * path,
hwloc_bitmap_t set)
Convert a linux kernel cpumask file path into a hwloc bitmap set.
Might be used when reading CPU set from sysfs attributes such as topology and caches for processors, or local_cpus
for devices.

Returns

0 on success, -1 on error.

Note

This function ignores the HWLOC_FSROOT environment variable.

Generated by Doxygen

24.36 Interoperability with Linux libnuma unsigned long masks 207

24.35.2.4 hwloc_linux_set_tid_cpubind()

int hwloc_linux_set_tid_cpubind (
hwloc_topology_t topology,
pid_t tid,
hwloc_const_cpuset_t set)
Bind a thread t 1d on cpus given in cpuset set.
The behavior is exactly the same as the Linux sched_setaffinity system call, but uses a hwloc cpuset.

Returns

0 on success, -1 on error.

Note
This is equivalent to calling hwloc_set_proc_cpubind() with HWLOC_CPUBIND_THREAD as flags.

24.36 Interoperability with Linux libonuma unsigned long masks

Functions

+ int hwloc_cpuset_to_linux_libnuma_ulongs (hwloc_topology_t topology, hwloc_const_cpuset_t cpuset, unsigned
long *mask, unsigned long *maxnode)

* int hwloc_nodeset_to_linux_libnuma_ulongs (hwloc_topology_t topology, hwloc_const_nodeset t nodeset, un-
signed long *mask, unsigned long xmaxnode)

« int hwloc_cpuset_from_linux_libnuma_ulongs (hwloc_topology_t topology, hwloc_cpuset_t cpuset, const un-
signed long xmask, unsigned long maxnode)

« int hwloc_nodeset_from_linux_libnuma_ulongs (hwloc_topology_t topology, hwloc_nodeset_t nodeset, const un-
signed long xmask, unsigned long maxnode)

24.36.1 Detailed Description

This interface helps converting between Linux libnuma unsigned long masks and hwloc cpusets and nodesets.

Note

Topology topology must match the current machine.

The behavior of libnuma is undefined if the kernel is not NUMA-aware. (when CONFIG_NUMA is not set in the
kernel configuration). This helper and libnuma may thus not be strictly compatible in this case, which may be
detected by checking whether numa_available() returns -1.

24.36.2 Function Documentation
24.36.2.1 hwloc_cpuset_from_linux_libnuma_ulongs()

int hwloc_cpuset_from_linux_libnuma_ulongs (

hwloc_topology_t topology,

hwloc_cpuset_t cpuset,

const unsigned long * mask,

unsigned long maxnode) [inline]
Convert the array of unsigned long ma sk into hwloc CPU set.
mask is a array of unsigned long that will be read. maxnode contains the maximal node number that may be read in
mask.
This function may be used after calling get_mempolicy or any other function that takes an array of unsigned long as
output parameter (and possibly a maximal node number as input parameter).

Generated by Doxygen

208 Topic Documentation

Returns

0 on success.

-1 on error, for instance if failing an internal reallocation.

24.36.2.2 hwloc_cpuset_to_linux_libnuma_ulongs()

int hwloc_cpuset_to_linux_libnuma_ulongs (

hwloc_topology_t topology,

hwloc_const_cpuset_t cpuset,

unsigned long * mask,

unsigned long * maxnode) [inline]
Convert hwloc CPU set cpuset into the array of unsigned long mask.
mask is the array of unsigned long that will be filled. maxnode contains the maximal node number that may be stored
in mask. maxnode will be set to the maximal node number that was found, plus one.
This function may be used before calling set_mempolicy, mbind, migrate_pages or any other function that takes an array
of unsigned long and a maximal node number as input parameter.

Returns

0.

24.36.2.3 hwloc_nodeset_from_linux_libnuma_ulongs()

int hwloc_nodeset_from_linux_libnuma_ulongs (

hwloc_topology_t topology,

hwloc_nodeset_t nodeset,

const unsigned long * mask,

unsigned long maxnode) [inline]
Convert the array of unsigned long ma sk into hwloc NUMA node set.
mask is a array of unsigned long that will be read. maxnode contains the maximal node number that may be read in
mask.
This function may be used after calling get_mempolicy or any other function that takes an array of unsigned long as
output parameter (and possibly a maximal node number as input parameter).

Returns

0 on success.

-1 with errno set to ENOMEM if some internal reallocation failed.

24.36.2.4 hwloc_nodeset_to_linux_libnuma_ulongs()

int hwloc_nodeset_to_linux_libnuma_ulongs (

hwloc_topology_t topology,

hwloc_const_nodeset_t nodeset,

unsigned long * mask,

unsigned long * maxnode) [inline]
Convert hwloc NUMA node set nodeset into the array of unsigned long mask.
mask is the array of unsigned long that will be filled. maxnode contains the maximal node number that may be stored
in mask. maxnode will be set to the maximal node number that was found, plus one.
This function may be used before calling set_mempolicy, mbind, migrate_pages or any other function that takes an array
of unsigned long and a maximal node number as input parameter.

Returns

0.

Generated by Doxygen

24.37 Interoperability with Linux libnuma bitmask 209

24.37 Interoperability with Linux libnuma bitmask

Functions

« struct bitmask * hwloc_cpuset_to_linux_libnuma_bitmask (hwloc_topology_t topology, hwloc_const_cpuset._t
cpuset)

+ struct bitmask * hwloc_nodeset_to_linux_libnuma_bitmask (hwloc_topology_t topology, hwloc_const_nodeset_t
nodeset)

« int hwloc_cpuset_from_linux_libnuma_bitmask (hwloc_topology_t topology, hwloc_cpuset_t cpuset, const struct
bitmask xbitmask)

« int hwloc_nodeset_from_linux_libnuma_bitmask (hwloc_topology_t topology, hwloc_nodeset t nodeset, const
struct bitmask *bitmask)

24.37.1 Detailed Description
This interface helps converting between Linux libnuma bitmasks and hwloc cpusets and nodesets.
Note

Topology topology must match the current machine.

The behavior of libnuma is undefined if the kernel is not NUMA-aware. (when CONFIG_NUMA is not set in the
kernel configuration). This helper and libnuma may thus not be strictly compatible in this case, which may be
detected by checking whether numa_available() returns -1.

24.37.2 Function Documentation
24.37.2.1 hwloc_cpuset_from_linux_libnuma_bitmask()

int hwloc_cpuset_from_linux_libnuma_bitmask (
hwloc_topology_t topology,
hwloc_cpuset_t cpuset,
const struct bitmask *x bitmask) [inline]
Convert libnuma bitmask bitmask into hwloc CPU set cpuset.
This function may be used after calling many numa_ functions that use a struct bitmask as an output parameter.

Returns

0 on success.

-1 with errno set to ENOMEM if some internal reallocation failed.

24.37.2.2 hwloc_cpuset_to_linux_libnuma_bitmask()

struct bitmask * hwloc_cpuset_to_linux_libnuma_bitmask (
hwloc_topology_t topology,
hwloc_const_cpuset_t cpuset) [inline]
Convert hwloc CPU set cpuset into the returned libnuma bitmask.
The returned bitmask should later be freed with numa_bitmask_free.
This function may be used before calling many numa_ functions that use a struct bitmask as an input parameter.

Returns

newly allocated struct bitmask, or NULL on error.

Generated by Doxygen

210 Topic Documentation

24.37.2.3 hwloc_nodeset_from_linux_libnuma_bitmask()

int hwloc_nodeset_from_linux_libnuma_bitmask (
hwloc_topology_t topology,
hwloc_nodeset_t nodeset,
const struct bitmask * bitmask) [inline]
Convert libnuma bitmask bitmask into hwloc NUMA node set nodeset.
This function may be used after calling many numa_ functions that use a struct bitmask as an output parameter.

Returns

0 on success.

-1 with errno set to ENOMEM if some internal reallocation failed.

24.37.2.4 hwloc_nodeset_to_linux_libnuma_bitmask()

struct bitmask * hwloc_nodeset_to_linux_libnuma_bitmask (
hwloc_topology_t topology,
hwloc_const_nodeset_t nodeset) [inline]
Convert hwloc NUMA node set nodeset into the returned libnuma bitmask.
The returned bitmask should later be freed with numa_bitmask_free.
This function may be used before calling many numa_ functions that use a struct bitmask as an input parameter.

Returns

newly allocated struct bitmask, or NULL on error.

24.38 Windows-specific helpers

Functions

« int hwloc_windows_get_nr_processor_groups (hwloc_topology_t topology, unsigned long flags)
« inthwloc_windows_get_processor_group_cpuset (hwloc_topology_t topology, unsigned pg_index, hwloc_cpuset_t
cpuset, unsigned long flags)

24.38.1 Detailed Description

These functions query Windows processor groups. These groups partition the operating system into virtual sets of up
to 64 neighbor PUs. Threads and processes may only be bound inside a single group. Although Windows processor
groups may be exposed in the hwloc hierarchy as hwloc Groups, they are also often merged into existing hwloc objects
such as NUMA nodes or Packages. This API provides explicit information about Windows processor groups so that
applications know whether binding to a large set of PUs may fail because it spans over multiple Windows processor
groups.

24.38.2 Function Documentation
24.38.2.1 hwloc_windows_get_nr_processor_groups()

int hwloc_windows_get_nr_processor_groups (
hwloc_topology_t topology,
unsigned long flags)

Get the number of Windows processor groups.

flags must be 0 for now.

Generated by Doxygen

24.39 Interoperability with glibc sched affinity 211

Returns

at least 1 on success.

-1 on error, for instance if the topology does not match the current system (e.g. loaded from another machine
through XML).

24.38.2.2 hwloc_windows_get_processor_group_cpuset()

int hwloc_windows_get_processor_group_cpuset (
hwloc_topology_t topology,
unsigned pg_index,
hwloc_cpuset_t cpuset,
unsigned long flags)
Get the CPU-set of a Windows processor group.
Get the set of PU included in the processor group specified by pg_index. pg_index must be between 0 and the
value returned by hwloc_windows_get_nr_processor_groups() minus 1.
flags must be 0 for now.

Returns

0 on success.

-1 on error, for instance if pg_index is invalid, or if the topology does not match the current system (e.g. loaded
from another machine through XML).

24.39 Interoperability with glibc sched affinity

Functions

« inthwloc_cpuset_to_glibc_sched_affinity (hwloc_topology_t topology, hwloc_const_cpuset_t hwlocset, cpu_set«
_t xschedset, size_t schedsetsize)

« int hwloc_cpuset_from_glibc_sched_affinity (hwloc_topology_t topology, hwloc_cpuset_t hwlocset, const cpu_«
set_t xschedset, size_t schedsetsize)

24.39.1 Detailed Description

This interface offers ways to convert between hwloc cpusets and glibc cpusets such as those manipulated by sched_«
getaffinity() or pthread_attr_setaffinity_np().

Note

Topology topology must match the current machine.

24.39.2 Function Documentation
24.39.2.1 hwloc_cpuset_from_glibc_sched_affinity()

int hwloc_cpuset_from _glibc_sched_affinity (
hwloc_topology_t topology,
hwloc_cpuset_t hwlocset,
const cpu_set_t *x schedset,
size_t schedsetsize) [inline]
Convert glibc sched affinity CPU set schedset into hwloc CPU set.
This function may be used before calling sched_setaffinity or any other function that takes a cpu_set_t as input param-
eter.
schedsetsize should be sizeof(cpu_set_t) unless schedset was dynamically allocated with CPU_ALLOC

Generated by Doxygen

212 Topic Documentation

Returns

0 on success.

-1 with errno set to ENOMEM if some internal reallocation failed.

24.39.2.2 hwloc_cpuset_to_glibc_sched_affinity()

int hwloc_cpuset_to_glibc_sched_affinity (
hwloc_topology_t topology,
hwloc_const_cpuset_t hwlocset,
cpu_set_t * schedset,
size_t schedsetsize) [inline]
Convert hwloc CPU set toposet into glibc sched affinity CPU set schedset.
This function may be used before calling sched_setaffinity or any other function that takes a cpu_set_t as input param-
eter.
schedsetsize should be sizeof(cpu_set_t) unless schedset was dynamically allocated with CPU_ALLOC

Returns

0.

24.40 Interoperability with OpenCL

Functions

« int hwloc_opencl_get_device_pci_busid (cl_device_id device, unsigned «domain, unsigned xbus, unsigned *deyv,
unsigned *func)

« int hwloc_opencl_get_device_cpuset (hwloc_topology_t topology, cl_device_id device, hwloc_cpuset_t set)

» hwloc_obj_t hwloc_opencl_get_device_osdev_by_index (hwloc_topology t topology, unsigned platform_index,
unsigned device_index)

» hwloc_obj_t hwloc_opencl_get_device_osdev (hwloc_topology_t topology, cl_device_id device)

24.40.1 Detailed Description

This interface offers ways to retrieve topology information about OpenCL devices.
Only AMD and NVIDIA OpenCL implementations currently offer useful locality information about their devices.

24.40.2 Function Documentation
24.40.2.1 hwloc_opencl_get_device_cpuset()

int hwloc_opencl_get_device_cpuset (

hwloc_topology_t topology,

cl_device_id device,

hwloc_cpuset_t set) [inline]
Get the CPU set of processors that are physically close to OpenCL device device.
Store in set the CPU-set describing the locality of the OpenCL device device.
Topology topology and device device must match the local machine. 1/O devices detection and the OpenCL
component are not needed in the topology.
The function only returns the locality of the device. If more information about the device is needed, OS objects should
be used instead, see hwloc_opencl_get_device_osdev() and hwloc_opencl_get_device_osdev_by_index().
This function is currently only implemented in a meaningful way for Linux with the AMD or NVIDIA OpenCL implemen-
tation; other systems will simply get a full cpuset.

Generated by Doxygen

24.40 Interoperability with OpenCL 213

Returns

0 on success.

-1 on error, for instance if the device could not be found.

24.40.2.2 hwloc_opencl_get_device_osdev()

hwloc_obj_t hwloc_opencl_get_device_osdev (
hwloc_topology_t topology,
cl_device_id device) [inline]
Get the hwloc OS device object corresponding to OpenCL device deviceX.

Returns

The hwloc OS device object corresponding to the given OpenCL device device.

NULL if none could be found, for instance if required OpenCL attributes are not available.

This function currently only works on AMD and NVIDIA OpenCL devices that support relevant OpenCL extensions.
hwloc_opencl_get device_osdev_by_index() should be preferred whenever possible, i.e. when platform and device
index are known.

Topology topology and device device must match the local machine. 1/O devices detection and the Open«
CL component must be enabled in the topology. If not, the locality of the object may still be found using
hwloc_opencl_get_device_cpuset().

Note

This function cannot work if PCI devices are filtered out.

The corresponding hwloc PCl device may be found by looking at the result parent pointer (unless PCl devices are
filtered out).

24.40.2.3 hwloc_opencl_get_device_osdev_by_index()

hwloc_obj_t hwloc_opencl_get_device_osdev_by_index (
hwloc_topology_t topology,
unsigned platform index,
unsigned device_index) [inline]
Get the hwloc OS device object corresponding to the OpenCL device for the given indexes.

Returns

The hwloc OS device object describing the OpenCL device whose platform index is plat form_index, and
whose device index within this platform if device_index.

NULL if there is none.

The topology t opology does not necessarily have to match the current machine. For instance the topology may be
an XML import of a remote host. I/O devices detection and the OpenCL component must be enabled in the topology.

Note

The corresponding PCI device object can be obtained by looking at the OS device parent object (unless PCI
devices are filtered out).

Generated by Doxygen

214 Topic Documentation

24.40.2.4 hwloc_opencl_get_device_pci_busid()

int hwloc_opencl_get_device_pci_busid (

cl_device_id device,

unsigned * domain,

unsigned * bus,

unsigned * dev,

unsigned * func) [inline]
Return the domain, bus and device IDs of the OpenCL device device.
Device device must match the local machine.

Returns

0 on success.

-1 on error, for instance if device information could not be found.

24.41 Interoperability with the CUDA Driver API

Functions

« int hwloc_cuda_get_device_pci_ids (hwloc_topology_t topology, CUdevice cudevice, int xdomain, int xbus, int
xdev)

« int hwloc_cuda_get_device_cpuset (hwloc_topology_t topology, CUdevice cudevice, hwloc_cpuset_t set)

» hwloc_obj_t hwloc_cuda_get_device_pcidev (hwloc_topology_t topology, CUdevice cudevice)

» hwloc_obj_t hwloc_cuda_get_device_osdev (hwloc_topology_t topology, CUdevice cudevice)

» hwloc_obj_t hwloc_cuda_get_device_osdev_by_index (hwloc_topology_t topology, unsigned idx)

24.41.1 Detailed Description

This interface offers ways to retrieve topology information about CUDA devices when using the CUDA Driver API.

24.41.2 Function Documentation
24.41.2.1 hwloc_cuda_get_device_cpuset()

int hwloc_cuda_get_device_cpuset (
hwloc_topology_t topology,
CUdevice cudevice,
hwloc_cpuset_t set) [inline]
Get the CPU set of processors that are physically close to device cudevice.
Store in set the CPU-set describing the locality of the CUDA device cudevice.
Topology topology and device cudevice must match the local machine. 1/O devices detection and the CUDA
component are not needed in the topology.
The function only returns the locality of the device. If more information about the device is needed, OS objects should
be used instead, see hwloc_cuda_get_device_osdev() and hwloc_cuda_get_device_osdev_by_index().
This function is currently only implemented in a meaningful way for Linux; other systems will simply get a full cpuset.

Returns

0 on success.

-1 on error, for instance if device information could not be found.

Generated by Doxygen

24.41 Interoperability with the CUDA Driver API 215

24.41.2.2 hwloc_cuda_get_device_osdev()

hwloc_obj_t hwloc_cuda_get_device_osdev (
hwloc_topology_t topology,
CUdevice cudevice) [inline]
Get the hwloc OS device object corresponding to CUDA device cudevice.

Returns

The hwloc OS device object that describes the given CUDA device cudevice.
NULL if none could be found.
Topology topology and device cudevice must match the local machine. 1/O devices detection and the

CUDA component must be enabled in the topology. If not, the locality of the object may still be found using
hwloc_cuda_get_device_cpuset().

Note

This function cannot work if PCI devices are filtered out.

The corresponding hwloc PCl device may be found by looking at the result parent pointer (unless PCl devices are
filtered out).

24.41.2.3 hwloc_cuda_get_device_osdev_by_index()

hwloc_obj_t hwloc_cuda_get_device_osdev_by_index (
hwloc_topology_t topology,
unsigned idx) [inline]
Get the hwloc OS device object corresponding to the CUDA device whose index is idx.

Returns

The hwloc OS device object describing the CUDA device whose index is idx.
NULL if none could be found.

The topology topology does not necessarily have to match the current machine. For instance the topology may be
an XML import of a remote host. I/O devices detection and the CUDA component must be enabled in the topology.

Note

The corresponding PCI device object can be obtained by looking at the OS device parent object (unless PCI
devices are filtered out).

This function is identical to hwloc_cudart_get_device_osdev_by_index().

24.41.2.4 hwloc_cuda_get_device_pci_ids()

int hwloc_cuda_get_device_pci_ids (

hwloc_topology_t topology,

CUdevice cudevice,

int % domain,

int % bus,

int * dev) [inline]
Return the domain, bus and device IDs of the CUDA device cudevice.
Device cudevice must match the local machine.

Returns

0 on success.

-1 on error, for instance if device information could not be found.

Generated by Doxygen

216 Topic Documentation

24.41.2.5 hwloc_cuda_get_device_pcidev()

hwloc_obj_t hwloc_cuda_get_device_pcidev (
hwloc_topology_t topology,
CUdevice cudevice) [inline]
Get the hwloc PCI device object corresponding to the CUDA device cudevice.

Returns

The hwloc PCI device object describing the CUDA device cudevice.
NULL if none could be found.

Topology topology and device cudevice must match the local machine. I/O devices detection must be enabled in
topology topology. The CUDA component is not needed in the topology.

24.42 Interoperability with the CUDA Runtime API

Functions

« int hwloc_cudart_get_device_pci_ids (hwloc_topology_t topology, int idx, int xdomain, int xbus, int xdev)
+ int hwloc_cudart_get_device_cpuset (hwloc_topology_t topology, int idx, hwloc_cpuset_t set)

» hwloc_obj_t hwloc_cudart_get_device_pcidev (hwloc_topology_t topology, int idx)

» hwloc_obj_t hwloc_cudart_get_device_osdev_by_index (hwloc_topology_t topology, unsigned idx)

24.42.1 Detailed Description

This interface offers ways to retrieve topology information about CUDA devices when using the CUDA Runtime API.

24.42.2 Function Documentation
24.42.2.1 hwloc_cudart_get_device_cpuset()

int hwloc_cudart_get_device_cpuset (
hwloc_topology_t topology,
int idx,
hwloc_cpuset_t set) [inline]
Get the CPU set of processors that are physically close to device idx.
Store in set the CPU-set describing the locality of the CUDA device whose index is 1 dx.
Topology topology and device idx must match the local machine. 1/O devices detection and the CUDA component
are not needed in the topology.
The function only returns the locality of the device. If more information about the device is needed, OS objects should
be used instead, see hwloc_cudart_get_device_osdev_by_index().
This function is currently only implemented in a meaningful way for Linux; other systems will simply get a full cpuset.

Returns

0 on success.

-1 on error, for instance if device information could not be found.

24.42.2.2 hwloc_cudart_get_device_osdev_by_index()

hwloc_obj_t hwloc_cudart_get_device_osdev_by_index (
hwloc_topology_t topology,
unsigned idx) [inline]
Get the hwloc OS device object corresponding to the CUDA device whose index is 1idx.

Generated by Doxygen

24.43 Interoperability with the NVIDIA Management Library 217

Returns

The hwloc OS device object describing the CUDA device whose index is idx.
NULL if none could be found.

The topology topology does not necessarily have to match the current machine. For instance the topology may be
an XML import of a remote host. 1/O devices detection and the CUDA component must be enabled in the topology. If
not, the locality of the object may still be found using hwloc_cudart_get_device_cpuset().

Note

The corresponding PCI device object can be obtained by looking at the OS device parent object (unless PCI
devices are filtered out).

This function is identical to hwloc_cuda_get_device_osdev_by_index().

24.42.2.3 hwloc_cudart_get_device_pci_ids()

int hwloc_cudart_get_device_pci_ids (

hwloc_topology_t topology,

int idx,

int * domain,

int % bus,

int * dev) [inline]
Return the domain, bus and device I1Ds of the CUDA device whose index is idx.
Device index idx must match the local machine.

Returns

0 on success.

-1 on error, for instance if device information could not be found.

24.42.2.4 hwloc_cudart_get_device_pcidev()

hwloc_obj_t hwloc_cudart_get_device_pcidev (
hwloc_topology_t topology,
int idx) [inline]
Get the hwloc PCI device object corresponding to the CUDA device whose index is 1dx.

Returns
The hwloc PCI device object describing the CUDA device whose index is 1 dx.

NULL if none could be found.

Topology topology and device i dx must match the local machine. 1/0 devices detection must be enabled in topology
topology. The CUDA component is not needed in the topology.

24.43 Interoperability with the NVIDIA Management Library

Functions

« int hwloc_nvml_get_device_cpuset (hwloc_topology_t topology, nvmlIDevice_t device, hwloc_cpuset_t set)
* hwloc_obj_t hwloc_nvml_get_device_osdev_by_index (hwloc_topology_t topology, unsigned idx)
» hwloc_obj_t hwloc_nvml_get_device_osdev (hwloc_topology_t topology, nvmlIDevice_t device)

Generated by Doxygen

218 Topic Documentation

24.43.1 Detailed Description

This interface offers ways to retrieve topology information about devices managed by the NVIDIA Management Library
(NVML).

24.43.2 Function Documentation
24.43.2.1 hwloc_nvml_get_device_cpuset()

int hwloc_nvml_get_device_cpuset (
hwloc_topology_t topology,
nvmlDevice_t device,
hwloc_cpuset_t set) [inline]
Get the CPU set of processors that are physically close to NVML device device.
Store in set the CPU-set describing the locality of the NVML device device.
Topology t opology and device device must match the local machine. 1/0 devices detection and the NVML compo-
nent are not needed in the topology.
The function only returns the locality of the device. If more information about the device is needed, OS objects should
be used instead, see hwloc_nvml_get_device_osdev() and hwloc_nvml_get_device_osdev_by_index().
This function is currently only implemented in a meaningful way for Linux; other systems will simply get a full cpuset.

Returns

0 on success.

-1 on error, for instance if device information could not be found.

24.43.2.2 hwloc_nvmli_get_device_osdev()

hwloc_obj_t hwloc_nvml_get_device_osdev (
hwloc_topology_t topology,
nvmlDevice_t device) [inline]
Get the hwloc OS device object corresponding to NVML device device.

Returns

The hwloc OS device object that describes the given NVML device device.
NULL if none could be found.

Topology topology and device device must match the local machine. 1/O devices detection and the
NVML component must be enabled in the topology. If not, the locality of the object may still be found using
hwloc_nvml_get_device_cpuset().

Note

The corresponding hwloc PCl device may be found by looking at the result parent pointer (unless PCl devices are
filtered out).

24.43.2.3 hwloc_nvml_get_device_osdev_by_index()

hwloc_obj_t hwloc_nvml_get_device_osdev_by_index (
hwloc_topology_t topology,
unsigned idx) [inline]
Get the hwloc OS device object corresponding to the NVML device whose index is 1 dx.

Generated by Doxygen

24.44 Interoperability with the ROCm SMI Management Library 219

Returns

The hwloc OS device object describing the NVML device whose index is idx.
NULL if none could be found.

The topology topology does not necessarily have to match the current machine. For instance the topology may be
an XML import of a remote host. I/O devices detection and the NVML component must be enabled in the topology.

Note

The corresponding PCI device object can be obtained by looking at the OS device parent object (unless PCI
devices are filtered out).

24.44 Interoperability with the ROCm SMI Management Library

Functions

« int hwloc_rsmi_get_device_cpuset (hwloc_topology_t topology, uint32_t dv_ind, hwloc_cpuset_t set)
» hwloc_obj_t hwloc_rsmi_get_device_osdev_by_index (hwloc_topology_t topology, uint32_t dv_ind)
» hwloc_obj_t hwloc_rsmi_get_device_osdev (hwloc_topology_t topology, uint32_t dv_ind)

24.44.1 Detailed Description

This interface offers ways to retrieve topology information about devices managed by the ROCm SMI Management
Library.

24.44.2 Function Documentation
24.44.2.1 hwloc_rsmi_get_device_cpuset()

int hwloc_rsmi_get_device_cpuset (
hwloc_topology_t topology,
uint32_t dv_ind,
hwloc_cpuset_t set) [inline]
Get the CPU set of logical processors that are physically close to AMD GPU device whose index is dv__ind.
Store in set the CPU-set describing the locality of the AMD GPU device whose index is dv__ind.
Topology topology and device dv__ind must match the local machine. 1/O devices detection and the ROCm SMI
component are not needed in the topology.
The function only returns the locality of the device. If more information about the device is needed, OS objects should
be used instead, see hwloc_rsmi_get_device_osdev() and hwloc_rsmi_get_device_osdev_by_index().
This function is currently only implemented in a meaningful way for Linux; other systems will simply get a full cpuset.

Returns

0 on success.

-1 on error, for instance if device information could not be found.

24.44.2.2 hwloc_rsmi_get _device_osdev()

hwloc_obj_t hwloc_rsmi_get_device_osdev (
hwloc_topology_t topology,
uint32_t dv_ind) [inline]
Get the hwloc OS device object corresponding to AMD GPU device, whose index is dv_ind.

Generated by Doxygen

220 Topic Documentation

Returns
The hwloc OS device object that describes the given AMD GPU, whose index is dv__ind.
NULL if none could be found.

Topology topology and device dv_ind must match the local machine. /O devices detection and the ROCm
SMI component must be enabled in the topology. If not, the locality of the object may still be found using
hwloc_rsmi_get_device_cpuset().

Note

The corresponding hwloc PCl device may be found by looking at the result parent pointer (unless PCl devices are
filtered out).

24.44.2.3 hwloc_rsmi_get_device_osdev_by_index()

hwloc_obj_t hwloc_rsmi_get_device_osdev_by_index (
hwloc_topology_t topology,
uint32_t dv_ind) [inline]
Get the hwloc OS device object corresponding to the AMD GPU device whose index is dv_ind.

Returns
The hwloc OS device object describing the AMD GPU device whose index is dv__ind.

NULL if none could be found.

The topology topology does not necessarily have to match the current machine. For instance the topology may be
an XML import of a remote host. 1/0O devices detection and the ROCm SMI component must be enabled in the topology.

Note

The corresponding PCI device object can be obtained by looking at the OS device parent object (unless PCI
devices are filtered out).

24.45 Interoperability with the oneAPI Level Zero interface.

Functions

« int hwloc_levelzero_get_device_cpuset (hwloc_topology_t topology, ze_device_handle_t device, hwloc_cpuset_t
set)

» int hwloc_levelzero_get_sysman_device_cpuset (hwloc_topology t topology, zes_device_handle_t device,
hwloc_cpuset_t set)

» hwloc_obj_t hwloc_levelzero_get_device_osdev (hwloc_topology_t topology, ze_device_handle_t device)

» hwloc_obj_t hwloc_levelzero_get_sysman_device_osdev (hwloc_topology_t topology, zes_device_handle_t de-
vice)

24.45.1 Detailed Description

This interface offers ways to retrieve topology information about devices managed by the Level Zero API, both for main
Core devices (ZE API) and the Sysman devices (ZES API).

24.45.2 Function Documentation
24.45.2.1 hwloc_levelzero_get_device_cpuset()

int hwloc_levelzero_get_device_cpuset (

hwloc_topology_t topology,

Generated by Doxygen

24.45 Interoperability with the oneAPI Level Zero interface. 221

ze_device_handle_t device,
hwloc_cpuset_t set) [inline]
Get the CPU set of logical processors that are physically close to the Level Zero device device.
Store in set the CPU-set describing the locality of the Level Zero device device.
Topology topology and device device must match the local machine. The Level Zero library must have been
initialized with zelnit(). 1/O devices detection and the Level Zero component are not needed in the topology.
The function only returns the locality of the device. If more information about the device is needed, OS objects should
be used instead, see hwloc_levelzero_get_device_osdev().
This function is currently only implemented in a meaningful way for Linux; other systems will simply get a full cpuset.

Returns

0 on success.

-1 on error, for instance if device information could not be found.

Note

zeDevicePciGetPropertiesExt() must be supported, or the entire machine locality will be returned.

24.45.2.2 hwloc_levelzero_get_device_osdev()

hwloc_obj_t hwloc_levelzero_get_device_osdev (
hwloc_topology_t topology,
ze_device_handle_t device) [inline]
Get the hwloc OS device object corresponding to Level Zero device device.

Returns

The hwloc OS device object that describes the given Level Zero device device.
NULL if none could be found.

Topology topology and device dv_ind must match the local machine. The Level Zero library must have been
initialized with zelnit(). 1/0 devices detection and the Level Zero component must be enabled in the topology. If not, the
locality of the object may still be found using hwloc_levelzero_get_device_cpuset().

Note

If the input ZE device is actually a subdevice, then its parent (root device) is actually translated, i.e. the main hwloc
OS device is returned instead of one of its children.

The corresponding hwloc PCl device may be found by looking at the result parent pointer (unless PCl devices are
filtered out).

zeDevicePciGetPropertiesExt() must be supported.

24.45.2.3 hwloc_levelzero_get_sysman_device_cpuset()

int hwloc_levelzero_get_sysman_device_cpuset (

hwloc_topology_t topology,

zes_device_handle_t device,

hwloc_cpuset_t set) [inline]
Get the CPU set of logical processors that are physically close to the Level Zero Sysman device device.
Store in set the CPU-set describing the locality of the Level Zero device device.
Topology topology and device device must match the local machine. The Level Zero library must have been
initialized with Sysman enabled with zeslnit(). /O devices detection and the Level Zero component are not needed in
the topology.
The function only returns the locality of the device. If more information about the device is needed, OS objects should
be used instead, see hwloc_levelzero_get_device_osdev().
This function is currently only implemented in a meaningful way for Linux; other systems will simply get a full cpuset.

Generated by Doxygen

222 Topic Documentation

Returns

0 on success.

-1 on error, for instance if device information could not be found.

24.45.2.4 hwloc_levelzero_get_sysman_device_osdev()

hwloc_obj_t hwloc_levelzero_get_sysman_device_osdev (
hwloc_topology_t topology,
zes_device_handle_t device) [inline]
Get the hwloc OS device object corresponding to Level Zero Sysman device device.

Returns

The hwloc OS device object that describes the given Level Zero device device.
NULL if none could be found.

Topology topology and device dv_ind must match the local machine. The Level Zero library must have been
initialized with Sysman enabled with zeslInit(). I/O devices detection and the Level Zero component must be enabled in
the topology. If not, the locality of the object may still be found using hwloc_levelzero_get_device_cpuset().

Note

If the input ZES device is actually a subdevice, then its parent (root device) is actually translated, i.e. the main
hwloc OS device is returned instead of one of its children.

The corresponding hwloc PCI device may be found by looking at the result parent pointer (unless PCl devices are
filtered out).

24.46 Interoperability with OpenGL displays

Functions

» hwloc_obj_t hwloc_gl_get_display_osdev_by_port_device (hwloc_topology_t topology, unsigned port, unsigned
device)

» hwloc_obj_t hwloc_gl_get_display_osdev_by name (hwloc_topology_t topology, const char xname)

« int hwloc_gl_get_display_by osdev (hwloc_topology_t topology, hwloc_obj_t osdev, unsigned xport, unsigned
xdevice)

24.46.1 Detailed Description

This interface offers ways to retrieve topology information about OpenGL displays.
Only the NVIDIA display locality information is currently available, using the NV-CONTROL X11 extension and the NVCtrl
library.

24.46.2 Function Documentation
24.46.2.1 hwloc_gl_get_display_by_osdev()

int hwloc_gl_get_display_by_osdev (
hwloc_topology_t topology,
hwloc_obj_t osdev,
unsigned * port,
unsigned * device) [inline]
Get the OpenGL display port and device corresponding to the given hwloc OS object.
Retrieves the OpenGL display port (server) in port and device (screen) in screen that correspond to the given hwloc
OS device object.

Generated by Doxygen

24.47 Interoperability with OpenFabrics 223

Returns

0 on success.

-1 if none could be found.

The topology topology does not necessarily have to match the current machine. For instance the topology may be
an XML import of a remote host. I/O devices detection and the GL component must be enabled in the topology.

24.46.2.2 hwloc_gl_get_display_osdev_by name()

hwloc_obj_t hwloc_gl_get_display_osdev_by_name (
hwloc_topology_t topology,
const char * name) [inline]

Get the hwloc OS device object corresponding to the OpenGL display given by name.
Returns

The hwloc OS device object describing the OpenGL display whose name is name, built as ":port.device" such as
":0.0".
NULL if none could be found.
The topology topology does not necessarily have to match the current machine. For instance the topology may be
an XML import of a remote host. I/O devices detection and the GL component must be enabled in the topology.
Note

The corresponding PCI device object can be obtained by looking at the OS device parent object (unless PCI
devices are filtered out).

24.46.2.3 hwloc_gl_get_display_osdev_by_port_device()

hwloc_obj_t hwloc_gl_get_display_osdev_by_port_device (
hwloc_topology_t topology,
unsigned port,
unsigned device) [inline]

Get the hwloc OS device object corresponding to the OpenGL display given by port and device index.
Returns

The hwloc OS device object describing the OpenGL display whose port (server) is port and device (screen) is
device.

NULL if none could be found.

The topology topology does not necessarily have to match the current machine. For instance the topology may be
an XML import of a remote host. I/O devices detection and the GL component must be enabled in the topology.

Note

The corresponding PCI device object can be obtained by looking at the OS device parent object (unless PCI
devices are filtered out).

24.47 Interoperability with OpenFabrics

Functions

« int hwloc_ibv_get_device_cpuset (hwloc_topology_t topology, struct ibv_device xibdev, hwloc_cpuset_t set)
» hwloc_obj_t hwloc_ibv_get_device_osdev_by_name (hwloc_topology_t topology, const char xibname)
» hwloc_obj_t hwloc_ibv_get_device_osdev (hwloc_topology_t topology, struct ibv_device xibdev)

Generated by Doxygen

224 Topic Documentation

24.47.1 Detailed Description

This interface offers ways to retrieve topology information about OpenFabrics devices (InfiniBand, Omni-Path, usNIC,
etc).

24.47.2 Function Documentation
24.47.2.1 hwloc_ibv_get_device_cpuset()

int hwloc_ibv_get_device_cpuset (
hwloc_topology_t topology,
struct ibv_device * ibdev,
hwloc_cpuset_t set) [inline]
Get the CPU set of processors that are physically close to device ibdev.
Store in set the CPU-set describing the locality of the OpenFabrics device ibdev (InfiniBand, etc).
Topology topology and device ibdev must match the local machine. 1/O devices detection is not needed in the
topology.
The function only returns the locality of the device. If more information about the device is needed, OS objects should
be used instead, see hwloc_ibv_get_device_osdev() and hwloc_ibv_get_device_osdev_by_name().
This function is currently only implemented in a meaningful way for Linux; other systems will simply get a full cpuset.

Returns

0 on success.

-1 on error, for instance if device information could not be found.

24.47.2.2 hwloc_ibv_get_device_osdev()

hwloc_obj_t hwloc_ibv_get_device_osdev (
hwloc_topology_t topology,
struct ibv_device x ibdev) [inline]
Get the hwloc OS device object corresponding to the OpenFabrics device ibdewv.

Returns
The hwloc OS device object describing the OpenFabrics device ibdev (InfiniBand, etc).

NULL if none could be found.

Topology topology and device ibdev must match the local machine. 1/0 devices detection must be enabled in the
topology. If not, the locality of the object may still be found using hwloc_ibv_get_device_cpuset().

Note

The corresponding PCI device object can be obtained by looking at the OS device parent object.

24.47.2.3 hwloc_ibv_get_device_osdev_by_name()

hwloc_obj_t hwloc_ibv_get_device_osdev_by_name (
hwloc_topology_t topology,
const char *x ibname) [inline]
Get the hwloc OS device object corresponding to the OpenFabrics device named ibname.

Generated by Doxygen

24.48 Topology differences 225

Returns

The hwloc OS device object describing the OpenFabrics device (InfiniBand, Omni-Path, usNIC, etc) whose name
is ibname (mIx5_0, hfi1_0, usnic_0, qib0, etc).

NULL if none could be found.

The name ibname is usually obtained from ibv_get_device_name().
The topology topology does not necessarily have to match the current machine. For instance the topology may be
an XML import of a remote host. I/O devices detection must be enabled in the topology.

Note

The corresponding PCI device object can be obtained by looking at the OS device parent object.

24.48 Topology differences

Data Structures

« union hwloc_topology_diff_obj_attr _u
* union hwloc_topology_diff_u

Typedefs

« typedef enum hwloc_topology_diff_obj_attr_type e hwloc_topology_diff obj_attr_type t
« typedef enum hwloc_topology_diff_type_e hwloc_topology_diff_type t
« typedef union hwloc_topology_diff_u * hwloc_topology_diff t

Enumerations

» enum hwloc_topology_diff_obj_attr_type_e { HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_SIZE , HWLOC_TOPOLOGY_DIFF_OBJ_A
, HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_INFO }

» enum hwloc_topology_diff type e { HWLOC_TOPOLOGY_DIFF_OBJ_ATTR, HWLOC_TOPOLOGY_DIFF_TOO_COMPLEX
1

» enum hwloc_topology_diff apply_flags_e { HWLOC_TOPOLOGY_DIFF_APPLY_REVERSE }

Functions

+ int hwloc_topology_diff_build (hwloc_topology_t topology, hwloc_topology t newtopology, unsigned long flags,
hwloc_topology_diff_t «diff)

« int hwloc_topology_diff_apply (hwloc_topology_t topology, hwloc_topology_diff t diff, unsigned long flags)

« int hwloc_topology_diff_destroy (hwloc_topology_diff_t diff)

« int hwloc_topology_diff_load_xml (const char «xmlpath, hwloc_topology_diff_t xdiff, char xxrefname)

« int hwloc_topology_diff_export_xml (hwloc_topology_diff_t diff, const char xrefname, const char «xmlpath)

 int hwloc_topology_diff load_xmlbuffer (const char sxmlbuffer, int buflen, hwloc_topology_diff t *diff, char
xxrefname)

« int hwloc_topology_diff_export_xmlbuffer (hwloc_topology_diff_t diff, const char xrefname, char xxxmlbuffer, int
xbuflen)

24.48.1 Detailed Description

Applications that manipulate many similar topologies, for instance one for each node of a homogeneous cluster, may
want to compress topologies to reduce the memory footprint.

This file offers a way to manipulate the difference between topologies and export/import it to/from XML. Compression
may therefore be achieved by storing one topology entirely while the others are only described by their differences with

Generated by Doxygen

226

Topic Documentation

the former. The actual topology can be reconstructed when actually needed by applying the precomputed difference to

the reference topology.

This interface targets very similar nodes. Only very simple differences between topologies are actually supported, for
instance a change in the memory size, the name of the object, or some info attribute. More complex differences such as
adding or removing objects cannot be represented in the difference structures and therefore return errors. Differences
between object sets or topology-wide allowed sets, cannot be represented either.

It means that there is no need to apply the difference when looking at the tree organization (how many levels, how many
objects per level, what kind of objects, CPU and node sets, etc) and when binding to objects. However the difference
must be applied when looking at object attributes such as the name, the memory size or info attributes.

24.48.2 Typedef Documentation
24.48.2.1 hwloc_topology_diff_obj_attr_type_t

typedef enum hwloc_topology_diff_ obj_attr_type_e hwloc_topology_diff_obj_attr_type_t

Type of one object attribute difference.

24.48.2.2 hwloc_topology_diff_t

typedef union hwloc_topology_diff_ u * hwloc_topology_ diff t
One element of a difference list between two topologies.

24.48.2.3 hwloc_topology_diff_type_t

typedef enum hwloc_topology_diff type_e hwloc_topology_diff_ type_t

Type of one element of a difference list.

24.48.3 Enumeration Type Documentation

24.48.3.1 hwloc_topology_diff_apply_flags_e

enum hwloc_topology_diff apply_flags_e
Flags to be given to hwloc_topology_diff_apply().

Enumerator

HWLOC_TOPOLOGY_DIFF_APPLY_REVERSE

Apply topology diff in reverse direction.

24.48.3.2 hwloc_topology_diff obj_attr_type_e

enum hwloc_topology_diff obj_attr_type_e
Type of one object attribute difference.

Enumerator

HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_SIZE

The object local memory is modified. = The union is a
hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_ui
(and the index field is ignored).

ni64 s

HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_NAME

The object name is modified. The wunion is a
hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_st
(and the name field is ignored).

ring_s

Generated by Doxygen

24.48 Topology differences 227

HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_INFO the value of an info attribute is modified. The union is a
hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_stfing_s.

24.48.3.3 hwloc_topology_diff type_e

enum hwloc_topology_diff_type_e
Type of one element of a difference list.

Enumerator

HWLOC_TOPOLOGY_DIFF_OBJ_ATTR An object attribute was changed. The wunion is a
hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s.

HWLOC_TOPOLOGY_DIFF_TOO_COMPLEX | The difference is too complex, it cannot be represented.
The difference below this object has not been checked.
hwloc_topology_diff_build() will return 1. The union is a
hwloc_topology_diff_u::hwloc_topology_diff_too_complex_s.

24.48.4 Function Documentation
24.48.4.1 hwloc_topology_diff_apply()

int hwloc_topology_diff_apply (
hwloc_topology_t topology,
hwloc_topology_diff_t diff,
unsigned long flags)
Apply a topology diff to an existing topology.
flags is an OR'ed set of hwloc_topology_diff _apply_flags_e.
The new topology is modified in place. hwloc_topology_dup() may be used to duplicate it before patching.
If the difference cannot be applied entirely, all previous applied elements are unapplied before returning.

Returns

0 on success.

-N if applying the difference failed while trying to apply the N-th part of the difference. For instance -1 is returned
if the very first difference element could not be applied.

24.48.4.2 hwloc_topology_diff_build()

int hwloc_topology_diff build (

hwloc_topology_t topology,

hwloc_topology_t newtopology,

unsigned long flags,

hwloc_topology_diff_t x diff)
Compute the difference between 2 topologies.
The difference is stored as a list of hwloc_topology_diff_t entries starting at di f . It is computed by doing a depth-first
traversal of both topology trees simultaneously.
If the difference between 2 objects is too complex to be represented (for instance if some objects have different types,
or different numbers of children), a special diff entry of type HWLOC_TOPOLOGY_DIFF_TOO_COMPLEX is queued.
The computation of the diff does not continue below these objects. So each such diff entry means that the difference
between two subtrees could not be computed.

Generated by Doxygen

228 Topic Documentation

Returns

0 if the difference can be represented properly.
0 with dif £ pointing to NULL if there is no difference between the topologies.
1 if the difference is too complex (see above). Some entries in the list will be of type HWLOC_TOPOLOGY_DIFF_TOO_COMPLEX.

-1 on any other error.

Note

flags is currently not used. It should be 0.
The output diff has to be freed with hwloc_topology_diff_destroy().

The output diff can only be exported to XML or passed to hwloc_topology_diff_apply() if 0 was returned, i.e. if no
entry of type HWLOC_TOPOLOGY_DIFF_TOO_COMPLEX is listed.

The output diff may be modified by removing some entries from the list. The removed entries should be freed by
passing them to to hwloc_topology_diff_destroy() (possible as another list).

24.48.4.3 hwloc_topology_diff_destroy()

int hwloc_topology_diff_destroy (
hwloc_topology_diff_t diff)
Destroy a list of topology differences.

Returns

0.

24.48.4.4 hwloc_topology_diff_export_xml()

int hwloc_topology_diff_ export_xml (

hwloc_topology_diff_t diff,

const char x refname,

const char * xmlpath)
Export a list of topology differences to a XML file.
If not NULL, refname defines an identifier string for the reference topology which was used as a base when computing
this difference. This identifier is usually the name of the other XML file that contains the reference topology. This attribute
is given back when reading the diff from XML.

Returns

0 on success, -1 on error.

24.48.4.5 hwloc_topology_diff_export_xmlbuffer()

int hwloc_topology_diff_ export_xmlbuffer (

hwloc_topology_diff_t diff,

const char x refname,

char *xx xmlbuffer,

int * buflen)
Export a list of topology differences to a XML buffer.
If not NULL, re fname defines an identifier string for the reference topology which was used as a base when computing
this difference. This identifier is usually the name of the other XML file that contains the reference topology. This attribute
is given back when reading the diff from XML.
The returned buffer ends with a \ 0 that is included in the returned length.

Generated by Doxygen

24.49 Sharing topologies between processes 229

Returns

0 on success, -1 on error.

Note

The XML buffer should later be freed with hwloc_free_xmlbuffer().

24.48.4.6 hwloc_topology_diff load_xml()

int hwloc_topology_diff_load_xml (
const char * xmlpath,
hwloc_topology_diff_t x diff,
char *x refname)
Load a list of topology differences from a XML file.
If not NULL, re fname will be filled with the identifier string of the reference topology for the difference file, if any was
specified in the XML file. This identifier is usually the name of the other XML file that contains the reference topology.

Returns

0 on success, -1 on error.

Note

the pointer returned in refname should later be freed by the caller.

24.48.4.7 hwloc_topology_diff load_xmlbuffer()

int hwloc_topology_diff_ load_xmlbuffer (

const char x xmlbuffer,

int buflen,

hwloc_topology_diff_t *x diff,

char **x refname)
Load a list of topology differences from a XML buffer.
Build a list of differences from the XML memory buffer given at xm1buf fer and of length buflen (including an ending
\ 0). This buffer may have been filled earlier with hwloc_topology_diff export_xmlbuffer().
If not NULL, refname will be filled with the identifier string of the reference topology for the difference file, if any was
specified in the XML file. This identifier is usually the name of the other XML file that contains the reference topology.

Returns

0 on success, -1 on error.

Note

the pointer returned in refname should later be freed by the caller.

24.49 Sharing topologies between processes

Functions

« int hwloc_shmem_topology_get_length (hwloc_topology_t topology, size_t xlengthp, unsigned long flags)

« int hwloc_shmem_topology write (hwloc_topology_t topology, int fd, hwloc_uint64_t fileoffset, void *smmap_+
address, size_t length, unsigned long flags)

« int hwloc_shmem_topology_adopt (hwloc_topology_t xtopologyp, int fd, hwloc_uint64_t fileoffset, void xmmap«
_address, size_t length, unsigned long flags)

Generated by Doxygen

230 Topic Documentation

24.49.1 Detailed Description

These functions are used to share a topology between processes by duplicating it into a file-backed shared-memory

buffer.

The master process must first get the required shared-memory size for storing this topology with hwloc_shmem_topology_get_length().
Then it must find a virtual memory area of that size that is available in all processes (identical virtual addresses in all

processes). On Linux, this can be done by comparing holes found in /proc/<pid>/maps for each process.

Once found, it must open a destination file for storing the buffer, and pass it to hwloc_shmem_topology_write() together

with virtual memory address and length obtained above.

Other processes may then adopt this shared topology by opening the same file and passing it to hwloc_shmem_topology_adopt()

with the exact same virtual memory address and length.

24.49.2 Function Documentation
24.49.2.1 hwloc_shmem_topology adopt()

int hwloc_shmem_topology_adopt (

hwloc_topology_t * topologyp,

int f£d,

hwloc_uintod4_t fileoffset,

void * mmap_address,

size_t Ilength,

unsigned long flags)
Adopt a shared memory topology stored in a file.
Map a file in virtual memory and adopt the topology that was previously stored there with hwloc_shmem_topology_write().
The returned adopted topology in topologyp can be used just like any topology. And it must be destroyed with
hwloc_topology_destroy() as usual.
However the topology is read-only. For instance, it cannot be modified with hwloc_topology_restrict() and object userdata
pointers cannot be changed.
The segment of the file pointed by descriptor £d, starting at offset fileoffset, and of length Length (in bytes), will
be mapped at virtual address mmap_address.
The file pointed by descriptor £d, the offset fileoffset, the requested mapping virtual address mmap_address
and the length Length must be identical to what was given to hwloc_shmem_topology_write() earlier.

Note

Flags f1ags are currently unused, must be 0.

The object userdata pointer should not be used unless the process that created the shared topology also placed
userdata-pointed buffers in shared memory.

This function takes care of calling hwloc_topology_abi_check().

Returns

0 on success.

-1 with errno set to EBUSY if the virtual memory mapping defined by mmap_address and Length isn't available
in the process.

-1 witherrno setto EINVALif fileoffset,mmap_address or length aren't page-aligned, or do not match
what was given to hwloc_shmem_topology_write() earlier.

-1 with errno set to EINVAL if the layout of the topology structure is different between the writer process and the
adopter process.

24.49.2.2 hwloc_shmem_topology_get_length()

int hwloc_shmem_topology_get_length (
hwloc_topology_t topology,

Generated by Doxygen

24.50 Components and Plugins: Discovery components and backends 231

size_t * lengthp,
unsigned long flags)
Get the required shared memory length for storing a topology.
This length (in bytes) must be used in hwloc_shmem_topology_write() and hwloc_shmem_topology_adopt() later.

Returns

the length, or -1 on error, for instance if flags are invalid.

Note

Flags f1ags are currently unused, must be 0.

24.49.2.3 hwloc_shmem_topology_write()

int hwloc_shmem_topology_write (
hwloc_topology_t topology,
int f£d,
hwloc_uint64_t fileoffset,
void * mmap_address,
size_t length,
unsigned long flags)
Duplicate a topology to a shared memory file.
Temporarily map a file in virtual memory and duplicate the topology t opology by allocating duplicates in there.
The segment of the file pointed by descriptor £d, starting at offset fileoffset, and of length Length (in bytes), will
be temporarily mapped at virtual address mmap_address during the duplication.
The mapping length 1ength must have been previously obtained with hwloc_shmem_topology_get_length() and the
topology must not have been modified in the meantime.

Note

Flags f1ags are currently unused, must be 0.

The object userdata pointer is duplicated but the pointed buffer is not. However the caller may also allocate it
manually in shared memory to share it as well.

Returns

0 on success.

-1 with errno set to EBUSY if the virtual memory mapping defined by mmap_address and Length isn't available
in the process.

-1 with errno setto EINVAL if fileoffset, mmap_address or length aren't page-aligned.

24.50 Components and Plugins: Discovery components and backends

Data Structures

« struct hwloc_disc_component
 struct hwloc_disc_status
« struct hwloc_backend

Typedefs

 typedef enum hwloc_disc_phase_e hwloc_disc_phase_t

Generated by Doxygen

232 Topic Documentation

Enumerations

» enum hwloc_disc_phase_e {
HWLOC_DISC_PHASE_GLOBAL , HWLOC DISC_PHASE_CPU , HWLOC_DISC PHASE _MEMORY ,
HWLOC_DISC_PHASE_PCI,
HWLOC_DISC_PHASE IO, HWLOC_DISC PHASE_MISC,HWLOC_DISC PHASE_ANNOTATE , HWLOC DISC PHASE_ TWE

1
» enum hwloc_disc_status_flag_e { HWLOC_DISC_STATUS_FLAG_GOT_ALLOWED_RESOURCES }
Functions

« struct hwloc_backend * hwloc_backend_alloc (struct hwloc_topology *topology, struct hwloc_disc_component
xcomponent)
« int hwloc_backend_enable (struct hwloc_backend xbackend)

24.50.1 Detailed Description

Note

These structures and functions may change when HWLOC_COMPONENT_ABI is modified.

24.50.2 Typedef Documentation

24.50.2.1 hwloc_disc_phase_t

typedef enum hwloc_disc_phase_e hwloc_disc_phase_t
Discovery phase.

24.50.3 Enumeration Type Documentation
24.50.3.1 hwloc_disc_phase_e

enum hwloc_disc_phase_e
Discovery phase.

Enumerator

HWLOC_DISC_PHASE_GLOBAL xml or synthetic, platform-specific components such as bgq. Discovers ev-
erything including CPU, memory, 1/0O and everything else. A component
with a Global phase usually excludes all other phases.

HWLOC_DISC_PHASE_CPU CPU discovery.

HWLOC_DISC_PHASE_MEMORY Attach memory to existing CPU objects.

HWLOC_DISC_PHASE_PCI Attach PCI devices and bridges to existing CPU objects.

HWLOC_DISC_PHASE_IO I/O discovery that requires PCI devices (OS devices such as OpenCL,
CUDA, etc.).

HWLOC_DISC_PHASE_MISC Misc objects that gets added below anything else.

HWLOC_DISC_PHASE_ANNOTATE | Annotating existing objects, adding distances, etc.

HWLOC_DISC_PHASE_TWEAK Final tweaks to a ready-to-use topology. This phase runs once the topology

is loaded, before it is returned to the topology. Hence it may only use the
main hwloc API for modifying the topology, for instance by restricting it,
adding info attributes, etc.

Generated by Doxygen

24.51 Components and Plugins: Generic components 233

24.50.3.2 hwloc_disc_status_flag_e

enum hwloc_disc_status_flag_e
Discovery status flags.

Enumerator

HWLOC_DISC_STATUS_FLAG_GOT_ALLOWED_RESOURCES | The sets of allowed resources were already re-
trieved.

24.50.4 Function Documentation
24.50.4.1 hwloc_backend_alloc()

struct hwloc_backend * hwloc_backend_alloc (
struct hwloc_topology * topology,
struct hwloc_disc_component * component)
Allocate a backend structure, set good default values, initialize backend->component and topology, etc. The caller will
then modify whatever needed, and call hwloc_backend_enable().
24.50.4.2 hwloc_backend_enable()

int hwloc_backend_enable (
struct hwloc_backend % backend)
Enable a previously allocated and setup backend.

24.51 Components and Plugins: Generic components

Data Structures

« struct hwloc_component

Typedefs

« typedef enum hwloc_component_type_e hwloc_component_type t

Enumerations
« enum hwloc_component_type_e { HWLOC_COMPONENT_TYPE_DISC , HWLOC_COMPONENT_TYPE_XML
1
Functions

« int hwloc_plugin_check_namespace (const char xpluginname, const char xsymbol)

24.51.1 Detailed Description
Note

These structures and functions may change when HWLOC_COMPONENT_ABI is modified.

Generated by Doxygen

234 Topic Documentation

24.51.2 Typedef Documentation

24.51.2.1 hwloc_component_type_t

typedef enum hwloc_component_type_e hwloc_component_type_t
Generic component type.

24.51.3 Enumeration Type Documentation

24.51.3.1 hwloc_component_type_e

enum hwloc_component_type_e
Generic component type.

Enumerator

HWLOC_COMPONENT_TYPE_DISC | The data field must point to a struct hwloc_disc_component.
HWLOC_COMPONENT_TYPE_XML | The data field must point to a struct hwloc_xml_component.

24.51.4 Function Documentation
24.51.4.1 hwloc_plugin_check_namespace()

int hwloc_plugin_check_namespace (
const char * pluginname,
const char * symbol) [inline]
Make sure that plugins can lookup core symbols.
This is a sanity check to avoid lazy-lookup failures when libhwloc is loaded within a plugin, and later tries to load its own
plugins. This may fail (and abort the program) if libhwloc symbols are in a private namespace.

Returns

0 on success.

-1 if the plugin cannot be successfully loaded. The caller plugin init() callback should return a negative error code
as well.

Plugins should call this function in their init() callback to avoid later crashes if lazy symbol resolution is used by the upper
layer that loaded hwloc (e.g. OpenCL implementations using dlopen with RTLD_LAZY).

Note

The build system must define HWLOC_INSIDE_PLUGIN if and only if building the caller as a plugin.

This function should remain inline so plugins can call it even when they cannot find libhwloc symbols.

24.52 Components and Plugins: Core functions to be used by components

Macros

- #define HWLOC_SHOW_CRITICAL_ERRORS()
. #define HWLOC_SHOW_ALL_ERRORS()

Functions

* int hwloc_hide_errors (void)

Generated by Doxygen

24.52 Components and Plugins: Core functions to be used by components 235

» hwloc_obj_t hwloc__insert_object_by cpuset (struct hwloc_topology *topology, hwloc_obj_t root, hwloc_obj_t
obj, const char xreason)

+ void hwloc_insert_object_by_parent (struct hwloc_topology *xtopology, hwloc_obj_t parent, hwloc_obj_t obj)

» hwloc_obj_t hwloc_alloc_setup_object (hwloc_topology_t topology, hwloc_obj_type_t type, unsigned os_index)

* int hwloc_obj_add_children_sets (hwloc_obj_t obj)

« int hwloc_topology_reconnect (hwloc_topology_t topology, unsigned long flags)

24.52.1 Detailed Description
Note

These structures and functions may change when HWLOC_COMPONENT_ABI is modified.

24.52.2 Macro Definition Documentation
24.52.2.1 HWLOC_SHOW_ALL_ERRORS

#define HWLOC_SHOW_ALL_ERRORS ()
Value:

(hwloc_hide_errors () == 0)

24.52.2.2 HWLOC_SHOW_CRITICAL_ERRORS

#define HWLOC_SHOW_CRITICAL_ERRORS ()
Value:

(hwloc_hide_errors () < 2)

24.52.3 Function Documentation
24.52.3.1 hwloc__insert_object_by cpuset()

hwloc_obj_t hwloc__insert_object_by_cpuset (
struct hwloc_topology * topology,
hwloc_obij_t root,
hwloc_obj_t obj,
const char *x reason)
Add an object to the topology.
Insert new object ob j in the topology starting under existing object root (if NULL, the topology root object is used).
It is sorted along the tree of other objects according to the inclusion of cpusets, to eventually be added as a child of the
smallest object including this object.
If the cpuset is empty, the type of the object (and maybe some attributes) must be enough to find where to insert the
object. This is especially true for NUMA nodes with memory and no CPUs.
The given object should not have children.
This shall only be called before levels are built.
The caller should check whether the object type is filtered-out before calling this function.
The topology cpuset/nodesets will be enlarged to include the object sets.
reason is a unique string identifying where and why this insertion call was performed (it will be displayed in case of
internal insertion error).
Returns the object on success. Returns NULL and frees obj on error. Returns another object and frees obj if it was
merged with an identical pre-existing object.

24.52.3.2 hwloc_alloc_setup_object()

hwloc_obj_t hwloc_alloc_setup_object (
hwloc_topology_t topology,

Generated by Doxygen

236 Topic Documentation

hwloc_obj_type_t type,
unsigned os_index)
Allocate and initialize an object of the given type and physical index.
If os_index is unknown or irrelevant, use HWLOC_UNKNOWN_INDEX.

24.52.3.3 hwloc_hide_errors()

int hwloc_hide_errors (
void)
Check whether error messages are hidden.
Callers should print critical error messages (e.g. invalid hw topo info, invalid config) only if this function returns strictly
less than 2.
Callers should print non-critical error messages (e.g. failure to initialize CUDA) if this function returns 0.
This function return 1 by default (show critical only), 0 in Istopo (show all), or anything set in HWLOC_HIDE_ERRORS
in the environment.
Use macros HWLOC_SHOW_CRITICAL_ERRORS() and HWLOC_SHOW_ALL_ERRORS() for clarity.

24.52.3.4 hwloc_insert_object_by_parent()

void hwloc_insert_object_by_parent (

struct hwloc_topology * topology,

hwloc_obj_t parent,

hwloc_obij_t obj)
Insert an object somewhere in the topology.
It is added as the last child of the given parent. The cpuset is completely ignored, so strange objects such as I/O devices
should preferably be inserted with this.
When used for "normal” children with cpusets (when importing from XML when duplicating a topology), the caller should
make sure that:

+ children are inserted in order,
+ children cpusets do not intersect.

The given object may have normal, /O or Misc children, as long as they are in order as well. These children must have
valid parent and next_sibling pointers.
The caller should check whether the object type is filtered-out before calling this function.

24.52.3.5 hwloc_obj_add_children_sets()

int hwloc_obj_add_children_sets (
hwloc_obj_t obj)
Setup object cpusets/nodesets by OR'ing its children.
Used when adding an object late in the topology. Will update the new object by OR'ing all its new children sets.
Used when PCI backend adds a hostbridge parent, when distances add a new Group, etc.

24.52.3.6 hwloc_topology_reconnect()

int hwloc_topology_reconnect (
hwloc_topology_t topology,
unsigned long flags)
Request a reconnection of children and levels in the topology.
May be used by backends during discovery if they need arrays or lists of object within levels or children to be fully
connected.
flags is currently unused, must 0.

Generated by Doxygen

24.53 Components and Plugins: Filtering objects 237

24.53 Components and Plugins: Filtering objects

Functions

« int hwloc_filter_check_pcidev_subtype_important (unsigned classid)

« int hwloc_filter_check_osdev_subtype_important (hwloc_obj_osdev_type_t subtype)

« int hwloc_filter_check_keep_object_type (hwloc_topology_t topology, hwloc_obj_type_t type)
« int hwloc_filter_check_keep_object (hwloc_topology_t topology, hwloc_obj_t obj)

24.53.1 Detailed Description

Note

These structures and functions may change when HWLOC_COMPONENT_ABI is modified.

24.53.2 Function Documentation
24.53.2.1 hwloc_filter_check_keep_object()

int hwloc_filter_check_keep_object (
hwloc_topology_t topology,
hwloc_obj_t obj) [inline]

Check whether the given object should be filtered-out.

Returns

1 if the object type should be kept, 0 otherwise.

24.53.2.2 hwloc_filter_check_keep_object_type()

int hwloc_filter_check_keep_object_type (
hwloc_topology_t topology,
hwloc_obj_type_t type) [inline]
Check whether a non-I/O object type should be filtered-out.
Cannot be used for I/O objects.

Returns

1 if the object type should be kept, 0 otherwise.

24.53.2.3 hwiloc_filter_check_osdev_subtype_important()

int hwloc_filter check_osdev_subtype_important (
hwloc_obj_osdev_type_t subtype) [inline]
Check whether the given OS device subtype is important.

Returns

1 if important, O otherwise.

24.53.2.4 hwloc_filter_check_pcidev_subtype_important()

int hwloc_filter_check_pcidev_subtype_important (
unsigned classid) [inline]
Check whether the given PCI device classid is important.

Generated by Doxygen

238 Topic Documentation

Returns

1 if important, O otherwise.

24.54 Components and Plugins: helpers for PCI discovery

Functions

+ unsigned hwloc_pcidisc_find_cap (const unsigned char xconfig, unsigned cap)

« int hwloc_pcidisc_find_linkspeed (const unsigned char xconfig, unsigned offset, float *linkspeed)

» hwloc_obj_type_t hwloc_pcidisc_check_bridge_type (unsigned device_class, const unsigned char xconfig)

« int hwloc_pcidisc_find_bridge_buses (unsigned domain, unsigned bus, unsigned dev, unsigned func, unsigned
xsecondary_busp, unsigned xsubordinate_busp, const unsigned char xconfig)

« void hwloc_pcidisc_tree_insert_by_busid (struct hwloc_obj *x*treep, struct hwloc_obj *obj)

« int hwloc_pcidisc_tree_attach (struct hwloc_topology xtopology, struct hwloc_obj xtree)

24.54.1 Detailed Description
Note

These structures and functions may change when HWLOC_COMPONENT_ABI is modified.

24.54.2 Function Documentation
24.54.2.1 hwloc_pcidisc_check_bridge_type()

hwloc_obj_type_t hwloc_pcidisc_check_bridge_type (

unsigned device_class,

const unsigned char * config)
Return the hwloc object type (PCI device or Bridge) for the given class and configuration space.
This function requires 16 bytes of common configuration header at the beginning of config.

24.54.2.2 hwloc_pcidisc_find_bridge_buses()

int hwloc_pcidisc_find_bridge_buses (

unsigned domain,

unsigned bus,

unsigned dev,

unsigned func,

unsigned * secondary_busp,

unsigned * subordinate_busp,

const unsigned char * config)
Fills the attributes of the given PCI bridge using the given PCI config space.
This function requires 32 bytes of common configuration header at the beginning of config.
Returns -1 and destroys /p obj if bridge fields are invalid.

24.54.2.3 hwloc_pcidisc_find_cap()

unsigned hwloc_pcidisc_find_cap (
const unsigned char * config,
unsigned cap)
Return the offset of the given capability in the PCI config space buffer.
This function requires a 256-bytes config space. Unknown/unavailable bytes should be set to Oxff.

Generated by Doxygen

24.55 Components and Plugins: finding PCI objects during other discoveries 239

24.54.2.4 hwloc_pcidisc_find_linkspeed()

int hwloc_pcidisc_find_linkspeed (
const unsigned char * config,
unsigned offset,
float * linkspeed)
Fill linkspeed by reading the PCI config space where PCI_CAP_ID_EXP is at position offset.
Needs 20 bytes of EXP capability block starting at offset in the config space for registers up to link status.

24.54.2.5 hwloc_pcidisc_tree_attach()

int hwloc_pcidisc_tree_attach (
struct hwloc_topology * topology,
struct hwloc_obj * tree)
Add some hostbridges on top of the given tree of PCl objects and attach them to the topology.
Other backends may lookup PCI objects or localities (for instance to attach OS devices) by using hwloc_pcidisc_find«
_by_busid() or hwloc_pcidisc_find_busid_parent().

24.54.2.6 hwloc_pcidisc_tree_insert_by_ busid()

void hwloc_pcidisc_tree_insert_by_busid (

struct hwloc_obj ** treep,

struct hwloc_ob7j * obj)
Insert a PCI object in the given PCl tree by looking at PCI bus IDs.
If t reep points to NULL, the new object is inserted there.

24.55 Components and Plugins: finding PCI objects during other
discoveries

Functions

+ struct hwloc_obj * hwloc_pci_find_parent_by_busid (struct hwloc_topology *topology, unsigned domain, un-
signed bus, unsigned dev, unsigned func)

« struct hwloc_obj * hwloc_pci_find_by_busid (struct hwloc_topology *topology, unsigned domain, unsigned bus,
unsigned dev, unsigned func)

24.55.1 Detailed Description
Note

These structures and functions may change when HWLOC_COMPONENT_ABI is modified.

24.55.2 Function Documentation
24.55.2.1 hwloc_pci_find_by busid()

struct hwloc_ob7j * hwloc_pci_find_by_busid (
struct hwloc_topology * topology,
unsigned domain,
unsigned bus,
unsigned dev,
unsigned func)
Find the PCI device or bridge matching a PCI bus ID exactly.
This is useful for adding specific information about some objects based on their PCl id. When it comes to attaching
objects based on PCl locality, hwloc_pci_find_parent_by_busid() should be preferred.

Generated by Doxygen

240 Topic Documentation

24.55.2.2 hwloc_pci_find_parent_by_busid()

struct hwloc_obj % hwloc_pci_find_parent_by_busid (

struct hwloc_topology * topology,

unsigned domain,

unsigned bus,

unsigned dev,

unsigned func)
Find the object or a parent of a PCl bus ID.
When attaching a new object (typically an OS device) whose locality is specified by PCI bus ID, this function returns the
PCI object to use as a parent for attaching.
If the exact PCI device with this bus ID exists, it is returned. Otherwise (for instance if it was filtered out), the function
returns another object with similar locality (for instance a parent bridge, or the local CPU Package).

24.56 Components and Plugins: distances

Typedefs

« typedef void x hwloc_backend_distances_add_handle_t

Functions

» hwloc_backend_distances_add_handle_t hwloc_backend_distances_add_create (hwloc_topology_t topology,
const char xname, unsigned long kind, unsigned long flags)

« int hwloc_backend_distances_add_values (hwloc_topology_t topology, hwloc_backend_distances_add_handle_t
handle, unsigned nbobjs, hwloc_obj_t *xobjs, hwloc_uint64_t xvalues, unsigned long flags)

« inthwloc_backend_distances_add_commit (hwloc_topology_t topology, hwloc_backend_distances_add_handle_t
handle, unsigned long flags)

24.56.1 Detailed Description
Note

These structures and functions may change when HWLOC_COMPONENT_ABI is modified.

24.56.2 Typedef Documentation
24.56.2.1 hwloc_backend_distances_add_handle_t

typedef voidx hwloc_backend_distances_add_handle_t
Handle to a new distances structure during its addition to the topology.

24.56.3 Function Documentation
24.56.3.1 hwloc_backend_distances_add_commit()

int hwloc_backend_distances_add_commit (
hwloc_topology_t topology,
hwloc_backend_distances_add_handle_t handle,
unsigned long flags)
Commit a new distances structure.
This is similar to hwloc_distances_add_commit() but this variant is designed for backend inserting distances during
topology discovery.

Generated by Doxygen

24.56 Components and Plugins: distances 241

24.56.3.2 hwloc_backend_distances_add_create()

hwloc_backend_distances_add_handle_t hwloc_backend_distances_add_create (
hwloc_topology_t topology,
const char * name,
unsigned long kind,
unsigned long flags)
Create a new empty distances structure.
This is identical to hwloc_distances_add_create() but this variant is designed for backend inserting distances during
topology discovery.

24.56.3.3 hwloc_backend_distances_add_values()

int hwloc_backend_distances_add_values (

hwloc_topology_t topology,

hwloc_backend_distances_add_handle_t handle,

unsigned nbobjs,

hwloc_obj_t * objs,

hwloc_uinté4_t x values,

unsigned long flags)
Specify the objects and values in a new empty distances structure.
This is similar to hwloc_distances_add_values() but this variant is designed for backend inserting distances during
topology discovery.
The only semantical difference is that ob js and values are not duplicated, but directly attached to the topology. On
success, these arrays are given to the core and should not ever be freed by the caller anymore.

Generated by Doxygen

242 Topic Documentation

Generated by Doxygen

Chapter 25

Directory Documentation

25.1 hwloc Directory Reference

Files

« file bitmap.h

« file cpukinds.h

« file cuda.h

« file cudart.h

« file diff.h

« file distances.h

« file export.h

« file gl.h

« file glibc-sched.h
« file helper.h

« file levelzero.h

« file linux-libnuma.h
« file linux.h

« file memattrs.h

« file nvml.h

« file opencl.h

« file openfabrics-verbs.h
« file plugins.h

« file rsmi.h

« file shmem.h

« file windows.h

25.2 include Directory Reference
Directories

« directory hwloc

Files

« file hwloc.h

Generated by Doxygen

244 Directory Documentation

Generated by Doxygen

Chapter 26

Data Structure Documentation

26.1 hwloc_backend Struct Reference

#include <plugins.h>

Data Fields

* unsigned phases

* unsigned long flags

* intis_thissystem

* void x private_data

« void(x disable)(struct hwloc_backend xbackend)

* int(x discover)(struct hwloc_backend xbackend, struct hwloc_disc_status xstatus)

* int(x get_pci_busid_cpuset)(struct hwloc_backend xbackend, struct hwloc_pcidev_attr_s xbusid, hwloc_bitmap_t
cpuset)

26.1.1 Detailed Description

Discovery backend structure.

A backend is the instantiation of a discovery component. When a component gets enabled for a topology, its instantiate()
callback creates a backend.

hwloc_backend_alloc() initializes all fields to default values that the component may change (except "component" and
"next") before enabling the backend with hwloc_backend_enable().

Most backends assume that the topology is_thissystem flag is set because they talk to the underlying operating system.
However they may still be used in topologies without the is_thissystem flag for debugging reasons. In practice, they are
usually auto-disabled in such cases (excluded by xml or synthetic backends, or by environment variables when changing
the Linux fsroot or the x86 cpuid path).

26.1.2 Field Documentation

26.1.2.1 disable

void (x hwloc_backend::disable) (struct hwloc_backend xbackend)
Callback for freeing the private_data. May be NULL.

26.1.2.2 discover

int (* hwloc_backend::discover) (struct hwloc_backend xbackend, struct hwloc_disc_status sxstatus)
Main discovery callback. returns -1 on error, either because it couldn't add its objects ot the existing topology, or because
of an actual discovery/gathering failure. May be NULL.

Generated by Doxygen

246 Data Structure Documentation

26.1.2.3 flags

unsigned long hwloc_backend::flags
Backend flags, currently always 0.

26.1.2.4 get_pci_busid_cpuset

int (*x hwloc_backend: :get_pci_busid_cpuset) (struct hwloc_backend xbackend, struct hwloc_pcidev_<+
attr_s #*busid, hwloc_bitmap_t cpuset)

Callback to retrieve the locality of a PCI object. Called by the PCI core when attaching PCI hierarchy to CPU objects.
May be NULL.

26.1.2.5 is_thissystem

int hwloc_backend::is_thissystem

Backend-specific 'is_thissystem' property. Set to 0 if the backend disables the thissystem flag for this topology (e.g.
loading from xml or synthetic string, or using a different fsroot on Linux, or a x86 CPUID dump). Set to -1 if the backend
doesn't care (default).

26.1.2.6 phases

unsigned hwloc_backend: :phases
Discovery phases performed by this component, possibly without some of them if excluded by other components. OR'ed
set of hwloc_disc_phase_t.

26.1.2.7 private_data

void* hwloc_backend::private_data
Backend private data, or NULL if none.
The documentation for this struct was generated from the following file:

* plugins.h

26.2 hwloc_obj_attr_u::hwloc_bridge_attr_s Struct Reference

#include <hwloc.h>

Data Fields

* union {
struct hwloc_pcidev_attr_s pci
} upstream

» hwloc_obj_bridge_type_t upstream_type
* union {
struct {
unsigned short domain
unsigned char secondary_bus
unsigned char subordinate_bus

} pei
} downstream

» hwloc_obj_bridge_type_t downstream_type
 unsigned depth

Generated by Doxygen

26.2 hwloc_obj_attr_u::hwloc_bridge_attr_s Struct Reference 247

26.2.1 Detailed Description
Bridge specific Object Attributes.

26.2.2 Field Documentation
26.2.2.1 depth

unsigned hwloc_obj_attr_u::hwloc_bridge_attr_s::depth

26.2.2.2 domain

unsigned short hwloc_obj_attr_u::hwloc_bridge_attr_s::domain
Domain number the downstream PCI buses. Only 16bits PCl domains are supported by default.

26.2.2.3 [union]

union { ... } hwloc_obj_attr_u::hwloc_bridge_attr_s::downstream

26.2.2.4 downstream_type

hwloc_obj_bridge_type_t hwloc_obj_attr_u::hwloc_bridge_attr_s::downstream_type
Downstream Bridge type.

26.2.2.5 [struct] [1/2]

struct { ... } hwloc_obj_attr_u::hwloc_bridge_attr_s::pci

26.2.2.6 pci [2/2]

struct hwloc_pcidev_attr_s hwloc_obj_attr_u::hwloc_bridge_attr_s::pci
PCI attribute of the upstream part as a PCI device.

26.2.2.7 secondary_bus

unsigned char hwloc_obj_attr_u::hwloc_bridge_attr_s::secondary_bus

First PCI bus number below the bridge.

26.2.2.8 subordinate_bus

unsigned char hwloc_obj_attr_u::hwloc_bridge_attr_s::subordinate_bus

Highest PCI bus number below the bridge.

26.2.2.9 [union]

union { ... } hwloc_obj_attr_u::hwloc_bridge_attr_s::upstream

26.2.2.10 upstream_type

hwloc_obj_bridge_type_t hwloc_obj_attr_u::hwloc_bridge_attr_s::upstream_type
Upstream Bridge type.
The documentation for this struct was generated from the following file:

* hwloc.h

Generated by Doxygen

248

Data Structure Documentation

26.3 hwloc_obj_attr_u::hwloc_cache_attr_s Struct Reference

#include <hwloc.h>

Data Fields

* hwloc_uint64_t size
 unsigned depth

* unsigned linesize

« int associativity

» hwloc_obj_cache_type_t type

26.3.1 Detailed Description

Cache-specific Object Attributes.

26.3.2 Field Documentation
26.3.2.1 associativity

int hwloc_obj_attr_u::hwloc_cache_attr_s::associativity
Ways of associativity, -1 if fully associative, 0 if unknown.

26.3.2.2 depth

unsigned hwloc_obj_attr_u::hwloc_cache_attr_s::depth

Depth of cache (e.g., L1, L2, ...etc.).

26.3.2.3 linesize

unsigned hwloc_obj_attr_u::hwloc_cache_attr_s::linesize
Cache-line size in bytes. 0 if unknown.

26.3.2.4 size

hwloc_uint64_t hwloc_obj_attr_u::hwloc_cache_attr_s::size

Size of cache in bytes.

26.3.2.5 type

hwloc_obj_cache_type_t hwloc_obj_attr_u::hwloc_cache_attr_s::type

Cache type.

The documentation for this struct was generated from the following file:

* hwloc.h

26.4 hwloc_cl_device pci_bus_info_khr Struct Reference

#include <opencl.h>

Generated by Doxygen

26.5 hwloc_cl_device_topology_amd Union Reference 249

Data Fields

* cl_uint pci_domain
* cl_uint pci_bus

* cl_uint pci_device
* cl_uint pci_function

26.4.1 Field Documentation
26.4.1.1 pci_bus

cl_uint hwloc_cl_device_pci_bus_info_khr::pci_bus

26.4.1.2 pci_device

cl_uint hwloc_cl_device_pci_bus_info_khr::pci_device

26.4.1.3 pci_domain

cl_uint hwloc_cl_device_pci_bus_info_khr::pci_domain

26.4.1.4 pci_function

cl_uint hwloc_cl_device_pci_bus_info_khr::pci_function
The documentation for this struct was generated from the following file:

» opencl.h

26.5 hwloc_cl_device_topology amd Union Reference

#include <opencl.h>

Data Fields

* struct {
cl_uint type
cl_uint data [5]
} raw

« struct {
cl_uint type
cl_char unused [17]
cl_char bus
cl_char device
cl_char function
} pcie

26.5.1 Field Documentation
26.5.1.1 bus

cl_char hwloc_cl_device_topology_amd: :bus

Generated by Doxygen

250 Data Structure Documentation

26.5.1.2 data

cl_uint hwloc_cl_device_topology_amd: :datal[5]

26.5.1.3 device

cl_char hwloc_cl_device_topology_amd: :device

26.5.1.4 function

cl_char hwloc_cl_device_topology_amd::function

26.5.1.5 [struct]

struct { ... } hwloc_cl_device_topology_amd: :pcie

26.5.1.6 [struct]

struct { ... } hwloc_cl_device_topology_amd::raw

26.5.1.7 type

cl_uint hwloc_cl_device_topology_amd: :type

26.5.1.8 unused

cl_char hwloc_cl_device_topology_amd: :unused[17]
The documentation for this union was generated from the following file:

» opencl.h

26.6 hwloc_component Struct Reference

#include <plugins.h>

Data Fields

* unsigned abi

« int(x init)(unsigned long flags)

+ void(x finalize)(unsigned long flags)
» hwloc_component_type_t type

+ unsigned long flags

* void * data

26.6.1 Detailed Description

Generic component structure.

Generic components structure, either statically listed by configure in static-components.h or dynamically loaded as a
plugin.

26.6.2 Field Documentation

26.6.2.1 abi

unsigned hwloc_component: :abi

Component ABI version, set to HWLOC_COMPONENT_ABI.

Generated by Doxygen

26.7 hwloc_disc_component Struct Reference 251

26.6.2.2 data

void* hwloc_component::data
Component data, pointing to a struct hwloc_disc_component or struct hwloc_xml_component.

26.6.2.3 finalize

void (x hwloc_component::finalize) (unsigned long flags)

Process-wide component termination callback.

This optional callback is called after unregistering the component from the hwloc core (before unloading the plugin).
flags is always 0 for now.

Note

If the component uses ltdl for loading its own plugins, it should load/unload them only in init() and finalize(), to
avoid race conditions with hwloc's use of Itdl.

26.6.2.4 flags

unsigned long hwloc_component::flags
Component flags, unused for now.
26.6.2.5 init

int (¥ hwloc_component::init) (unsigned long flags)

Process-wide component initialization callback.

This optional callback is called when the component is registered to the hwloc core (after loading the plugin).

When the component is built as a plugin, this callback should call hwloc_check_plugin_namespace() and return an
negative error code on error.

flags is always 0 for now.

Returns

0 on success, or a negative code on error.

Note

If the component uses Itdl for loading its own plugins, it should load/unload them only in init() and finalize(), to
avoid race conditions with hwloc's use of Itdl.

26.6.2.6 type

hwloc_component_type_t hwloc_component::type
Component type.
The documentation for this struct was generated from the following file:

* plugins.h

26.7 hwloc_disc_component Struct Reference

#include <plugins.h>

Generated by Doxygen

252 Data Structure Documentation

Data Fields

» const char x name

+ unsigned phases

 unsigned excluded_phases

« struct hwloc_backend x(x instantiate)(struct hwloc_topology xtopology, struct hwloc_disc_component
xcomponent, unsigned excluded_phases, const void *data1, const void xdata2, const void *data3)

* unsigned priority

* unsigned enabled_by_default

26.7.1 Detailed Description

Discovery component structure.
This is the major kind of components, taking care of the discovery. They are registered by generic components, either
statically-built or as plugins.

26.7.2 Field Documentation
26.7.2.1 enabled_by_default

unsigned hwloc_disc_component::enabled_by_default
Enabled by default. If unset, if will be disabled unless explicitly requested.

26.7.2.2 excluded_phases

unsigned hwloc_disc_component: :excluded_phases

Component phases to exclude, as an OR'ed set of hwloc_disc_phase_t.

For a GLOBAL component, this usually includes all other phases (~UL).

Other components only exclude types that may bring conflicting topology information. MISC components should likely
not be excluded since they usually bring non-primary additional information.

26.7.2.3 instantiate

struct hwloc_backend *(*¥ hwloc_disc_component::instantiate) (struct hwloc_topology *topology,
struct hwloc_disc_component *component, unsigned excluded_phases, const void #*datal, const void
xdata2, const void xdata3l)

Instantiate callback to create a backend from the component. Parameters datal, data2, data3 are NULL except for
components that have special enabling routines such as hwloc_topology_set_xml().

26.7.2.4 name

const char*x hwloc_disc_component::name

Name. If this component is built as a plugin, this name does not have to match the plugin filename.
26.7.2.5 phases

unsigned hwloc_disc_component: :phases

Discovery phases performed by this component. OR'ed set of hwloc_disc_phase_t.

26.7.2.6 priority

unsigned hwloc_disc_component: :priority
Component priority. Used to sort topology->components, higher priority first. Also used to decide between two compo-
nents with the same name.

Generated by Doxygen

26.8 hwloc_disc_status Struct Reference 253

Usual values are 50 for native OS (or platform) components, 45 for x86, 40 for no-OS fallback, 30 for global components
(xml, synthetic), 20 for pci, 10 for other misc components (opencl etc.).
The documentation for this struct was generated from the following file:

* plugins.h

26.8 hwloc_disc_status Struct Reference

#include <plugins.h>

Data Fields

* hwloc_disc_phase_t phase
* unsigned excluded_phases
* unsigned long flags

26.8.1 Detailed Description

Discovery status structure.
Used by the core and backends to inform about what has been/is being done during the discovery process.

26.8.2 Field Documentation

26.8.2.1 excluded_phases

unsigned hwloc_disc_status::excluded_phases
Dynamically excluded phases. If a component decides during discovery that some phases are no longer needed.

26.8.2.2 flags

unsigned long hwloc_disc_status::flags
OR'ed set of hwloc_disc_status_flag_e.

26.8.2.3 phase

hwloc_disc_phase_t hwloc_disc_status: :phase
The current discovery phase that is performed. Must match one of the phases in the component phases field.
The documentation for this struct was generated from the following file:

* plugins.h

26.9 hwloc_distances_s Struct Reference

#include <distances.h>

Data Fields

* unsigned nbobjs

* hwloc_obj_t * objs

* unsigned long kind

» hwloc_uint64_t x values

Generated by Doxygen

254 Data Structure Documentation

26.9.1 Detailed Description

Matrix of distances between a set of objects.

The most common matrix contains latencies between NUMA nodes (as reported in the System Locality Distance
Information Table (SLIT) in the ACPI specification), which may or may not be physically accurate. It corresponds
to the latency for accessing the memory of one node from a core in another node. The corresponding kind is
HWLOC_DISTANCES_KIND_MEANS_LATENCY | HWLOC_DISTANCES_KIND_FROM_USER. The name of this dis-
tances structure is "NUMALatency".

The matrix may also contain bandwidths between random sets of objects, possibly provided by the user, as specified
in the kind attribute. Others common distance structures include and "XGMIBandwidth", "XGMIHops", "XeLink«
Bandwidth" and "NVLinkBandwidth".

Pointers objs and values should not be replaced, reallocated, freed, etc. However callers are allowed to modify
kind as well as the contents of ob s and values arrays. For instance, if there is a single NUMA node per Package,
hwloc_get_obj_with_same_locality() may be used to convert between them and replace NUMA nodes in the objs
array with the corresponding Packages. See also hwloc_distances_transform() for applying some transformations to the
structure.

26.9.2 Field Documentation

26.9.2.1 kind

unsigned long hwloc_distances_s::kind

OR'ed set of hwloc_distances_kind_e.

26.9.2.2 nbobjs

unsigned hwloc_distances_s::nbobjs

Number of objects described by the distance matrix.
26.9.2.3 objs

hwloc_obj_t* hwloc_distances_s::0bjs

Array of objects described by the distance matrix. = These objects are not in any particular order, see
hwloc_distances_obj_index() and hwloc_distances_obj_pair_values() for easy ways to find objects in this array and
their corresponding values.

26.9.2.4 values

hwloc_uint64_t* hwloc_distances_s::values

Matrix of distances between objects, stored as a one-dimension array.

Distance from i-th to j-th object is stored in slot ixnbobjs+j. The meaning of the value depends on the kind attribute.
The documentation for this struct was generated from the following file:

« distances.h

26.10 hwloc_obj_attr_u::hwloc_group_attr_s Struct Reference

#include <hwloc.h>

Data Fields

* unsigned depth

* unsigned kind

* unsigned subkind

* unsigned char dont_merge

Generated by Doxygen

26.11 hwloc_info_s Struct Reference

255

26.10.1 Detailed Description

Group-specific Object Attributes.

26.10.2 Field Documentation
26.10.2.1 depth

unsigned hwloc_obj_attr_u::hwloc_group_attr_s::depth
Depth of group object. It may change if intermediate Group objects are added.

26.10.2.2 dont_merge

unsigned char hwloc_obj_attr_u::hwloc_group_attr_s::dont_merge

Flag preventing groups from being automatically merged with identical parent or children.

26.10.2.3 kind

unsigned hwloc_obj_attr_u::hwloc_group_attr_s::kind
Internally-used kind of group.

26.10.2.4 subkind

unsigned hwloc_obj_attr_u::hwloc_group_attr_s::subkind

Internally-used subkind to distinguish different levels of groups with same kind.

The documentation for this struct was generated from the following file:

* hwloc.h

26.11 hwloc_info_s Struct Reference

#include <hwloc.h>

Data Fields

» char x name
» char x value

26.11.1 Detailed Description
Object info attribute (name and value strings).
See also

Consulting and Adding Info Attributes

26.11.2 Field Documentation
26.11.2.1 name

charx hwloc_info_s::name
Info name.

Generated by Doxygen

256 Data Structure Documentation

26.11.2.2 value

char* hwloc_info_s::value
Info value.
The documentation for this struct was generated from the following file:

* hwloc.h

26.12 hwloc_location Struct Reference

#include <memattrs.h>

Data Structures

« union hwloc_location_u

Data Fields

» enum hwloc_location_type_e type
» union hwloc_location::hwloc_location_u location

26.12.1 Detailed Description

Where to measure attributes from.

26.12.2 Field Documentation
26.12.2.1 location

union hwloc_location::hwloc_location_u hwloc_location::location

26.12.2.2 type

enum hwloc_location_type_e hwloc_location::type
Type of location.
The documentation for this struct was generated from the following file:

* memattrs.h

26.13 hwloc_location::hwloc location _u Union Reference
#include <memattrs.h>

Data Fields

» hwloc_cpuset_t cpuset
» hwloc_obj_t object

26.13.1 Detailed Description

Actual location.

Generated by Doxygen

26.14 hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page type_s Struct Reference 257

26.13.2 Field Documentation
26.13.2.1 cpuset

hwloc_cpuset_t hwloc_location::hwloc_location_u::cpuset

Location as a cpuset, when the location type is HWLOC_LOCATION_TYPE_CPUSET.

26.13.2.2 object

hwloc_obj_t hwloc_location::hwloc_location_u::object
Location as an object, when the location type is HWLOC_LOCATION_TYPE_OBJECT.
The documentation for this union was generated from the following file:

* memattrs.h

26.14 hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page -
type_s Struct Reference

#include <hwloc.h>

Data Fields

* hwloc_uint64_t size
* hwloc_uint64_t count

26.14.1 Detailed Description

Array of local memory page types, NULL if no local memory and page_types is 0.
The array is sorted by increasing size fields. It contains page_types_len slots.
26.14.2 Field Documentation

26.14.2.1 count

hwloc_uint64_t hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page_type_s::count
Number of pages of this size.

26.14.2.2 size

hwloc_uint64_t hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page_type_s::size
Size of pages.
The documentation for this struct was generated from the following file:

* hwloc.h

26.15 hwloc_obj_attr_u::hwloc_numanode_attr_s Struct Reference

#include <hwloc.h>

Data Structures

« struct hwloc_memory_page_type_s

Generated by Doxygen

258 Data Structure Documentation

Data Fields

» hwloc_uint64_t local_memory
* unsigned page_types_len
« struct hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page_type_s * page_types

26.15.1 Detailed Description
NUMA node-specific Object Attributes.

26.15.2 Field Documentation
26.15.2.1 local_memory

hwloc_uint64_t hwloc_obj_attr_u::hwloc_numanode_attr_s::local_memory
Local memory (in bytes).

26.15.2.2 page_types

struct hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page_type_s *x hwloc_obj_attr_u«

::hwloc_numanode_attr_s::page_types

26.15.2.3 page_types_len

unsigned hwloc_obj_attr_u::hwloc_numanode_attr_s: :page_types_len
Size of array page_types.
The documentation for this struct was generated from the following file:

* hwloc.h

26.16 hwloc_obj Struct Reference

#include <hwloc.h>

Data Fields

» hwloc_obj_type_t type

+ char x subtype

* unsigned os_index

« char x name

* hwloc_uint64_t total_memory
* union hwloc_obj_attr_u x attr

* int depth

* unsigned logical_index

« struct hwloc_obj * next_cousin
« struct hwloc_obj x prev_cousin
« struct hwloc_obj * parent

* unsigned sibling_rank

« struct hwloc_obj * next_sibling
« struct hwloc_obj * prev_sibling
* int symmetric_subtree

» hwloc_cpuset_t cpuset

» hwloc_cpuset_t complete_cpuset
* hwloc_nodeset_t nodeset

Generated by Doxygen

26.16 hwloc_obj Struct Reference 259

» hwloc_nodeset_t complete_nodeset
« struct hwloc_info_s * infos
 unsigned infos_count

 void x userdata

» hwloc_uint64_t gp_index

List and array of normal children below this object (except Memory, I/O and Misc children).

* unsigned arity

+ struct hwloc_obj *x children
+ struct hwloc_obj x first_child
« struct hwloc_obj * last_child

List of Memory children below this object.

* unsigned memory_arity
« struct hwloc_obj x memory_first_child

List of 1/0 children below this object.

* unsigned io_arity
« struct hwloc_obj x io_first_child

List of Misc children below this object.
* unsigned misc_arity
« struct hwloc_obj x misc_first_child
26.16.1 Detailed Description

Structure of a topology object.
Applications must not modify any field except hwloc_obj.userdata.

26.16.2 Field Documentation

26.16.2.1 arity

unsigned hwloc_obj::arity

Number of normal children. Memory, Misc and I/O children are not listed here but rather in their dedicated children list.
26.16.2.2 attr

union hwloc_obj_attr_ux hwloc_obj::attr

Object type-specific Attributes, may be NULL if no attribute value was found.
26.16.2.3 children

struct hwloc_obj**%x hwloc_obj::children

Normal children, children[0 .. arity -1].

26.16.2.4 complete_cpuset

hwloc_cpuset_t hwloc_obj::complete_cpuset

The complete CPU set of processors of this object,.

This may include not only the same as the cpuset field, but also some CPUs for which topology information is unknown or
incomplete, some offlines CPUs, and the CPUs that are ignored when the HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED
flag is not set. Thus no corresponding PU object may be found in the topology, because the precise position is undefined.

It is however known that it would be somewhere under this object.

Generated by Doxygen

260 Data Structure Documentation

Note

Its value must not be changed, hwloc_bitmap_dup() must be used instead.

26.16.2.5 complete_nodeset

hwloc_nodeset_t hwloc_obj::complete_nodeset

The complete NUMA node set of this object,.

This may include not only the same as the nodeset field, but also some NUMA nodes for which topol-
ogy information is unknown or incomplete, some offlines nodes, and the nodes that are ignored when the
HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED flag is not set. Thus no corresponding NUMA node ob-
ject may be found in the topology, because the precise position is undefined. It is however known that it would be
somewhere under this object.

If there are no NUMA nodes in the machine, all the memory is close to this object, so only the first bit is set in
complete_nodeset.

Note

Its value must not be changed, hwloc_bitmap_dup() must be used instead.

26.16.2.6 cpuset

hwloc_cpuset_t hwloc_obj::cpuset

CPUs covered by this object.

This is the set of CPUs for which there are PU objects in the topology under this object, i.e. which are known to be
physically contained in this object and known how (the children path between this object and the PU objects).

If the HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED configuration flag is set, some of these CPUs may be
online but not allowed for binding, see hwloc_topology_get_allowed_cpuset().

Note

All objects have non-NULL CPU and node sets except Misc and 1/O objects.
Its value must not be changed, hwloc_bitmap_dup() must be used instead.

26.16.2.7 depth

int hwloc_obj::depth

Vertical index in the hierarchy.

For normal objects, this is the depth of the horizontal level that contains this object and its cousins of the same type. If
the topology is symmetric, this is equal to the parent depth plus one, and also equal to the number of parent/child links
from the root object to here.

For special objects (NUMA nodes, I/0 and Misc) that are not in the main tree, this is a special negative value that
corresponds to their dedicated level, see hwloc_get_type_depth() and hwloc_get_type_depth_e. Those special values
can be passed to hwloc functions such hwloc_get_nbobjs_by depth() as usual.

26.16.2.8 first_child
struct hwloc_obj* hwloc_obj::first_child
First normal child.

26.16.2.9 gp_index

hwloc_uint64_t hwloc_obj::gp_index

Global persistent index. Generated by hwloc, unique across the topology (contrary to os_index) and persistent across
topology changes (contrary to logical_index). Mostly used internally, but could also be used by application to identify
objects.

Generated by Doxygen

26.16 hwloc_obj Struct Reference 261

26.16.2.10 infos

struct hwloc_info_s* hwloc_obj::infos

Array of info attributes (name and value strings).

26.16.2.11 infos_count

unsigned hwloc_obj::infos_count

Size of infos array.

26.16.2.12 io_arity

unsigned hwloc_obj::io_arity

Number of 1/O children. These children are listed in io_first_child.
26.16.2.13 io_first_child

struct hwloc_obj* hwloc_obj::io_first_child
First 1/0O child. Bridges, PCI and OS devices are listed here (1o_arity and io_first_child) instead of in the
normal children list. See also hwloc_obj_type_is_io().

26.16.2.14 last_child
struct hwloc_obj* hwloc_obj::last_child
Last normal child.

26.16.2.15 logical_index

unsigned hwloc_obj::logical_index

Horizontal index in the whole list of similar objects, hence guaranteed unique across the entire machine. Could be
a "cousin_rank" since it's the rank within the "cousin” list below Note that this index may change when restricting the
topology or when inserting a group.

26.16.2.16 memory_arity
unsigned hwloc_obj::memory_arity
Number of Memory children. These children are listed in memory_first_child.

26.16.2.17 memory_first_child

struct hwloc_obj* hwloc_obj::memory_first_child

First Memory child. NUMA nodes and Memory-side caches are listed here (memory_arity andmemory_first«
_child) instead of in the normal children list. See also hwloc_obj_type_is_memory().

A memory hierarchy starts from a normal CPU-side object (e.g. Package) and ends with NUMA nodes as leaves. There
might exist some memory-side caches between them in the middle of the memory subtree.

26.16.2.18 misc_arity

unsigned hwloc_obj::misc_arity

Number of Misc children. These children are listed inmisc_first_child.
26.16.2.19 misc_first_child

struct hwloc_obJj* hwloc_obj::misc_first_child
First Misc child. Misc objects are listed here (misc_arity and misc_first_child) instead of in the normal
children list.

Generated by Doxygen

262 Data Structure Documentation

26.16.2.20 name

char*x hwloc_obj::name
Object-specific name if any. Mostly used for identifying OS devices and Misc objects where a name string is more useful
than numerical indexes.

26.16.2.21 next_cousin

struct hwloc_obj* hwloc_obj::next_cousin

Next object of same type and depth.

26.16.2.22 next_sibling

struct hwloc_obj* hwloc_obj::next_sibling
Next object below the same parent (inside the same list of children).

26.16.2.23 nodeset

hwloc_nodeset_t hwloc_obj::nodeset

NUMA nodes covered by this object or containing this object.

This is the set of NUMA nodes for which there are NUMA node objects in the topology under or above this object, i.e.
which are known to be physically contained in this object or containing it and known how (the children path between this
object and the NUMA node objects).

In the end, these nodes are those that are close to the current object. Function hwloc_get_local_numanode_objs() may
be used to list those NUMA nodes more precisely.

If the HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED configuration flag is set, some of these nodes may be
online but not allowed for allocation, see hwloc_topology_get_allowed_nodeset().

If there are no NUMA nodes in the machine, all the memory is close to this object, so only the first bit may be set in
nodeset.

Note

All objects have non-NULL CPU and node sets except Misc and 1/O objects.

Its value must not be changed, hwloc_bitmap_dup() must be used instead.

26.16.2.24 os_index

unsigned hwloc_obj::os_index

OS-provided physical index number. It is not guaranteed unique across the entire machine, except for PUs and NUMA
nodes. Set to HWLOC_UNKNOWN_INDEX if unknown or irrelevant for this object.

26.16.2.25 parent

struct hwloc_obj* hwloc_obj::parent

Parent, NULL if root (Machine object).

26.16.2.26 prev_cousin

struct hwloc_obj* hwloc_obj::prev_cousin

Previous object of same type and depth.

26.16.2.27 prev_sibling

struct hwloc_obj* hwloc_obj::prev_sibling
Previous object below the same parent (inside the same list of children).

Generated by Doxygen

26.17 hwloc_obj_attr_u Union Reference 263

26.16.2.28 sibling_rank

unsigned hwloc_obj::sibling_rank

Index in parent's children[] array. Or the index in parent's Memory, 1/O or Misc children list.
26.16.2.29 subtype

charx hwloc_obj::subtype

Subtype string to better describe the type field.

26.16.2.30 symmetric_subtree

int hwloc_obj::symmetric_subtree

Set if the subtree of normal objects below this object is symmetric, which means all normal children and their children
have identical subtrees.

Memory, I/O and Misc children are ignored.

If set in the topology root object, Istopo may export the topology as a synthetic string.

26.16.2.31 total_memory

hwloc_uint64_t hwloc_obj::total_memory

Total memory (in bytes) in NUMA nodes below this object.
26.16.2.32 type

hwloc_obj_type_t hwloc_obj::type

Type of object.

26.16.2.33 userdata

void* hwloc_obj::userdata

Application-given private data pointer, initialized to NULL, use it as you wish. See hwloc_topology_set_userdata_export_callback()
in hwloc/export.h if you wish to export this field to XML.

The documentation for this struct was generated from the following file:

* hwloc.h

26.17 hwloc_obj_attr_u Union Reference

#include <hwloc.h>

Data Structures

« struct hwloc_numanode_attr_s
« struct hwloc_cache_attr s
« struct hwloc_group_attr_s
« struct hwloc_pcidev_attr_s
« struct hwloc_bridge_attr_s
« struct hwloc_osdev_attr_s

Generated by Doxygen

264 Data Structure Documentation

Data Fields

« struct hwloc_obj_attr_u::hwloc_numanode_attr_s numanode
« struct hwloc_obj_attr_u::hwloc_cache_attr_s cache

« struct hwloc_obj_attr_u::hwloc_group_attr_s group

« struct hwloc_obj_attr_u::hwloc_pcidev_attr_s pcidev

« struct hwloc_obj_attr_u::hwloc_bridge_attr_s bridge

« struct hwloc_obj_attr_u::hwloc_osdev_attr_s osdev

26.17.1 Detailed Description
Object type-specific Attributes.

26.17.2 Field Documentation
26.17.2.1 bridge

struct hwloc_obj_attr_u::hwloc_bridge_attr_s hwloc_obj_attr_u::bridge

26.17.2.2 cache

struct hwloc_obj_attr_u::hwloc_cache_attr_s hwloc_obj_attr_u::cache

26.17.2.3 group

struct hwloc_obj_attr_u::hwloc_group_attr_s hwloc_obj_attr_u::group

26.17.2.4 numanode

struct hwloc_obj_attr_u::hwloc_numanode_attr_s hwloc_obj_attr_u::numanode

26.17.2.5 osdev

struct hwloc_obj_attr_u::hwloc_osdev_attr_s hwloc_obj_attr_u::osdev

26.17.2.6 pcidev

struct hwloc_obj_attr_u::hwloc_pcidev_attr_s hwloc_obj_attr_u::pcidev
The documentation for this union was generated from the following file:

* hwloc.h

26.18 hwloc_obj_attr_u::hwloc_osdev_attr_s Struct Reference

#include <hwloc.h>

Data Fields

» hwloc_obj_osdev_type_t type

26.18.1 Detailed Description
OS Device specific Object Attributes.

Generated by Doxygen

26.19 hwloc_obj_attr_u::hwloc_pcidev_attr_s Struct Reference 265

26.18.2 Field Documentation
26.18.2.1 type

hwloc_obj_osdev_type_t hwloc_obj_attr_u::hwloc_osdev_attr_s::type
The documentation for this struct was generated from the following file:

* hwloc.h

26.19 hwloc_obj_attr_u::hwloc_pcidev_attr_s Struct Reference

#include <hwloc.h>

Data Fields

 unsigned short domain
 unsigned char bus

* unsigned char dev
 unsigned char func

* unsigned short class_id

* unsigned short vendor_id
 unsigned short device_id

« unsigned short subvendor_id
« unsigned short subdevice_id
 unsigned char revision

« float linkspeed

26.19.1 Detailed Description

PCI Device specific Object Attributes.

26.19.2 Field Documentation

26.19.2.1 bus

unsigned char hwloc_obj_attr_u::hwloc_pcidev_attr_s::bus
Bus number (yy in the PCI BDF notation xxxx:yy:zz.t).

26.19.2.2 class_id

unsigned short hwloc_obj_attr_u::hwloc_pcidev_attr_s::class_id
The class number (first two bytes, without the prog_if).

26.19.2.3 dev

unsigned char hwloc_obj_attr_u::hwloc_pcidev_attr_s::dev
Device number (zz in the PCI BDF notation xxxx:yy:zz.t).

26.19.2.4 device_id

unsigned short hwloc_obj_attr_u::hwloc_pcidev_attr_s::device_id

Device ID (yyyy in [xxxx:yyyy]).

Generated by Doxygen

266 Data Structure Documentation

26.19.2.5 domain

unsigned short hwloc_obj_attr_u::hwloc_pcidev_attr_s::domain
Domain number (xxxx in the PCI BDF notation xxxx:yy:zz.t). Only 16bits PCl domains are supported by default.

26.19.2.6 func
unsigned char hwloc_obj_attr_u::hwloc_pcidev_attr_s::func
Function number (t in the PCI BDF notation xxxx:yy:zz.t).

26.19.2.7 linkspeed

float hwloc_obj_attr_u::hwloc_pcidev_attr_s::linkspeed

Link speed in GB/s. This datarate is the currently configured speed of the entire PCI link (sum of the bandwidth of all
PCI lanes in that link). It may change during execution since some devices are able to slow their PCI links down when
idle.

26.19.2.8 revision

unsigned char hwloc_obj_attr_u::hwloc_pcidev_attr_s::revision
Revision number.

26.19.2.9 subdevice_id

unsigned short hwloc_obj_attr_u::hwloc_pcidev_attr_s::subdevice_id
Sub-Device ID.

26.19.2.10 subvendor_id

unsigned short hwloc_obj_attr_u::hwloc_pcidev_attr_s::subvendor_id
Sub-Vendor ID.

26.19.2.11 vendor _id

unsigned short hwloc_obj_attr_u::hwloc_pcidev_attr_s::vendor_id
Vendor ID (xxxx in [xxxx:yyyy]).
The documentation for this struct was generated from the following file:

* hwloc.h

26.20 hwloc_topology_cpubind_support Struct Reference

#include <hwloc.h>

Data Fields

* unsigned char set_thisproc_cpubind
 unsigned char get_thisproc_cpubind

* unsigned char set_proc_cpubind

 unsigned char get_proc_cpubind

* unsigned char set_thisthread_cpubind
 unsigned char get_thisthread_cpubind

* unsigned char set_thread_cpubind

» unsigned char get_thread_cpubind

« unsigned char get_thisproc_last_cpu_location

Generated by Doxygen

26.20 hwloc_topology_ cpubind_support Struct Reference 267

* unsigned char get_proc_last_cpu_location
« unsigned char get_thisthread_last_cpu_location

26.20.1 Detailed Description

Flags describing actual PU binding support for this topology.

A flag may be set even if the feature isn't supported in all cases (e.g. binding to random sets of non-contiguous objects).
26.20.2 Field Documentation

26.20.2.1 get_proc_cpubind

unsigned char hwloc_topology_cpubind_support::get_proc_cpubind

Getting the binding of a whole given process is supported.

26.20.2.2 get_proc_last_cpu_location

unsigned char hwloc_topology_cpubind_support::get_proc_last_cpu_location
Getting the last processors where a whole process ran is supported

26.20.2.3 get_thisproc_cpubind

unsigned char hwloc_topology_cpubind_support::get_thisproc_cpubind
Getting the binding of the whole current process is supported.

26.20.2.4 get_thisproc_last_cpu_location

unsigned char hwloc_topology_cpubind_support::get_thisproc_last_cpu_location
Getting the last processors where the whole current process ran is supported

26.20.2.5 get_thisthread_cpubind

unsigned char hwloc_topology_cpubind_support::get_thisthread_cpubind
Getting the binding of the current thread only is supported.

26.20.2.6 get_thisthread_last_cpu_location

unsigned char hwloc_topology_cpubind_support::get_thisthread_last_cpu_location
Getting the last processors where the current thread ran is supported

26.20.2.7 get_thread_cpubind

unsigned char hwloc_topology_cpubind_support::get_thread_cpubind
Getting the binding of a given thread only is supported.

26.20.2.8 set_proc_cpubind

unsigned char hwloc_topology_cpubind_support::set_proc_cpubind
Binding a whole given process is supported.

26.20.2.9 set_thisproc_cpubind

unsigned char hwloc_topology_cpubind_support::set_thisproc_cpubind
Binding the whole current process is supported.

Generated by Doxygen

268 Data Structure Documentation

26.20.2.10 set_thisthread_cpubind

unsigned char hwloc_topology_cpubind_support::set_thisthread_cpubind
Binding the current thread only is supported.

26.20.2.11 set_thread_cpubind

unsigned char hwloc_topology_cpubind_support::set_thread_cpubind
Binding a given thread only is supported.
The documentation for this struct was generated from the following file:

* hwloc.h

26.21 hwloc_topology_diff _u::hwloc_topology diff _generic_s Struct
Reference

#include <diff.h>

Data Fields

» hwloc_topology_diff_type_t type
« union hwloc_topology_diff_u * next

26.21.1 Field Documentation
26.21.1.1 next

union hwloc_topology_diff ux hwloc_topology_diff u::hwloc_topology_diff generic_s::next

26.21.1.2 type

hwloc_topology_diff_ type_t hwloc_topology_diff_u::hwloc_topology_diff_generic_s::type
The documentation for this struct was generated from the following file:

« diff.h

26.22 hwloc_topology_diff obj_attr_u::hwloc_topology diff obj_attr -
generic_s Struct Reference

#include <diff.h>

Data Fields

» hwloc_topology_diff_obj_attr_type_t type

26.22.1 Field Documentation
26.22.1.1 type

hwloc_topology_diff obj_attr_type_t hwloc_topology_diff obj_attr_u::hwloc_topology_diff_obj_attr«
_generic_s::type
The documentation for this struct was generated from the following file:

« diff.h

Generated by Doxygen

26.23 hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s Struct Reference

269

26.23 hwloc_topology_diff _u::hwloc_topology_ diff_obj_attr_s Struct
Reference

#include <diff.h>

Data Fields

» hwloc_topology_diff_type_t type

* union hwloc_topology_diff_u * next

* int obj_depth

* unsigned obj_index

 union hwloc_topology_diff_obj_attr_u diff

26.23.1 Field Documentation
26.23.1.1 diff

union hwloc_topology_diff obj_attr_u hwloc_topology_diff_u::hwloc_topology_diff obj_attr_s::diff

26.23.1.2 next

union hwloc_topology_diff_ ux hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s::next

26.23.1.3 obj_depth

int hwloc_topology_diff u::hwloc_topology_diff_ obj_attr_s::obj_depth

26.23.1.4 obj_index

unsigned hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s::obj_index

26.23.1.5 type

hwloc_topology_diff_ type_t hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s::type
The documentation for this struct was generated from the following file:

« diff.h

26.24 hwloc_topology_diff_obj_attr_u::hwloc_topology_ diff _obj_attr_.-

string_s Struct Reference

#include <diff.h>

Data Fields

» hwloc_topology_diff_obj_attr_type_t type
« char x name

 char % oldvalue

 char x newvalue

26.24.1 Detailed Description

String attribute modification with an optional name.

Generated by Doxygen

270 Data Structure Documentation

26.24.2 Field Documentation
26.24.2.1 name

charx hwloc_topology_diff_ obj_attr_u::hwloc_topology_diff obj_attr_string_s::name

26.24.2.2 newvalue

char*x hwloc_topology_diff_ obj_attr_u::hwloc_topology_diff obj_attr_string_s::newvalue

26.24.2.3 oldvalue

charx hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_ obj_attr_string_s::oldvalue

26.24.2.4 type

hwloc_topology_diff obj_attr_type_t hwloc_topology_ diff obj_attr_u::hwloc_topology_diff_ obj_attr«
_string_s::type
The documentation for this struct was generated from the following file:

« diff.h

26.25 hwloc_topology_diff obj_attr_u Union Reference

#include <diff.h>

Data Structures

« struct hwloc_topology_diff_obj_attr_generic_s
« struct hwloc_topology_diff_obj_attr_uint64_s
« struct hwloc_topology_diff_obj_attr_string_s

Data Fields

« struct hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_generic_s generic
« struct hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_uint64_s uint64
« struct hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_string_s string

26.25.1 Detailed Description

One object attribute difference.

26.25.2 Field Documentation

26.25.2.1 generic

struct hwloc_topology_diff_ obj_attr_u::hwloc_topology_diff_obj_attr_generic_s hwloc_topology_<«
diff_obj_attr_u::generic

26.25.2.2 string

struct hwloc_topology_diff obj_attr_u::hwloc_topology_diff_obj_attr_string_s hwloc_topology_diff«

_obj_attr_u::string

Generated by Doxygen

26.26 hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_uint64_s Struct Reference 271

26.25.2.3 uint64

struct hwloc_topology_diff obj_attr_u::hwloc_topology_diff_obj_attr_uint64_s hwloc_topology_diff«+
_obj_attr_u::uinto64
The documentation for this union was generated from the following file:

« diff.h

26.26 hwloc_topology_diff _obj_attr_u::hwloc_topology_ diff obj_attr .-
uint64_s Struct Reference

#include <diff.h>

Data Fields

» hwloc_topology_diff_obj_attr_type_t type
* hwloc_uint64_t index

* hwloc_uint64 _t oldvalue

* hwloc_uint64_t newvalue

26.26.1 Detailed Description

Integer attribute modification with an optional index.

26.26.2 Field Documentation
26.26.2.1 index

hwloc_uint64_t hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_ obj_attr_uint64_s::index

26.26.2.2 newvalue

hwloc_uint64_t hwloc_topology_diff_ obj_attr_u::hwloc_topology_ diff obj_attr_uint64_s::newvalue

26.26.2.3 oldvalue

hwloc_uint64_t hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_ obj_attr_uint64_s::oldvalue

26.26.2.4 type

hwloc_topology_diff obj_attr_type_t hwloc_topology_ diff obj_attr_u::hwloc_topology_diff obj_attr«
_uint64_s::type
The documentation for this struct was generated from the following file:

« diff.h

26.27 hwloc_topology_diff _u::hwloc_topology_ diff too_complex_s Struct
Reference

#include <diff.h>

Generated by Doxygen

272 Data Structure Documentation

Data Fields

» hwloc_topology_diff_type_t type

+ union hwloc_topology_diff_u * next
* int obj_depth

 unsigned obj_index

26.27.1 Field Documentation
26.27.1.1 next

union hwloc_topology_diff_ ux hwloc_topology_diff_ u::hwloc_topology_diff_ too_complex_s::next

26.27.1.2 obj_depth

int hwloc_topology_diff_u::hwloc_topology_diff_too_complex_s::obj_depth

26.27.1.3 obj_index

unsigned hwloc_topology_diff_u::hwloc_topology_diff_too_complex_s::obj_index

26.27.1.4 type

hwloc_topology_diff type_t hwloc_topology_diff_ u::hwloc_topology_diff_ too_complex_s::type
The documentation for this struct was generated from the following file:

« diff.h

26.28 hwloc_topology_diff u Union Reference

#include <diff.h>

Data Structures

« struct hwloc_topology_diff_generic_s

« struct hwloc_topology_diff_obj_attr_s

« struct hwloc_topology_diff_too_complex_s
Data Fields

« struct hwloc_topology_diff_u::hwloc_topology_diff_generic_s generic
« struct hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s obj_attr
« struct hwloc_topology_diff_u::hwloc_topology_diff_too_complex_s too_complex

26.28.1 Detailed Description

One element of a difference list between two topologies.

26.28.2 Field Documentation
26.28.2.1 generic

struct hwloc_topology_diff u::hwloc_topology_diff generic_s hwloc_topology_diff_ u::generic

Generated by Doxygen

26.29 hwloc_topology_discovery support Struct Reference 273

26.28.2.2 obj_attr

struct hwloc_topology_diff_u::hwloc_topology_diff obj_attr_s hwloc_topology_diff_u::obj_attr

26.28.2.3 too_complex

struct hwloc_topology_diff u::hwloc_topology_diff too_complex_s hwloc_topology_diff_u::too_complex
The documentation for this union was generated from the following file:

« diff.h

26.29 hwloc_topology_ discovery_support Struct Reference

#include <hwloc.h>

Data Fields

* unsigned char pu

* unsigned char numa

* unsigned char numa_memory

+ unsigned char disallowed_pu
 unsigned char disallowed_numa
+ unsigned char cpukind_efficiency

26.29.1 Detailed Description

Flags describing actual discovery support for this topology.

26.29.2 Field Documentation
26.29.2.1 cpukind_efficiency

unsigned char hwloc_topology_discovery_support::cpukind_efficiency

Detecting the efficiency of CPU kinds is supported, see Kinds of CPU cores.

26.29.2.2 disallowed_numa

unsigned char hwloc_topology_discovery_support::disallowed_numa
Detecting and identifying NUMA nodes that are not available to the current process is supported.

26.29.2.3 disallowed_pu

unsigned char hwloc_topology_discovery_support::disallowed_pu
Detecting and identifying PU objects that are not available to the current process is supported.

26.29.2.4 numa

unsigned char hwloc_topology_discovery_support::numa

Detecting the number of NUMA nodes is supported.

26.29.2.5 numa_memory

unsigned char hwloc_topology_discovery_support::numa_memory
Detecting the amount of memory in NUMA nodes is supported.

Generated by Doxygen

274 Data Structure Documentation

26.29.2.6 pu

unsigned char hwloc_topology_discovery_support: :pu
Detecting the number of PU objects is supported.
The documentation for this struct was generated from the following file:

* hwloc.h

26.30 hwloc_topology _membind_support Struct Reference

#include <hwloc.h>

Data Fields

 unsigned char set_thisproc_membind
 unsigned char get_thisproc_membind

* unsigned char set_proc_membind

* unsigned char get_proc_membind

* unsigned char set_thisthread_membind
* unsigned char get_thisthread_membind
* unsigned char set_area_membind
 unsigned char get_area_membind

* unsigned char alloc_membind

* unsigned char firsttouch_membind

* unsigned char bind_membind

* unsigned char interleave_membind

* unsigned char nexttouch_membind

+ unsigned char migrate_membind

+ unsigned char get_area_memlocation
 unsigned char weighted_interleave_membind

26.30.1 Detailed Description
Flags describing actual memory binding support for this topology.

A flag may be set even if the feature isn't supported in all cases (e.g. binding to random sets of non-contiguous objects).

26.30.2 Field Documentation
26.30.2.1 alloc_membind

unsigned char hwloc_topology_membind_support::alloc_membind
Allocating a bound memory area is supported.

26.30.2.2 bind_membind

unsigned char hwloc_topology_membind_support::bind_membind

Bind policy is supported.

26.30.2.3 firsttouch_membind

unsigned char hwloc_topology_membind_support::firsttouch_membind
First-touch policy is supported.

Generated by Doxygen

26.30 hwloc_topology _membind_support Struct Reference

275

26.30.2.4 get_area_membind

unsigned char hwloc_topology_membind_support::get_area_membind
Getting the binding of a given memory area is supported.

26.30.2.5 get_area_memlocation

unsigned char hwloc_topology_membind_support::get_area_memlocation
Getting the last NUMA nodes where a memory area was allocated is supported

26.30.2.6 get_proc_membind

unsigned char hwloc_topology_membind_ support::get_proc_membind
Getting the binding of a whole given process is supported.

26.30.2.7 get_thisproc_membind

unsigned char hwloc_topology_membind_support::get_thisproc_membind
Getting the binding of the whole current process is supported.

26.30.2.8 get_thisthread_membind

unsigned char hwloc_topology_membind_support::get_thisthread_membind

Getting the binding of the current thread only is supported.

26.30.2.9 interleave_membind

unsigned char hwloc_topology_membind_support::interleave_membind
Interleave policy is supported.

26.30.2.10 migrate_membind

unsigned char hwloc_topology_membind_support::migrate_membind
Migration flags is supported.

26.30.2.11 nexttouch_membind

unsigned char hwloc_topology_membind_support::nexttouch_membind
Next-touch migration policy is supported.

26.30.2.12 set_area_membind

unsigned char hwloc_topology_membind_support::set_area_membind
Binding a given memory area is supported.

26.30.2.13 set_proc_membind

unsigned char hwloc_topology_membind_support::set_proc_membind
Binding a whole given process is supported.

26.30.2.14 set_thisproc_membind

unsigned char hwloc_topology_membind_support::set_thisproc_membind
Binding the whole current process is supported.

Generated by Doxygen

276 Data Structure Documentation

26.30.2.15 set_thisthread_membind

unsigned char hwloc_topology_membind_support::set_thisthread_membind
Binding the current thread only is supported.

26.30.2.16 weighted_interleave_membind

unsigned char hwloc_topology_membind_support::weighted_interleave_membind
Weighted interleave policy is supported.
The documentation for this struct was generated from the following file:

* hwloc.h

26.31 hwloc_topology_misc_support Struct Reference

#include <hwloc.h>

Data Fields

* unsigned char imported_support

26.31.1 Detailed Description

Flags describing miscellaneous features.

26.31.2 Field Documentation
26.31.2.1 imported_support

unsigned char hwloc_topology_misc_support::imported_support
Support was imported when importing another topology, see HWLOC_TOPOLOGY_FLAG_IMPORT_SUPPORT.
The documentation for this struct was generated from the following file:

* hwloc.h

26.32 hwloc_topology_support Struct Reference

#include <hwloc.h>

Data Fields

« struct hwloc_topology_discovery_support * discovery
« struct hwloc_topology_cpubind_support * cpubind

« struct hwloc_topology _membind_support * membind
« struct hwloc_topology misc_support * misc

26.32.1 Detailed Description

Set of flags describing actual support for this topology.
This is retrieved with hwloc_topology_get_support() and will be valid until the topology object is destroyed. Note: the
values are correct only after discovery.

Generated by Doxygen

26.32 hwloc_topology_support Struct Reference 277

26.32.2 Field Documentation
26.32.2.1 cpubind

struct hwloc_topology_cpubind_ support* hwloc_topology_support::cpubind

26.32.2.2 discovery

struct hwloc_topology_discovery_support* hwloc_topology_support::discovery

26.32.2.3 membind

struct hwloc_topology_membind_support* hwloc_topology_support: :membind

26.32.2.4 misc

struct hwloc_topology_misc_support* hwloc_topology_support::misc
The documentation for this struct was generated from the following file:

* hwloc.h

Generated by Doxygen

278 Data Structure Documentation

Generated by Doxygen

Index

abi
hwloc_component, 250

Add distances between objects, 189
hwloc_distances_add_commit, 190
hwloc_distances_add_create, 190
hwloc_distances_add_flag_e, 190

HWLOC_DISTANCES_ADD_FLAG_GROUP, 190
HWLOC_DISTANCES_ADD_FLAG_GROUP_INACCURATEHWLOC LOCAL_NUMANODE_FLAG_INTERSECT LOCALITY,

190
hwloc_distances_add_handle_t, 190
hwloc_distances_add_values, 191

alloc_membind
hwloc_topology_membind_support, 274
API version, 99
HWLOC_API_VERSION, 99
HWLOC_COMPONENT_ABI, 99
hwloc_get_api_version, 100
arity
hwloc_obj, 259
associativity
hwloc_obj_attr_u::hwloc_cache_attr_s, 248
attr
hwloc_obj, 259

bind_membind
hwloc_topology_membind_support, 274
bridge
hwloc_obj_attr_u, 264

bus
hwloc_cl_device_topology_amd, 249
hwloc_obj_attr_u::hwloc_pcidev_attr_s, 265
cache

hwloc_obj_attr_u, 264

hwloc_obj_attr_u::hwloc_pcidev_attr_s, 265

Command-Line Tools, 19
Comparing memory node attributes for finding where to al-

locate on, 192
hwloc_get_local_numanode_objs, 196
HWLOC_LOCAL_NUMANODE_FLAG_ALL, 195
hwloc_local_numanode_flag_e, 194

194

HWLOC_LOCAL_NUMANODE_FLAG_LARGER_LOCALITY,

194

HWLOC_LOCAL_NUMANODE_FLAG_SMALLER_LOCALITY,

194
HWLOC_LOCATION_TYPE_CPUSET, 195
hwloc_location_type_e, 195
HWLOC_LOCATION_TYPE_OBJECT, 195
hwloc_memattr_get_best_initiator, 197
hwloc_memattr_get_best_target, 197
hwloc_memattr_get_by name, 198
hwloc_memattr_get_initiators, 198
hwloc_memattr_get_targets, 199
hwloc_memattr_get_value, 199
HWLOC_MEMATTR_ID_BANDWIDTH, 195
HWLOC_MEMATTR_ID_CAPACITY, 195
hwloc_memattr_id e, 195
HWLOC_MEMATTR_ID_LATENCY, 196
HWLOC_MEMATTR_ID_LOCALITY, 195
HWLOC_MEMATTR_ID_READ_BANDWIDTH, 196
HWLOC MEMATTR_ID READ_LATENCY, 196
hwloc_memattr_id_t, 194
HWLOC_MEMATTR_ID_WRITE_BANDWIDTH, 196
HWLOC_MEMATTR_ID_WRITE_LATENCY, 196
hwloc_topology_get_default_nodeset, 200

Compiling software on top of hwloc's C API, 13

Changing the Source of Topology Discovery, 129 _Iplete cpuset

HWLOC_TOPOLOGY_COMPONENTS_FLAG_| BLACKLIS

‘hwloc_obj, 259
129 complete_nodeset
hwloc_topology_components_flag_e, 129 hwloc_obj, 260

hwloc_topology_set_components, 129
hwloc_topology_set_pid, 130
hwloc_topology_set_synthetic, 130
hwloc_topology_set_xml, 130
hwloc_topology_set_xmlbuffer, 131

Components and plugins, 65
Components and Plugins: Core functions to be used by
components, 234
hwloc__insert_object_by_cpuset, 235
hwloc_alloc_setup_object, 235

children . hwloc_hide_errors, 236
hvaOC_obJ, 259 hwloc_insert_object_by parent, 236
class_id

Generated by Doxygen

280 INDEX

hwloc_obj_add_children_sets, 236 hwloc_cpuset_to_nodeset, 163
HWLOC_SHOW_ALL_ERRORS, 235 Converting between Object Types and Attributes, and
HWLOC_SHOW_CRITICAL_ERRORS, 235 Strings, 113
hwloc_topology_reconnect, 236 hwloc_obj_attr_snprintf, 113
Components and Plugins: Discovery components and hwloc_obj_type_snprintf, 113
backends, 231 hwloc_obj_type_string, 114
hwloc_backend_alloc, 233 hwloc_type_sscanf, 114
hwloc_backend_enable, 233 hwloc_type_sscanf_as_depth, 114
HWLOC_DISC_PHASE_ANNOTATE, 232 count
HWLOC_DISC_PHASE_CPU, 232 hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page_type
hwloc_disc_phase_e, 232 257
HWLOC_DISC_PHASE_GLOBAL, 232 CPU and Memory Binding Overview, 29
HWLOC_DISC_PHASE_I0O, 232 CPU and node sets of entire topologies, 160
HWLOC_DISC_PHASE MEMORY, 232 hwloc_topology_get_allowed_cpuset, 160
HWLOC_DISC_PHASE_MISC, 232 hwloc_topology_get_allowed_nodeset, 160
HWLOC_DISC PHASE_PCI, 232 hwloc_topology_get_complete_cpuset, 161
hwloc_disc_phase_t, 232 hwloc_topology_get_complete_nodeset, 161
HWLOC_DISC_PHASE_TWEAK, 232 hwloc_topology_get_topology_cpuset, 161
hwloc_disc_status_flag_e, 232 hwloc_topology_get_topology_nodeset, 162
HWLOC_DISC_STATUS FLAG_GOT_ALLOWED_RESCRIRGQIESNg, 116
233 hwloc_cpubind_flags_t, 117
Components and Plugins: distances, 240 HWLOC_CPUBIND_NOMEMBIND, 118
hwloc_backend_distances_add_commit, 240 HWLOC_CPUBIND_PROCESS, 117
hwloc_backend_distances_add_create, 240 HWLOC_CPUBIND_STRICT, 118
hwloc_backend_distances_add_handle_t, 240 HWLOC_CPUBIND_THREAD, 117
hwloc_backend_distances_add_values, 241 hwloc_get_cpubind, 118
Components and Plugins: Filtering objects, 237 hwloc_get_last_cpu_location, 118
hwloc_filter_check_keep_object, 237 hwloc_get_proc_cpubind, 119
hwloc_filter_check_keep_object_type, 237 hwloc_get_proc_last_cpu_location, 119
hwloc_filter_check_osdev_subtype_important, 237 hwloc_get_thread_cpubind, 119
hwloc_filter_check_pcidev_subtype_important, 237 hwloc_set_cpubind, 120
Components and Plugins: finding PCI objects during other hwloc_set_proc_cpubind, 120
discoveries, 239 hwloc_set_thread_cpubind, 120
hwloc_pci_find_by_busid, 239 cpubind
hwloc_pci_find_parent_by_busid, 239 hwloc_topology_support, 277
Components and Plugins: Generic components, 233 cpukind_efficiency
HWLOC_COMPONENT_TYPE_DISC, 234 hwloc_topology_discovery_support, 273
hwloc_component_type_e, 234 cpuset
hwloc_component_type_t, 234 hwloc_location::hwloc_location_u, 257
HWLOC_COMPONENT_TYPE_XML, 234 hwloc_obj, 260

hwloc_plugin_check_namespace, 234
Components and Plugins: helpers for PCI discovery, 238~ data

hwloc_pcidisc_check_bridge_type, 238 hwloc_cl_device_topology_amd, 249
hwloc_pcidisc_find_bridge_buses, 238 hwloc_component, 250
hwloc_pcidisc_find_cap, 238 depth
hwloc_pcidisc_find_linkspeed, 238 hwloc_obj, 260
hwloc_pcidisc_tree_attach, 239 hwloc_obj_attr_u::hwloc_bridge_attr_s, 247
hwloc_pcidisc_tree_insert_by busid, 239 hwloc_obj_attr_u::hwloc_cache_atir_s, 248
Consulting and Adding Info Attributes, 115 hwloc_obj_attr_u::hwloc_group_attr_s, 255
hwloc_obj_add_info, 115 dev
hwloc_obj_get_info_by_name, 115 hwloc_obj_attr_u::hwloc_pcidev_attr_s, 265
hwloc_obj_set_subtype, 116 device
Converting between CPU sets and node sets, 162 hwloc_cl_device_topology_amd, 250
hwloc_cpuset_from_nodeset, 162 device_id

Generated by Doxygen

INDEX

281

hwloc_obj_attr_u::hwloc_pcidev_attr_s, 265
diff
hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s,
269
disable
hwloc_backend, 245
disallowed_numa
hwloc_topology_discovery_support, 273
disallowed_pu
hwloc_topology_discovery_support, 273
discover
hwloc_backend, 245
discovery
hwloc_topology_support, 277
Distributing items over a topology, 159
hwloc_distrib, 159
HWLOC_DISTRIB_FLAG_REVERSE, 159
hwloc_distrib_flags_e, 159
domain
hwloc_obj_attr_u::hwloc_bridge_attr_s, 247
hwloc_obj_attr_u::hwloc_pcidev_attr_s, 265
dont_merge
hwloc_obj_attr_u::hwloc_group_attr_s, 255
downstream
hwloc_obj_attr_u::hwloc_bridge_attr_s, 247
downstream_type
hwloc_obj_attr_u::hwloc_bridge_attr_s, 247

Embedding hwloc in Other Software, 69
enabled_by_default
hwloc_disc_component, 252
Environment Variables, 23
Error reporting in the API, 99
excluded_phases
hwloc_disc_component, 252
hwloc_disc_status, 253
Exporting Topologies to Synthetic, 182
hwloc_topology_export_synthetic, 183

HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_

183

HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_|

183

HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_|

182

HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_VT,

183

hwloc_topology_export_synthetic_flags_e, 182
Exporting Topologies to XML, 178

hwloc_export_obj_userdata, 179
hwloc_export_obj_userdata_base64, 180
hwloc_free_xmlbuffer, 180
hwloc_topology_export_xml, 180
HWLOC_TOPOLOGY_EXPORT_XML_FLAG_V1,

179

hwloc_topology_export_xml_flags_e, 179
hwloc_topology_export_xmlbuffer, 181
hwloc_topology_set _userdata_export_callback, 181
hwloc_topology_set_userdata_import_callback, 181

finalize
hwloc_component, 251

Finding 1/0O objects, 163
hwloc_bridge_covers_pcibus, 163
hwloc_get_next_bridge, 163
hwloc_get_next_osdev, 164
hwloc_get_next_pcidev, 164
hwloc_get_non_io_ancestor_obj, 164
hwloc_get_pcidev_by_busid, 164
hwloc_get_pcidev_by_busidstring, 165

Finding Objects covering at least CPU set, 151
hwloc_get_child_covering_cpuset, 151
hwloc_get_next_obj_covering_cpuset_by_depth, 152
hwloc_get_next_obj_covering_cpuset_by_type, 152
hwloc_get_obj_covering_cpuset, 152

Finding Objects inside a CPU set, 148
hwloc_get_first_largest_obj_inside_cpuset, 148
hwloc_get_largest_objs_inside_cpuset, 148
hwloc_get_nbobjs_inside_cpuset_by_depth, 148
hwloc_get_nbobjs_inside_cpuset_by_type, 149
hwloc_get_next_obj_inside_cpuset_by_depth, 149
hwloc_get_next_obj_inside_cpuset_by_type, 149
hwloc_get_obj_index_inside_cpuset, 150
hwloc_get_obj_inside_cpuset_by depth, 150
hwloc_get_obj_inside_cpuset_by_type, 151

Finding objects, miscellaneous helpers, 156
hwloc_bitmap_singlify_per_core, 156
hwloc_get_closest_objs, 156
hwloc_get_numanode_obj_by_os_index, 157
hwloc_get_obj_below_array_by_type, 157
hwloc_get_obj_below_by_type, 157
hwloc_get_obj_with_same_locality, 158
hwloc_get_pu_obj_by_os_index, 158

@St afRitld MEMORY,
hwloc_obj, 260

NGtHATGR $embind
hwloc_topology_membind_support, 274

NaysEXTENDED_TYPES,

hwloc_backend, 245

hwloc_component, 251

hwloc_disc_status, 253

Frequently Asked Questions (FAQ), 73

func
hwloc_obj_attr_u::hwloc_pcidev_attr_s, 266

function
hwloc_cl_device_topology_amd, 250

generic
hwloc_topology_diff_obj_attr_u, 270
hwloc_topology_diff_u, 272

Generated by Doxygen

282

INDEX

get_area_membind
hwloc_topology_membind_support, 274
get_area_memlocation
hwloc_topology_membind_support, 275
get_pci_busid_cpuset
hwloc_backend, 246
get_proc_cpubind
hwloc_topology_cpubind_support, 267
get_proc_last_cpu_location
hwloc_topology_cpubind_support, 267
get_proc_membind
hwloc_topology_membind_support, 275
get_thisproc_cpubind
hwloc_topology_cpubind_support, 267
get_thisproc_last_cpu_location
hwloc_topology_cpubind_support, 267
get_thisproc_membind
hwloc_topology_membind_support, 275
get_thisthread_cpubind
hwloc_topology_cpubind_support, 267
get_thisthread last_cpu_location
hwloc_topology_cpubind_support, 267
get_thisthread_membind
hwloc_topology__membind_support, 275
get_thread_cpubind
hwloc_topology_cpubind_support, 267
gp_index
hwloc_obj, 260
group
hwloc_obj_attr_u, 264

Hardware Locality, 1
Helpers for consulting distance matrices, 188

hwloc_distances_obj_index, 188

hwloc_distances_obj_pair_values, 189
Heterogeneous Memory, 53
hwloc Directory Reference, 243
hwloc__insert_object_by_cpuset

Components and Plugins: Core functions to be used

by components, 235

hwloc_alloc

Memory binding, 124
hwloc_alloc_membind

Memory binding, 124
hwloc_alloc_membind_policy

Memory binding, 125
hwloc_alloc_setup_object

Components and Plugins: Core functions to be used

by components, 235

HWLOC_ALLOW_FLAG_ALL

Modifying a loaded Topology, 142
HWLOC_ALLOW_FLAG_CUSTOM

Modifying a loaded Topology, 142
HWLOC_ALLOW_FLAG_LOCAL_RESTRICTIONS

Modifying a loaded Topology, 142
hwloc_allow_flags_e

Modifying a loaded Topology, 142
HWLOC_API_VERSION

API version, 99
hwloc_backend, 245

disable, 245

discover, 245

flags, 245

get_pci_busid_cpuset, 246

is_thissystem, 246

phases, 246

private_data, 246
hwloc_backend_alloc

Components and Plugins:

and backends, 233

hwloc_backend_distances _add _commit

Components and Plugins: distances, 240
hwloc_backend_distances_add_create

Components and Plugins: distances, 240
hwloc_backend_distances_add_handle t

Components and Plugins: distances, 240
hwloc_backend_distances_add_values

Components and Plugins: distances, 241
hwloc_backend_enable

Components and Plugins:

and backends, 233

hwloc_bitmap_allbut

The bitmap API, 167
hwloc_bitmap_alloc

The bitmap API, 167
hwloc_bitmap_alloc_full

The bitmap API, 168
hwloc_bitmap_and

The bitmap API, 168
hwloc_bitmap_andnot

The bitmap API, 168
hwloc_bitmap_asprintf

The bitmap API, 168
hwloc_bitmap_clr

The bitmap API, 168
hwloc_bitmap_clr_range

The bitmap API, 169
hwloc_bitmap_compare

The bitmap API, 169
hwloc_bitmap_compare_first

The bitmap API, 169
hwloc_bitmap_copy

The bitmap API, 170
hwloc_bitmap_dup

The bitmap API, 170
hwloc_bitmap_fill

The bitmap API, 170
hwloc_bitmap_first

Discovery components

Discovery components

Generated by Doxygen

INDEX 283

The bitmap API, 170 The bitmap API, 175
hwloc_bitmap_first_unset hwloc_bitmap_singlify

The bitmap API, 170 The bitmap API, 175
hwloc_bitmap_foreach_begin hwloc_bitmap_singlify_per_core

The bitmap API, 167 Finding objects, miscellaneous helpers, 156
hwloc_bitmap_foreach_end hwloc_bitmap_snprintf

The bitmap API, 167 The bitmap API, 176
hwloc_bitmap_free hwloc_bitmap_sscanf

The bitmap API, 170 The bitmap API, 176
hwloc_bitmap_from_ith_ulong hwloc_bitmap_t

The bitmap API, 170 The bitmap API, 167
hwloc_bitmap_from_ulong hwloc_bitmap_taskset_asprintf

The bitmap API, 171 The bitmap API, 176
hwloc_bitmap_from_ulongs hwloc_bitmap_taskset_snprintf

The bitmap API, 171 The bitmap API, 177
hwloc_bitmap_intersects hwloc_bitmap_taskset_sscanf

The bitmap API, 171 The bitmap API, 177
hwloc_bitmap_isequal hwloc_bitmap_to_ith_ulong

The bitmap API, 171 The bitmap API, 177
hwloc_bitmap_isfull hwloc_bitmap_to_ulong

The bitmap API, 171 The bitmap API, 178
hwloc_bitmap_isincluded hwloc_bitmap_to_ulongs

The bitmap API, 172 The bitmap API, 178
hwloc_bitmap_isset hwloc_bitmap_weight

The bitmap API, 172 The bitmap API, 178
hwloc_bitmap_iszero hwloc_bitmap_xor

The bitmap API, 172 The bitmap API, 178
hwloc_bitmap_last hwloc_bitmap_zero

The bitmap API, 172 The bitmap API, 178
hwloc_bitmap_last_unset hwloc_bridge_covers_pcibus

The bitmap API, 172 Finding 1/0O objects, 163
hwloc_bitmap_list_asprintf hwloc_cl_device_pci_bus_info_khr, 248

The bitmap API, 173 pci_bus, 249
hwloc_bitmap_list_snprintf pci_device, 249

The bitmap API, 173 pci_domain, 249
hwloc_bitmap_list_sscanf pci_function, 249

The bitmap API, 173 hwloc_cl_device_topology_amd, 249
hwloc_bitmap_next bus, 249

The bitmap API, 174 data, 249
hwloc_bitmap_next_unset device, 250

The bitmap API, 174 function, 250
hwloc_bitmap_not pcie, 250

The bitmap API, 174 raw, 250
hwloc_bitmap_nr_ulongs type, 250

The bitmap API, 174 unused, 250
hwloc_bitmap_only hwloc_compare_types

The bitmap API, 175 Object Types, 105
hwloc_bitmap_or hwloc_component, 250

The bitmap API, 175 abi, 250
hwloc_bitmap_set data, 250

The bitmap API, 175 finalize, 251
hwloc_bitmap_set_ith_ulong flags, 251

The bitmap API, 175 init, 251
hwloc_bitmap_set_range type, 251

Generated by Doxygen

284

INDEX

HWLOC_COMPONENT_ABI
APl version, 99
HWLOC_COMPONENT_TYPE_DISC
Components and Plugins: Generic components, 234
hwloc_component_type_e
Components and Plugins: Generic components, 234
hwloc_component_type_t
Components and Plugins: Generic components, 234
HWLOC_COMPONENT_TYPE_XML
Components and Plugins: Generic components, 234
hwloc_const_bitmap_t
The bitmap API, 167
hwloc_const_cpuset_t
Object Sets (hwloc_cpuset_t and hwloc_nodeset_t),
100
hwloc_const_nodeset_t
Object Sets (hwloc_cpuset_t and hwloc_nodeset._t),
100
hwloc_cpubind_flags_t
CPU binding, 117
HWLOC_CPUBIND_NOMEMBIND
CPU binding, 118
HWLOC_CPUBIND_PROCESS
CPU binding, 117
HWLOC_CPUBIND_STRICT
CPU binding, 118
HWLOC_CPUBIND_THREAD
CPU binding, 117
hwloc_cpukinds_get_by_cpuset
Kinds of CPU cores, 204
hwloc_cpukinds_get_info
Kinds of CPU cores, 204
hwloc_cpukinds_get_nr
Kinds of CPU cores, 204
hwloc_cpukinds_register
Kinds of CPU cores, 205
hwloc_cpuset_from_glibc_sched_affinity
Interoperability with glibc sched affinity, 211
hwloc_cpuset_from_linux_libnuma_bitmask
Interoperability with Linux libnuma bitmask, 209
hwloc_cpuset_from_linux_libnuma_ulongs
Interoperability with Linux libnuma unsigned long
masks, 207
hwloc_cpuset_from_nodeset
Converting between CPU sets and node sets, 162
hwloc_cpuset_t
Object Sets (hwloc_cpuset_t and hwloc_nodeset_t),
100
hwloc_cpuset_to_glibc_sched_affinity
Interoperability with glibc sched affinity, 212
hwloc_cpuset_to_linux_libnuma_bitmask
Interoperability with Linux libnuma bitmask, 209
hwloc_cpuset_to_linux_libnuma_ulongs

Interoperability with Linux libnuma unsigned long
masks, 208
hwloc_cpuset_to_nodeset
Converting between CPU sets and node sets, 163
hwloc_cuda_get_device_cpuset
Interoperability with the CUDA Driver API, 214
hwloc_cuda_get_device_osdev
Interoperability with the CUDA Driver API, 214
hwloc_cuda_get _device_osdev_by_index
Interoperability with the CUDA Driver API, 215
hwloc_cuda_get_device_pci_ids
Interoperability with the CUDA Driver API, 215
hwloc_cuda_get_device_pcidev
Interoperability with the CUDA Driver API, 215
hwloc_cudart_get_device_cpuset
Interoperability with the CUDA Runtime API, 216
hwloc_cudart_get_device_osdev_by_index
Interoperability with the CUDA Runtime API, 216
hwloc_cudart_get_device_pci_ids
Interoperability with the CUDA Runtime API, 217
hwloc_cudart_get_device_pcidev
Interoperability with the CUDA Runtime API, 217
hwloc_disc_component, 251
enabled_by_default, 252
excluded_phases, 252
instantiate, 252
name, 252
phases, 252
priority, 252
HWLOC_DISC_PHASE_ANNOTATE
Components and Plugins: Discovery
and backends, 232
HWLOC_DISC_PHASE_CPU
Components and Plugins:
and backends, 232
hwloc_disc_phase_e
Components and Plugins:
and backends, 232
HWLOC_DISC_PHASE_GLOBAL
Components and Plugins:
and backends, 232
HWLOC_DISC_PHASE_IO
Components and Plugins:
and backends, 232
HWLOC_DISC_PHASE_MEMORY
Components and Plugins: Discovery
and backends, 232
HWLOC_DISC_PHASE_MISC
Components and Plugins:
and backends, 232
HWLOC_DISC_PHASE_PCI
Components and Plugins:
and backends, 232
hwloc_disc_phase_t

components
Discovery components
Discovery components
Discovery components
Discovery components
components
Discovery

components

Discovery components

Generated by Doxygen

INDEX

285

Components and Plugins: Discovery components

and backends, 232
HWLOC_DISC_PHASE_TWEAK

Components and Plugins: Discovery components

and backends, 232
hwloc_disc_status, 253
excluded_phases, 253
flags, 253
phase, 253
hwloc_disc_status_flag_e

Components and Plugins: Discovery components

and backends, 232

Helpers for consulting distance matrices, 189
hwloc_distances_release

Retrieve distances between objects, 187
hwloc_distances_release remove

Remove distances between objects, 192
hwloc_distances _remove

Remove distances between objects, 192
hwloc_distances_remove_by_depth

Remove distances between objects, 192
hwloc_distances_remove_by_type

Remove distances between objects, 192
hwloc_distances_s, 253

HWLOC_DISC_STATUS_FLAG_GOT_ALLOWED_RESOURCESkKind, 254

Components and Plugins: Discovery components

and backends, 233

hwloc_distances_add_commit

Add distances between objects, 190
hwloc_distances_add_create

Add distances between objects, 190
hwloc_distances_add_flag_e

Add distances between objects, 190
HWLOC_DISTANCES_ADD_FLAG_GROUP

Add distances between objects, 190

HWLOC_DISTANCES_ADD_FLAG_GROUP_INACCURATE

Add distances between objects, 190
hwloc_distances _add_handle t

Add distances between objects, 190
hwloc_distances_add_values

Add distances between objects, 191
hwloc_distances_get

Retrieve distances between objects, 186
hwloc_distances_get_by_depth

Retrieve distances between objects, 186
hwloc_distances_get by _name

Retrieve distances between objects, 187
hwloc_distances_get_by_type

Retrieve distances between objects, 187
hwloc_distances_get_name

Retrieve distances between objects, 187
hwloc_distances_kind_e

Retrieve distances between objects, 184
HWLOC_DISTANCES_KIND_FROM_OS

Retrieve distances between objects, 184
HWLOC_DISTANCES_KIND_FROM_USER

Retrieve distances between objects, 184

HWLOC_DISTANCES_KIND_HETEROGENEOUS_TYPES

Retrieve distances between objects, 185

HWLOC_DISTANCES_KIND_MEANS_BANDWIDTH

Retrieve distances between objects, 185

HWLOC_DISTANCES_KIND_MEANS_LATENCY

Retrieve distances between objects, 185
hwloc_distances_obj_index

Helpers for consulting distance matrices, 188

hwloc_distances_obj_pair_values

nbobjs, 254

objs, 254

values, 254
hwloc_distances_transform

Retrieve distances between objects, 188
hwloc_distances_transform_e

Retrieve distances between objects, 185
HWLOC_DISTANCES_TRANSFORM_LINKS

Retrieve distances between objects, 185
HWLOC_DISTANCES_TRANSFORM_MERGE_SWITCH_PORTS

Retrieve distances between objects, 186
HWLOC_DISTANCES_TRANSFORM_REMOVE_NULL

Retrieve distances between objects, 185
HWLOC_DISTANCES_TRANSFORM_TRANSITIVE_CLOSURE

Retrieve distances between objects, 186
hwloc_distrib

Distributing items over a topology, 159
HWLOC_DISTRIB_FLAG_REVERSE

Distributing items over a topology, 159
hwloc_distrib_flags_e

Distributing items over a topology, 159
hwloc_export_obj_userdata

Exporting Topologies to XML, 179
hwloc_export_obj_userdata_base64

Exporting Topologies to XML, 180
hwloc_filter_check_keep_object

Components and Plugins: Filtering objects, 237
hwloc_filter_check_keep_object_type

Components and Plugins: Filtering objects, 237
hwloc_filter_check_osdev_subtype_important

Components and Plugins: Filtering objects, 237
hwloc_filter_check_pcidev_subtype_important

Components and Plugins: Filtering objects, 237
hwloc_free

Memory binding, 125
hwloc_free_xmlbuffer

Exporting Topologies to XML, 180
hwloc_get_ancestor_obj_by_depth

Looking at Ancestor and Child Objects, 153
hwloc_get_ancestor_obj_by_type

Looking at Ancestor and Child Objects, 153

Generated by Doxygen

286

INDEX

hwloc_get_api_version

APl version, 100
hwloc_get_area_membind

Memory binding, 125
hwloc_get_area_memlocation

Memory binding, 126
hwloc_get_cache_covering_cpuset

Looking at Cache Objects, 155
hwloc_get_cache_type_depth

Looking at Cache Objects, 155
hwloc_get_child_covering_cpuset

Finding Objects covering at least CPU set, 151
hwloc_get_closest_objs

Finding objects, miscellaneous helpers, 156
hwloc_get_common_ancestor_obj

Looking at Ancestor and Child Objects, 154
hwloc_get_cpubind

CPU binding, 118
hwloc_get_depth_type

Object levels, depths and types, 109
hwloc_get_first_largest_obj_inside_cpuset

Finding Objects inside a CPU set, 148
hwloc_get_largest_objs_inside_cpuset

Finding Objects inside a CPU set, 148
hwloc_get_last_cpu_location

CPU binding, 118
hwloc_get_local_numanode_objs

Comparing memory node attributes for finding where

to allocate on, 196

hwloc_get_membind

Memory binding, 126
hwloc_get_memory_parents_depth

Object levels, depths and types, 109
hwloc_get_nbobjs_by_depth

Object levels, depths and types, 110
hwloc_get_nbobjs_by_type

Object levels, depths and types, 110
hwloc_get_nbobjs_inside_cpuset_by depth

Finding Objects inside a CPU set, 148
hwloc_get_nbobjs_inside_cpuset_by_type

Finding Objects inside a CPU set, 149
hwloc_get_next_bridge

Finding 1/0O objects, 163
hwloc_get_next_child

Looking at Ancestor and Child Objects, 154
hwloc_get_next_obj_by_depth

Object levels, depths and types, 110
hwloc_get_next_obj_by_type

Object levels, depths and types, 110
hwloc_get_next_obj_covering_cpuset_by depth

Finding Objects covering at least CPU set, 152
hwloc_get_next_obj_covering_cpuset_by_type

Finding Objects covering at least CPU set, 152
hwloc_get_next_obj_inside_cpuset_by_depth

Finding Objects inside a CPU set, 149
hwloc_get_next_obj_inside_cpuset_by_type

Finding Objects inside a CPU set, 149
hwloc_get_next_osdev

Finding 1/0O objects, 164
hwloc_get_next_pcidev

Finding 1/0O objects, 164
hwloc_get_non_io_ancestor_obj

Finding 1/0O objects, 164
hwloc_get_numanode_obj_by os_index

Finding objects, miscellaneous helpers, 157
hwloc_get_obj_below_array_by_type

Finding objects, miscellaneous helpers, 157
hwloc_get_obj_below_by_type

Finding objects, miscellaneous helpers, 157
hwloc_get_obj_by_ depth

Object levels, depths and types, 111
hwloc_get_obj_by_type

Object levels, depths and types, 111
hwloc_get_obj_covering_cpuset

Finding Objects covering at least CPU set, 152
hwloc_get_obj_index_inside_cpuset

Finding Objects inside a CPU set, 150
hwloc_get_obj_inside_cpuset_by depth

Finding Objects inside a CPU set, 150
hwloc_get_obj_inside_cpuset_by_type

Finding Objects inside a CPU set, 151
hwloc_get_obj_with_same_locality

Finding objects, miscellaneous helpers, 158
hwloc_get_pcidev_by_busid

Finding 1/0O objects, 164
hwloc_get_pcidev_by_busidstring

Finding 1/0O objects, 165
hwloc_get_proc_cpubind

CPU binding, 119
hwloc_get_proc_last_cpu_location

CPU binding, 119
hwloc_get_proc_membind

Memory binding, 127
hwloc_get_pu_obj_by os_index

Finding objects, miscellaneous helpers, 158
hwloc_get_root_obj

Object levels, depths and types, 111
hwloc_get_shared_cache_covering_obj

Looking at Cache Objects, 155
hwloc_get_thread_cpubind

CPU binding, 119
hwloc_get_type_depth

Object levels, depths and types, 111
hwloc_get_type_depth_e

Object levels, depths and types, 109
hwloc_get_type_or_above_depth

Object levels, depths and types, 112
hwloc_get_type_or_below_depth

Generated by Doxygen

INDEX

287

Object levels, depths and types, 112
hwloc_gl_get_display_by osdev
Interoperability with OpenGL displays, 222
hwloc_gl_get_display_osdev_by name
Interoperability with OpenGL displays, 223
hwloc_gl_get_display_osdev_by_port_device
Interoperability with OpenGL displays, 223
hwloc_hide_errors
Components and Plugins: Core functions to be used
by components, 236
hwloc_ibv_get_device_cpuset
Interoperability with OpenFabrics, 224
hwloc_ibv_get_device_osdev
Interoperability with OpenFabrics, 224
hwloc_ibv_get_device_osdev_by name
Interoperability with OpenFabrics, 224
hwloc_info_s, 255
name, 255
value, 255
hwloc_insert_object_by_parent
Components and Plugins: Core functions to be used
by components, 236
hwloc_levelzero_get _device_cpuset
Interoperability with the oneAPI Level Zero interface.,
220
hwloc_levelzero_get_device_osdev
Interoperability with the oneAPI Level Zero interface.,
221
hwloc_levelzero_get _sysman_device_cpuset
Interoperability with the oneAPI Level Zero interface.,
221
hwloc_levelzero_get_sysman_device_osdev
Interoperability with the oneAPI Level Zero interface.,
222
hwloc_linux_get_tid_cpubind
Linux-specific helpers, 206
hwloc_linux_get_tid_last_cpu_location
Linux-specific helpers, 206
hwloc_linux_read_path_as_cpumask
Linux-specific helpers, 206
hwloc_linux_set_tid_cpubind
Linux-specific helpers, 206
HWLOC_LOCAL_NUMANODE_FLAG_ALL
Comparing memory node attributes for finding where
to allocate on, 195
hwloc_local_numanode_flag_e
Comparing memory node attributes for finding where
to allocate on, 194

HWLOC_LOCAL_NUMANODE_FLAG_SMALLER_LOCALITY

Comparing memory node attributes for finding where
to allocate on, 194
hwloc_location, 256
location, 256
type, 256
hwloc_location::hwloc_location_u, 256
cpuset, 257
object, 257
HWLOC_LOCATION_TYPE_CPUSET
Comparing memory node attributes for finding where
to allocate on, 195
hwloc_location_type_e
Comparing memory node attributes for finding where
to allocate on, 195
HWLOC_LOCATION_TYPE_OBJECT
Comparing memory node attributes for finding where
to allocate on, 195
hwloc_memattr_flag_e
Managing memory attributes, 201
HWLOC_MEMATTR_FLAG_HIGHER_FIRST
Managing memory attributes, 201
HWLOC_MEMATTR_FLAG_LOWER_FIRST
Managing memory attributes, 201
HWLOC_MEMATTR_FLAG_NEED_INITIATOR
Managing memory attributes, 201
hwloc_memattr_get_best_initiator
Comparing memory node attributes for finding where
to allocate on, 197
hwloc_memattr_get_best_target
Comparing memory node attributes for finding where
to allocate on, 197
hwloc_memattr_get_by_name
Comparing memory node attributes for finding where
to allocate on, 198
hwloc_memattr_get_flags
Managing memory attributes, 201
hwloc_memattr_get_initiators
Comparing memory node attributes for finding where
to allocate on, 198
hwloc_memattr_get_name
Managing memory attributes, 202
hwloc_memattr_get_targets
Comparing memory node attributes for finding where
to allocate on, 199
hwloc_memattr_get_value
Comparing memory node attributes for finding where
to allocate on, 199

HWLOC_LOCAL_NUMANODE_FLAG_INTERSECT_LOCAHWLOC_MEMATTR_ID_BANDWIDTH

Comparing memory node attributes for finding where
to allocate on, 194

Comparing memory node attributes for finding where
to allocate on, 195

HWLOC_LOCAL_NUMANODE_FLAG_LARGER_LOCALITHWLOC_MEMATTR_ID_CAPACITY

Comparing memory node attributes for finding where
to allocate on, 194

Comparing memory node attributes for finding where
to allocate on, 195

Generated by Doxygen

288

INDEX

hwloc_memattr_id e
Comparing memory node attributes for finding where
to allocate on, 195
HWLOC_MEMATTR_ID_LATENCY
Comparing memory node attributes for finding where
to allocate on, 196
HWLOC_MEMATTR_ID_LOCALITY
Comparing memory node attributes for finding where
to allocate on, 195
HWLOC_MEMATTR_ID_READ_BANDWIDTH
Comparing memory node attributes for finding where
to allocate on, 196
HWLOC_MEMATTR_ID_READ_LATENCY
Comparing memory node attributes for finding where
to allocate on, 196
hwloc_memattr_id t
Comparing memory node attributes for finding where
to allocate on, 194
HWLOC_MEMATTR_ID_WRITE_BANDWIDTH
Comparing memory node attributes for finding where
to allocate on, 196
HWLOC_MEMATTR_ID_WRITE_LATENCY
Comparing memory node attributes for finding where
to allocate on, 196
hwloc_memattr_register
Managing memory attributes, 202
hwloc_memattr_set value
Managing memory attributes, 202
HWLOC_MEMBIND_BIND
Memory binding, 124
HWLOC_MEMBIND_BYNODESET
Memory binding, 123
HWLOC_MEMBIND_DEFAULT
Memory binding, 123
HWLOC_MEMBIND_FIRSTTOUCH
Memory binding, 123
hwloc_membind_flags_t
Memory binding, 122
HWLOC_MEMBIND_INTERLEAVE
Memory binding, 124
HWLOC_MEMBIND_MIGRATE
Memory binding, 123
HWLOC_MEMBIND_MIXED
Memory binding, 124
HWLOC_MEMBIND_NEXTTOUCH
Memory binding, 124
HWLOC_MEMBIND_NOCPUBIND
Memory binding, 123
hwloc_membind_policy_t
Memory binding, 123
HWLOC_MEMBIND_PROCESS
Memory binding, 123
HWLOC_MEMBIND_STRICT
Memory binding, 123

HWLOC_MEMBIND_THREAD
Memory binding, 123
HWLOC_MEMBIND_WEIGHTED_INTERLEAVE
Memory binding, 124
hwloc_nodeset_from_linux_libnuma_bitmask
Interoperability with Linux libnuma bitmask, 209
hwloc_nodeset_from_linux_libnuma_ulongs
Interoperability with Linux libnuma unsigned long
masks, 208
hwloc_nodeset_t
Object Sets (hwloc_cpuset_t and hwloc_nodeset_t),
100
hwloc_nodeset_to_linux_libnuma_bitmask
Interoperability with Linux libnuma bitmask, 210
hwloc_nodeset_to_linux_libnuma_ulongs
Interoperability with Linux libnuma unsigned long
masks, 208
hwloc_nvml_get_device_cpuset
Interoperability with the NVIDIA Management Library,
218
hwloc_nvml_get_device_osdev
Interoperability with the NVIDIA Management Library,
218
hwloc_nvml_get_device_osdev_by_index
Interoperability with the NVIDIA Management Library,
218
hwloc_obj, 258
arity, 259
attr, 259
children, 259
complete_cpuset, 259
complete_nodeset, 260
cpuset, 260
depth, 260
first_child, 260
gp_index, 260
infos, 260
infos_count, 261
io_arity, 261
io_first_child, 261
last_child, 261
logical_index, 261
memory_arity, 261
memory_first_child, 261
misc_arity, 261
misc_first_child, 261
name, 261
next_cousin, 262
next_sibling, 262
nodeset, 262
os_index, 262
parent, 262
prev_cousin, 262
prev_sibling, 262

Generated by Doxygen

INDEX

289

sibling_rank, 262

subtype, 263

symmetric_subtree, 263

total_memory, 263

type, 263

userdata, 263
hwloc_obj_add_children_sets

Components and Plugins: Core functions to be used

by components, 236

hwloc_obj_add_info

Consulting and Adding Info Attributes, 115
hwloc_obj_add_other_obj_sets

Modifying a loaded Topology, 143
hwloc_obj_attr_snprintf

Converting between Object Types and Attributes, and

Strings, 113

hwloc_obj_attr_u, 263

bridge, 264

cache, 264

group, 264

numanode, 264

osdev, 264

pcidev, 264
hwloc_obj_attr_u::hwloc_bridge_attr_s, 246

depth, 247

domain, 247

downstream, 247

downstream_type, 247

pci, 247

secondary_bus, 247

subordinate _bus, 247

upstream, 247

upstream_type, 247
hwloc_obj_attr_u::hwloc_cache_attr_s, 248

associativity, 248

depth, 248

linesize, 248

size, 248

type, 248
hwloc_obj_attr_u::hwloc_group_attr_s, 254

depth, 255

dont_merge, 255

kind, 255

subkind, 255
hwloc_obj_attr_u::hwloc_numanode_attr_s, 257

local_memory, 258

page_types, 258

page_types_len, 258

hwloc_obj_attr_u::hwloc_pcidev_atir_s, 265

bus, 265

class_id, 265

dev, 265

device_id, 265

domain, 265

func, 266

linkspeed, 266

revision, 266

subdevice id, 266

subvendor_id, 266

vendor_id, 266
HWLOC_OBJ_BRIDGE

Object Types, 104
HWLOC_OBJ_BRIDGE_HOST

Object Types, 102
HWLOC_OBJ_BRIDGE_PCI

Object Types, 102
hwloc_obj_bridge_type_e

Object Types, 102
hwloc_obj_bridge_type_t

Object Types, 102
HWLOC_OBJ_CACHE_DATA

Object Types, 102
HWLOC_OBJ_CACHE_INSTRUCTION

Object Types, 102
hwloc_obj_cache_type_e

Object Types, 102
hwloc_obj_cache_type_t

Object Types, 102
HWLOC_OBJ_CACHE_UNIFIED

Object Types, 102
HWLOC_OBJ_CORE

Object Types, 103
HWLOC_OBJ_DIE

Object Types, 105
hwloc_obj_get_info_by name

Consulting and Adding Info Attributes, 115
HWLOC_OBJ_GROUP

Object Types, 104
hwloc_obj_is_in_subtree

Looking at Ancestor and Child Objects, 154
HWLOC_OBJ_L1CACHE

Object Types, 103
HWLOC_OBJ_L1ICACHE

Object Types, 103
HWLOC_OBJ_L2CACHE

Object Types, 103

hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_HigeO@p&OB,) L2ICACHE

257
count, 257
size, 257
hwloc_obj_attr_u::hwloc_osdev_attr_s, 264
type, 265

Object Types, 103
HWLOC_OBJ_L3CACHE

Object Types, 103
HWLOC_OBJ_L3ICACHE

Object Types, 103

Generated by Doxygen

290

INDEX

HWLOC_OBJ_L4CACHE
Object Types, 103
HWLOC_OBJ_L5CACHE
Object Types, 103
HWLOC_OBJ_MACHINE
Object Types, 103
HWLOC_OBJ_MEMCACHE
Object Types, 104
HWLOC_OBJ_MISC
Object Types, 104
HWLOC_OBJ_NUMANODE
Object Types, 104
HWLOC_OBJ_OS_DEVICE
Object Types, 104
HWLOC_OBJ_OSDEV_BLOCK
Object Types, 102
HWLOC_OBJ_OSDEV_COPROC
Object Types, 103
HWLOC_OBJ_OSDEV_DMA
Object Types, 103
HWLOC_OBJ_OSDEV_GPU
Object Types, 103
HWLOC_OBJ_OSDEV_NETWORK
Object Types, 103
HWLOC_OBJ_OSDEV_OPENFABRICS
Object Types, 103
hwloc_obj_osdev_type_e
Object Types, 102
hwloc_obj_osdev_type_t
Object Types, 102
HWLOC_OBJ_PACKAGE
Object Types, 103
HWLOC_OBJ_PCI_DEVICE
Object Types, 104
HWLOC_OBJ_PU
Object Types, 103
hwloc_obj_set_subtype
Consulting and Adding Info Attributes, 116
hwloc_obj_t
Object Structure and Attributes, 105
hwloc_obj_type_is_cache
Kinds of object Type, 146
hwloc_obj_type_is_dcache
Kinds of object Type, 147
hwloc_obj_type_is_icache
Kinds of object Type, 147
hwloc_obj_type_is_io
Kinds of object Type, 147
hwloc_obj_type_is_memory
Kinds of object Type, 147
hwloc_obj_type_is_normal
Kinds of object Type, 147
hwloc_obj_type_snprintf

Converting between Object Types and Attributes, and
Strings, 113
hwloc_obj_type_string
Converting between Object Types and Attributes, and
Strings, 114
hwloc_obj_type_t
Object Types, 103
hwloc_opencl_get_device_cpuset
Interoperability with OpenCL, 212
hwloc_opencl_get_device_osdev
Interoperability with OpenCL, 213
hwloc_opencl_get_device_osdev_by_index
Interoperability with OpenCL, 213
hwloc_opencl_get_device_pci_busid
Interoperability with OpenCL, 213
hwloc_pci_find_by_busid
Components and Plugins: finding PCI objects during
other discoveries, 239
hwloc_pci_find_parent_by_busid
Components and Plugins: finding PCI objects during
other discoveries, 239
hwloc_pcidisc_check_bridge_type
Components and Plugins: helpers for PCI discovery,
238
hwloc_pcidisc_find_bridge_buses
Components and Plugins: helpers for PCI discovery,
238
hwloc_pcidisc_find_cap
Components and Plugins: helpers for PCI discovery,
238
hwloc_pcidisc_find_linkspeed
Components and Plugins: helpers for PCI discovery,
238
hwloc_pcidisc_tree_attach
Components and Plugins: helpers for PCI discovery,
239
hwloc_pcidisc_tree_insert_by_ busid
Components and Plugins: helpers for PCI discovery,
239
hwloc_plugin_check_namespace
Components and Plugins: Generic components, 234
HWLOC_RESTRICT_FLAG_ADAPT_IO
Modifying a loaded Topology, 142
HWLOC_RESTRICT_FLAG_ADAPT_MISC
Modifying a loaded Topology, 142
HWLOC_RESTRICT_FLAG_BYNODESET
Modifying a loaded Topology, 142
HWLOC_RESTRICT_FLAG_REMOVE_CPULESS
Modifying a loaded Topology, 142
HWLOC_RESTRICT_FLAG_REMOVE_MEMLESS
Modifying a loaded Topology, 142
hwloc_restrict_flags_e
Modifying a loaded Topology, 142
hwloc_rsmi_get_device_cpuset

Generated by Doxygen

INDEX

291

Interoperability with the ROCm SMI Management Li-
brary, 219
hwloc_rsmi_get_device_osdev
Interoperability with the ROCm SMI Management Li-
brary, 219
hwloc_rsmi_get_device_osdev_by_index
Interoperability with the ROCm SMI Management Li-
brary, 220
hwloc_set _area_membind
Memory binding, 127
hwloc_set_cpubind
CPU binding, 120
hwloc_set_membind
Memory binding, 128
hwloc_set_proc_cpubind
CPU binding, 120
hwloc_set_proc_membind
Memory binding, 128
hwloc_set_thread_cpubind
CPU binding, 120
hwloc_shmem_topology_adopt
Sharing topologies between processes, 230
hwloc_shmem_topology_get_length
Sharing topologies between processes, 230
hwloc_shmem_topology_write
Sharing topologies between processes, 231
HWLOC_SHOW_ALL_ERRORS
Components and Plugins: Core functions to be used
by components, 235
HWLOC_SHOW_CRITICAL_ERRORS
Components and Plugins: Core functions to be used
by components, 235
hwloc_topology_abi_check
Topology Creation and Destruction, 106
hwloc_topology_alloc_group_object
Modifying a loaded Topology, 143
hwloc_topology_allow
Modifying a loaded Topology, 143
hwloc_topology_check
Topology Creation and Destruction, 106

HWLOC_TOPOLOGY_COMPONENTS_FLAG_BLACKLIST

Changing the Source of Topology Discovery, 129
hwloc_topology_components_flag_e

Changing the Source of Topology Discovery, 129
hwloc_topology_cpubind_support, 266

get_proc_cpubind, 267

get_proc_last_cpu_location, 267

get_thisproc_cpubind, 267

get_thisproc_last_cpu_location, 267

get_thisthread_cpubind, 267

get_thisthread_last_cpu_location, 267

get_thread_cpubind, 267

set_proc_cpubind, 267

set_thisproc_cpubind, 267

set_thisthread_cpubind, 267

set_thread_cpubind, 268
hwloc_topology_destroy

Topology Creation and Destruction, 107
hwloc_topology_diff_apply

Topology differences, 227
hwloc_topology_diff_apply_flags_e

Topology differences, 226
HWLOC_TOPOLOGY_DIFF_APPLY_REVERSE

Topology differences, 226
hwloc_topology_diff_build

Topology differences, 227
hwloc_topology_diff_destroy

Topology differences, 228
hwloc_topology_diff_export_xmi

Topology differences, 228
hwloc_topology_diff_export_xmlbuffer

Topology differences, 228
hwloc_topology_diff_load_xml

Topology differences, 229
hwloc_topology_diff_load_xmlbuffer

Topology differences, 229
HWLOC_TOPOLOGY_DIFF_OBJ_ATTR

Topology differences, 227
HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_INFO

Topology differences, 227
HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_NAME

Topology differences, 226
HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_SIZE

Topology differences, 226
hwloc_topology_diff_obj_attr_type_e

Topology differences, 226
hwloc_topology_diff_obj_attr_type_t

Topology differences, 226
hwloc_topology_diff_obj_attr_u, 270

generic, 270

string, 270

uint64, 270

hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_generic_s,

268
type, 268

hwloc_topology_diff_obj_attr_u::hwloc_topology_diff _obj_attr_string_s,

269
name, 270
newvalue, 270
oldvalue, 270
type, 270

hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_uint64_s,

271
index, 271
newvalue, 271
oldvalue, 271
type, 271
hwloc_topology_diff_t

Generated by Doxygen

292

INDEX

Topology differences, 226
HWLOC_TOPOLOGY_DIFF_TOO_COMPLEX
Topology differences, 227
hwloc_topology_diff_type_e
Topology differences, 227
hwloc_topology_diff type_t
Topology differences, 226
hwloc_topology_diff_u, 272
generic, 272
obj_attr, 272
too_complex, 273
hwloc_topology_diff_u::hwloc_topology_diff_generic_s,
268
next, 268
type, 268
hwloc_topology_diff_u::hwloc_topology_diff obj_attr_s,
269
diff, 269
next, 269
obj_depth, 269
obj_index, 269
type, 269
hwloc_topology_diff_u::hwloc_topology_diff_too_complex_s,
271
next, 272
obj_depth, 272
obj_index, 272
type, 272
hwloc_topology_discovery_support, 273
cpukind_efficiency, 273
disallowed numa, 273
disallowed_pu, 273
numa, 273
numa_memory, 273
pu, 273
hwloc_topology_dup
Topology Creation and Destruction, 107
hwloc_topology_export_synthetic
Exporting Topologies to Synthetic, 183

Exporting Topologies to XML, 179
hwloc_topology_export_xmlbuffer

Exporting Topologies to XML, 181
HWLOC_TOPOLOGY_FLAG_DONT_CHANGE_BINDING

Topology Detection Configuration and Query, 137
HWLOC_TOPOLOGY_FLAG_IMPORT_SUPPORT

Topology Detection Configuration and Query, 135
HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED

Topology Detection Configuration and Query, 133
HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM

Topology Detection Configuration and Query, 134
HWLOC_TOPOLOGY_FLAG_NO_CPUKINDS

Topology Detection Configuration and Query, 137
HWLOC_TOPOLOGY_FLAG_NO_DISTANCES

Topology Detection Configuration and Query, 137
HWLOC_TOPOLOGY_FLAG_NO_MEMATTRS

Topology Detection Configuration and Query, 137
HWLOC_TOPOLOGY_FLAG_RESTRICT_TO_CPUBINDING

Topology Detection Configuration and Query, 136
HWLOC_TOPOLOGY_FLAG_RESTRICT_TO_MEMBINDING

Topology Detection Configuration and Query, 136
HWLOC_TOPOLOGY_FLAG_THISSYSTEM_ALLOWED_RESOURCES

Topology Detection Configuration and Query, 134
hwloc_topology_flags_e

Topology Detection Configuration and Query, 132
hwloc_topology_free_group_object

Modifying a loaded Topology, 143
hwloc_topology_get_allowed_cpuset

CPU and node sets of entire topologies, 160
hwloc_topology_get_allowed_nodeset

CPU and node sets of entire topologies, 160
hwloc_topology_get_complete_cpuset

CPU and node sets of entire topologies, 161
hwloc_topology_get_complete_nodeset

CPU and node sets of entire topologies, 161
hwloc_topology_get_default_nodeset

Comparing memory node attributes for finding where

to allocate on, 200

hwloc_topology_get_depth

HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_IGNORE_KERYels, depths and types, 112

Exporting Topologies to Synthetic, 183

hwloc_topology_get_flags

HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_NO_ATTR3opology Detection Configuration and Query, 138

Exporting Topologies to Synthetic, 183

hwloc_topology_get_support

HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_NO_EXTERIpEDBgY YrREStion Configuration and Query, 138

Exporting Topologies to Synthetic, 182
HWLOC_TOPOLOGY_EXPORT_SYNTHETIC_FLAG_V1

Exporting Topologies to Synthetic, 183
hwloc_topology_export_synthetic_flags_e

Exporting Topologies to Synthetic, 182
hwloc_topology_export_xml

Exporting Topologies to XML, 180
HWLOC_TOPOLOGY_EXPORT_XML_FLAG_V1

Exporting Topologies to XML, 179
hwloc_topology_export_xml_flags_e

hwloc_topology_get_topology_cpuset

CPU and node sets of entire topologies, 161
hwloc_topology_get_topology nodeset

CPU and node sets of entire topologies, 162
hwloc_topology_get_type_filter

Topology Detection Configuration and Query, 139
hwloc_topology_get_userdata

Topology Detection Configuration and Query, 139
hwloc_topology_init

Topology Creation and Destruction, 107

Generated by Doxygen

INDEX

293

hwloc_topology_insert_group_object

Modifying a loaded Topology, 144
hwloc_topology_insert_misc_object

Modifying a loaded Topology, 145
hwloc_topology_is_thissystem

Topology Detection Configuration and Query, 139
hwloc_topology_load

Topology Creation and Destruction, 107
hwloc_topology_membind_support, 274

alloc_membind, 274

bind_membind, 274

firsttouch_membind, 274

get_area_membind, 274

get_area_memlocation, 275

get_proc_membind, 275

get_thisproc_membind, 275

get_thisthread_membind, 275

interleave_membind, 275

migrate_membind, 275

nexttouch_membind, 275

set_area_membind, 275

set_proc_membind, 275

set_thisproc_membind, 275

set_thisthread_membind, 275

weighted_interleave_membind, 276
hwloc_topology_misc_support, 276

imported_support, 276
hwloc_topology_reconnect

Components and Plugins: Core functions to be used

by components, 236

hwloc_topology_refresh

Modifying a loaded Topology, 145
hwloc_topology_restrict

Modifying a loaded Topology, 145
hwloc_topology_set_all_types_filter

Topology Detection Configuration and Query, 139
hwloc_topology_set_cache_types_filter

Topology Detection Configuration and Query, 140
hwloc_topology_set_components

Changing the Source of Topology Discovery, 129
hwloc_topology_set_flags

Topology Detection Configuration and Query, 140
hwloc_topology_set_icache_types_filter

Topology Detection Configuration and Query, 140
hwloc_topology_set_io_types_filter

Topology Detection Configuration and Query, 140
hwloc_topology_set_pid

Changing the Source of Topology Discovery, 130
hwloc_topology_set_synthetic

Changing the Source of Topology Discovery, 130
hwloc_topology_set_type_filter

Topology Detection Configuration and Query, 141
hwloc_topology_set_userdata

Topology Detection Configuration and Query, 141

hwloc_topology_set userdata_export_callback

Exporting Topologies to XML, 181
hwloc_topology_set userdata_import_callback

Exporting Topologies to XML, 181
hwloc_topology_set xml

Changing the Source of Topology Discovery, 130
hwloc_topology_set xmilbuffer

Changing the Source of Topology Discovery, 131
hwloc_topology_support, 276

cpubind, 277

discovery, 277

membind, 277

misc, 277
hwloc_topology_t

Topology Creation and Destruction, 106
HWLOC_TYPE_DEPTH_BRIDGE

Object levels, depths and types, 109
HWLOC_TYPE_DEPTH_MEMCACHE

Object levels, depths and types, 109
HWLOC_TYPE_DEPTH_MISC

Object levels, depths and types, 109
HWLOC_TYPE_DEPTH_MULTIPLE

Object levels, depths and types, 109
HWLOC_TYPE_DEPTH_NUMANODE

Object levels, depths and types, 109
HWLOC_TYPE_DEPTH_OS_DEVICE

Object levels, depths and types, 109
HWLOC_TYPE_DEPTH_PCI_DEVICE

Object levels, depths and types, 109
HWLOC_TYPE_DEPTH_UNKNOWN

Object levels, depths and types, 109
hwloc_type_filter_e

Topology Detection Configuration and Query, 137
HWLOC_TYPE_FILTER_KEEP_ALL

Topology Detection Configuration and Query, 137
HWLOC_TYPE_FILTER_KEEP_IMPORTANT

Topology Detection Configuration and Query, 138
HWLOC_TYPE_FILTER_KEEP_NONE

Topology Detection Configuration and Query, 137
HWLOC_TYPE_FILTER_KEEP_STRUCTURE

Topology Detection Configuration and Query, 138
hwloc_type_sscanf

Converting between Object Types and Attributes, and

Strings, 114

hwloc_type_sscanf_as_depth

Converting between Object Types and Attributes, and

Strings, 114

HWLOC_TYPE_UNORDERED

Object Types, 101
hwloc_windows_get_nr_processor_groups

Windows-specific helpers, 210
hwloc_windows_get_processor_group_cpuset

Windows-specific helpers, 211

Generated by Doxygen

294

INDEX

I/0 Devices, 31
imported_support
hwloc_topology_misc_support, 276
Importing and exporting topologies from/to XML files, 57
include Directory Reference, 243
index

hwloc_cudart_get_device_cpuset, 216
hwloc_cudart_get_device_osdev_by_index, 216
hwloc_cudart_get_device_pci_ids, 217
hwloc_cudart_get_device_pcidev, 217
Interoperability with the NVIDIA Management Library, 217
hwloc_nvml_get_device_cpuset, 218

hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_atthwiot64venl_get_device_osdev, 218

271

infos
hwloc_obj, 260

infos_count
hwloc_obj, 261

init
hwloc_component, 251

Installation, 11

instantiate
hwloc_disc_component, 252

interleave_membind
hwloc_topology_membind_support, 275

Interoperability with glibc sched affinity, 211
hwloc_cpuset_from_glibc_sched_affinity, 211
hwloc_cpuset_to_glibc_sched_affinity, 212

Interoperability with Linux libnuma bitmask, 209
hwloc_cpuset_from_linux_libnuma_bitmask, 209
hwloc_cpuset_to_linux_libnuma_bitmask, 209
hwloc_nodeset_from_linux_libnuma_bitmask, 209
hwloc_nodeset_to_linux_libnuma_bitmask, 210

Interoperability with Linux libnuma unsigned long masks,

207

hwloc_cpuset_from_linux_libnuma_ulongs, 207
hwloc_cpuset_to_linux_libnuma_ulongs, 208
hwloc_nodeset_from_linux_libnuma_ulongs, 208
hwloc_nodeset_to_linux_libnuma_ulongs, 208

Interoperability with OpenCL, 212
hwloc_opencl_get_device_cpuset, 212
hwloc_opencl_get_device_osdev, 213
hwloc_opencl_get_device_osdev_by_index, 213
hwloc_opencl_get_device_pci_busid, 213

Interoperability with OpenFabrics, 223
hwloc_ibv_get_device_cpuset, 224
hwloc_ibv_get_device_osdev, 224
hwloc_ibv_get_device_osdev_by name, 224

Interoperability with OpenGL displays, 222
hwloc_gl_get_display_by_osdev, 222
hwloc_gl_get_display_osdev_by name, 223
hwloc_gl_get_display_osdev_by port_device, 223

Interoperability With Other Software, 61

Interoperability with the CUDA Driver API, 214
hwloc_cuda_get_device_cpuset, 214
hwloc_cuda_get_device_osdev, 214
hwloc_cuda_get_device_osdev_by_index, 215
hwloc_cuda_get_device_pci_ids, 215
hwloc_cuda_get_device_pcidev, 215

Interoperability with the CUDA Runtime API, 216

hwloc_nvml_get_device_osdev_by_index, 218
Interoperability with the oneAPI Level Zero interface., 220
hwloc_levelzero_get_device_cpuset, 220
hwloc_levelzero_get_device_osdev, 221
hwloc_levelzero_get_sysman_device_cpuset, 221
hwloc_levelzero_get_sysman_device_osdev, 222
Interoperability with the ROCm SMI Management Library,
219
hwloc_rsmi_get_device_cpuset, 219
hwloc_rsmi_get_device_osdev, 219
hwloc_rsmi_get_device_osdev_by_index, 220
io_arity
hwloc_obj, 261
io_first_child
hwloc_obj, 261
is_thissystem
hwloc_backend, 246

kind
hwloc_distances_s, 254
hwloc_obj_attr_u::hwloc_group_attr_s, 255

Kinds of CPU cores, 203
hwloc_cpukinds_get_by_cpuset, 204
hwloc_cpukinds_get_info, 204
hwloc_cpukinds_get_nr, 204
hwloc_cpukinds_register, 205

Kinds of object Type, 146
hwloc_obj_type_is_cache, 146
hwloc_obj_type_is_dcache, 147
hwloc_obj_type_is_icache, 147
hwloc_obj_type_is_io, 147
hwloc_obj_type_is_memory, 147
hwloc_obj_type_is_normal, 147

last_child
hwloc_obj, 261
linesize
hwloc_obj_attr_u::hwloc_cache_attr_s, 248
linkspeed
hwloc_obj_attr_u::hwloc_pcidev_attr_s, 266
Linux-specific helpers, 205
hwloc_linux_get_tid_cpubind, 206
hwloc_linux_get_tid_last_cpu_location, 206
hwloc_linux_read_path_as_cpumask, 206
hwloc_linux_set_tid_cpubind, 206
local_memory
hwloc_obj_attr_u::hwloc_numanode_attr_s, 258
location

Generated by Doxygen

INDEX

295

hwloc_location, 256

logical_index
hwloc_obj, 261

Looking at Ancestor and Child Objects, 153
hwloc_get_ancestor_obj_by_depth, 153
hwloc_get_ancestor_obj_by_type, 153
hwloc_get_common_ancestor_obj, 154
hwloc_get_next_child, 154
hwloc_obj_is_in_subtree, 154

Looking at Cache Objects, 155
hwloc_get_cache_covering_cpuset, 155
hwloc_get_cache_type_depth, 155
hwloc_get_shared_cache_covering_obj, 155

Managing memory attributes, 201
hwloc_memattr_flag_e, 201
HWLOC_MEMATTR_FLAG_HIGHER_FIRST, 201
HWLOC_MEMATTR_FLAG_LOWER_FIRST, 201
HWLOC_MEMATTR_FLAG_NEED_INITIATOR, 201
hwloc_memattr_get_flags, 201
hwloc_memattr_get_name, 202
hwloc_memattr_register, 202
hwloc_memattr_set value, 202

membind
hwloc_topology_support, 277

Memory binding, 121
hwloc_alloc, 124
hwloc_alloc_membind, 124
hwloc_alloc_membind_policy, 125
hwloc_free, 125
hwloc_get_area_membind, 125
hwloc_get_area_memlocation, 126
hwloc_get_membind, 126
hwloc_get_proc_membind, 127
HWLOC_MEMBIND_BIND, 124
HWLOC_MEMBIND_BYNODESET, 123
HWLOC_MEMBIND_DEFAULT, 123
HWLOC_MEMBIND_FIRSTTOUCH, 123
hwloc_membind_flags_t, 122
HWLOC_MEMBIND_INTERLEAVE, 124
HWLOC_MEMBIND_MIGRATE, 123
HWLOC_MEMBIND_MIXED, 124
HWLOC_MEMBIND_NEXTTOUCH, 124
HWLOC_MEMBIND_NOCPUBIND, 123
hwloc_membind_policy_t, 123
HWLOC_MEMBIND_PROCESS, 123
HWLOC_MEMBIND_STRICT, 123
HWLOC_MEMBIND_THREAD, 123
HWLOC_MEMBIND_WEIGHTED_INTERLEAVE,

124
hwloc_set area_membind, 127
hwloc_set_membind, 128
hwloc_set_proc_membind, 128
memory_arity

hwloc_obj, 261

memory_first_child

hwloc_obj, 261

migrate_membind

misc

hwloc_topology_membind_support, 275

hwloc_topology_support, 277

misc_arity

hwloc_obj, 261

misc_first_child

hwloc_obj, 261

Miscellaneous objects, 37
Modifying a loaded Topology, 141

HWLOC_ALLOW_FLAG_ALL, 142
HWLOC_ALLOW_FLAG_CUSTOM, 142
HWLOC_ALLOW_FLAG_LOCAL_RESTRICTIONS,
142
hwloc_allow_flags_e, 142
hwloc_obj_add_other_obj_sets, 143
HWLOC_RESTRICT_FLAG_ADAPT_IO, 142
HWLOC_RESTRICT_FLAG_ADAPT_MISC, 142
HWLOC_RESTRICT_FLAG_BYNODESET, 142
HWLOC_RESTRICT_FLAG_REMOVE_CPULESS,
142
HWLOC_RESTRICT_FLAG_REMOVE_MEMLESS,
142
hwloc_restrict_flags_e, 142
hwloc_topology_alloc_group_object, 143
hwloc_topology_allow, 143
hwloc_topology_free_group_object, 143
hwloc_topology_insert_group_object, 144
hwloc_topology_insert_misc_object, 145
hwloc_topology_refresh, 145
hwloc_topology_restrict, 145

name

hwloc_disc_component, 252
hwloc_info_s, 255
hwloc_obj, 261

hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_string_s,

270

nbobjs

hwloc_distances_s, 254

newvalue

next

hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_string_s,

270

hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_uint64_s

271

hwloc_topology_diff_u::hwloc_topology_diff_generic_s,
268
hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s,
269

Generated by Doxygen

296 INDEX

hwloc_topology_diff_u::hwloc_topology_diff_too_complex_s,HWLOC_TYPE_DEPTH_UNKNOWN, 109

272 Object Sets (hwloc_cpuset_t and hwloc_nodeset_t), 100
next_cousin hwloc_const_cpuset_t, 100
hwloc_obj, 262 hwloc_const_nodeset_t, 100
next_sibling hwloc_cpuset_t, 100
hwloc_obj, 262 hwloc_nodeset_t, 100
nexttouch_membind Object Structure and Attributes, 105
hwloc_topology_membind_support, 275 hwloc_obj_t, 105
nodeset Object Types, 101
hwloc_obj, 262 hwloc_compare_types, 105
numa HWLOC_OBJ_BRIDGE, 104
hwloc_topology_discovery_support, 273 HWLOC_OBJ_BRIDGE_HOST, 102
numa_memory HWLOC_OBJ BRIDGE_PCI, 102
hwloc_topology_discovery_support, 273 hwloc_obj_bridge_type_e, 102
numanode hwloc_obj_bridge_type_t, 102
hwloc_obj_attr_u, 264 HWLOC_OBJ_CACHE_DATA, 102
HWLOC_OBJ_CACHE_INSTRUCTION, 102
obj_attr hwloc_obj_cache_type_e, 102
hwloc_topology_diff_u, 272 hwloc_obj_cache_type_t, 102
obj_depth HWLOC_OBJ_CACHE_UNIFIED, 102
hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s, HWLOC_OBJ_CORE, 103
269 HWLOC_OBJ_DIE, 105
hwloc_topology_diff_u::hwloc_topology_diff_too_complex_s,HWLOC OBJ_GROUP, 104
272 HWLOC_OBJ_L1CACHE, 103
obj_index HWLOC_OBJ_L1ICACHE, 103
hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s, HWLOC_OBJ_ L2CACHE, 103
269 HWLOC_OBJ_L2ICACHE, 103
hwloc_topology_diff_u::hwloc_topology_diff_too_complex_s,HwLOC OBJ L3CACHE, 103
272 HWLOC_OBJ_L3ICACHE, 103
object HWLOC_OBJ_L4CACHE, 103
hwloc_location::hwloc_location_u, 257 HWLOC_OBJ_L5CACHE, 103
Object attributes, 39 HWLOC_OBJ_MACHINE, 103
Object levels, depths and types, 108 HWLOC OBJ_MEMCACHE, 104
hwloc_get_depth_type, 109 HWLOC_OBJ_MISC, 104
hwloc_get_memory_parents_depth, 109 HWLOC_OBJ_NUMANODE, 104
hwloc_get_nbobjs_by_depth, 110 HWLOC_OBJ_OS_DEVICE, 104
hwloc_get_nbobjs_by_type, 110 HWLOC_OBJ_OSDEV_BLOCK, 102
hwloc_get_next_obj_by_depth, 110 HWLOC_OBJ_OSDEV_COPROC, 103
hwloc_get_next_obj_by_type, 110 HWLOC_OBJ_OSDEV_DMA, 103
hwloc_get_obj_by_depth, 111 HWLOC_OBJ_OSDEV_GPU, 103
hwloc_get_obj_by_type, 111 HWLOC_OBJ_OSDEV_NETWORK, 103
hwloc_get_root_obj, 111 HWLOC_OBJ_OSDEV_OPENFABRICS, 103
hwloc_get_type_depth, 111 hwloc_obj_osdev_type_e, 102
hwloc_get_type_depth_e, 109 hwloc_obj_osdev_type_t, 102
hwloc_get_type_or_above_depth, 112 HWLOC_OBJ_PACKAGE, 103
hwloc_get_type_or_below_depth, 112 HWLOC_OBJ_PCIl_DEVICE, 104
hwloc_topology_get_depth, 112 HWLOC_OBJ_PU, 103
HWLOC_TYPE_DEPTH_BRIDGE, 109 hwloc_obj_type t, 103
HWLOC_TYPE_DEPTH_MEMCACHE, 109 HWLOC_TYPE_UNORDERED, 101
HWLOC_TYPE_DEPTH_MISC, 109 objs - -
HWLOC_TYPE_DEPTH_MULT'PLE, 109 hwloc distances S, 254
HWLOC_TYPE_DEPTH_NUMANODE, 109 oldvalue B
HWLOC_TYPE_DEPTH_OS_DEVICE, 109 hwloc_topology_diff obj_attr_u:hwloc_topology_diff obj_attr_string_s,
HWLOC_TYPE_DEPTH_PCI_DEVICE, 109 270

Generated by Doxygen

INDEX

297

hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_atthwiot64listances_get _name, 187

271
os_index
hwloc_obj, 262
osdev
hwloc_obj_attr_u, 264

page_types
hwloc_obj_attr_u::hwloc_numanode_attr_s, 258

page_types_len
hwloc_obj_attr_u::hwloc_numanode_attr_s, 258

parent

hwloc_obj, 262
pci

hwloc_obj_attr_u::hwloc_bridge_attr_s, 247
pci_bus

hwloc_cl_device_pci_bus_info_khr, 249
pci_device

hwloc_cl_device_pci_bus_info_khr, 249
pci_domain
hwloc_cl_device_pci_bus_info_khr, 249

pci_function
hwloc_cl_device_pci_bus_info_khr, 249
pcidev
hwloc_obj_attr_u, 264
pcie
hwloc_cl_device_topology_amd, 250
phase
hwloc_disc_status, 253
phases
hwloc_backend, 246
hwloc_disc_component, 252
prev_cousin
hwloc_obj, 262
prev_sibling
hwloc_obj, 262
priority

hwloc_disc_component, 252
private_data

hwloc_backend, 246
pu

hwloc_topology_discovery_support, 273

raw
hwloc_cl_device_topology_amd, 250

Remove distances between objects, 191
hwloc_distances_release remove, 192
hwloc_distances_remove, 192
hwloc_distances_remove_by_depth, 192
hwloc_distances_remove_by_type, 192

Retrieve distances between objects, 184
hwloc_distances_get, 186
hwloc_distances_get_by_depth, 186
hwloc_distances_get_by name, 187
hwloc_distances_get_by_type, 187

hwloc_distances_kind_e, 184
HWLOC_DISTANCES_KIND_FROM_QOS, 184
HWLOC_DISTANCES_KIND_FROM_USER, 184
HWLOC_DISTANCES_KIND HETEROGENEOUS_TYPES,
185
HWLOC_DISTANCES_KIND_MEANS_BANDWIDTH,
185
HWLOC_DISTANCES_KIND_MEANS_LATENCY,
185
hwloc_distances_release, 187
hwloc_distances_transform, 188
hwloc_distances_transform_e, 185
HWLOC_DISTANCES_TRANSFORM_LINKS, 185
HWLOC_DISTANCES_TRANSFORM_MERGE_SWITCH_PORTS,
186
HWLOC_DISTANCES_TRANSFORM_REMOVE_NULL,
185
HWLOC_DISTANCES_TRANSFORM_TRANSITIVE_CLOSURE,
186
revision
hwloc_obj_attr_u::hwloc_pcidev_attr_s, 266

secondary_bus
hwloc_obj_attr_u::hwloc_bridge_attr_s, 247
set_area_membind
hwloc_topology_membind_support, 275
set_proc_cpubind
hwloc_topology_cpubind_support, 267
set_proc_membind
hwloc_topology_membind_support, 275
set_thisproc_cpubind
hwloc_topology_cpubind_support, 267
set_thisproc_membind
hwloc_topology_membind_support, 275
set_thisthread_cpubind
hwloc_topology_cpubind_support, 267
set_thisthread_membind
hwloc_topology_membind_support, 275
set_thread_cpubind
hwloc_topology_cpubind_support, 268
Sharing topologies between processes, 229
hwloc_shmem_topology_adopt, 230
hwloc_shmem_topology_get_length, 230
hwloc_shmem_topology_write, 231
sibling_rank
hwloc_obj, 262
size
hwloc_obj_attr_u::hwloc_cache_atir_s, 248
hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page_type
257
string
hwloc_topology_diff_obj_attr_u, 270
subdevice_id

Generated by Doxygen

298

INDEX

hwloc_obj_attr_u::hwloc_pcidev_attr_s, 266

subkind

hwloc_obj_attr_u::hwloc_group_attr_s, 255

subordinate_bus

hwloc_obj_attr_u::hwloc_bridge_attr_s, 247

subtype

hwloc_obj, 263

subvendor_id

hwloc_obj_attr_u::hwloc_pcidev_attr_s, 266

symmetric_subtree

hwloc_obj, 263

Synthetic topologies, 59

Terms and Definitions, 15
The bitmap API, 165

hwloc_bitmap_allbut, 167
hwloc_bitmap_alloc, 167
hwloc_bitmap_alloc_full, 168
hwloc_bitmap_and, 168
hwloc_bitmap_andnot, 168
hwloc_bitmap_asprintf, 168
hwloc_bitmap_clr, 168
hwloc_bitmap_clr_range, 169
hwloc_bitmap_compare, 169
hwloc_bitmap_compare_first, 169
hwloc_bitmap_copy, 170
hwloc_bitmap_dup, 170
hwloc_bitmap_fill, 170
hwloc_bitmap_first, 170
hwloc_bitmap_first_unset, 170
hwloc_bitmap_foreach_begin, 167
hwloc_bitmap_foreach_end, 167
hwloc_bitmap_free, 170
hwloc_bitmap_from_ith_ulong, 170
hwloc_bitmap_from_ulong, 171
hwloc_bitmap_from_ulongs, 171
hwloc_bitmap_intersects, 171
hwloc_bitmap_isequal, 171
hwloc_bitmap_isfull, 171
hwloc_bitmap_isincluded, 172
hwloc_bitmap_isset, 172
hwloc_bitmap_iszero, 172
hwloc_bitmap_last, 172
hwloc_bitmap_last_unset, 172
hwloc_bitmap_list_asprintf, 173
hwloc_bitmap_list_snprintf, 173
hwloc_bitmap_list_sscanf, 173
hwloc_bitmap_next, 174
hwloc_bitmap_next_unset, 174
hwloc_bitmap_not, 174
hwloc_bitmap_nr_ulongs, 174
hwloc_bitmap_only, 175
hwloc_bitmap_or, 175
hwloc_bitmap_set, 175

hwloc_bitmap_set_ith_ulong, 175
hwloc_bitmap_set_range, 175
hwloc_bitmap_singlify, 175
hwloc_bitmap_snprintf, 176
hwloc_bitmap_sscanf, 176
hwloc_bitmap_t, 167
hwloc_bitmap_taskset_asprintf, 176
hwloc_bitmap_taskset_snprintf, 177
hwloc_bitmap_taskset_sscanf, 177
hwloc_bitmap_to_ith_ulong, 177
hwloc_bitmap_to_ulong, 178
hwloc_bitmap_to_ulongs, 178
hwloc_bitmap_weight, 178
hwloc_bitmap_xor, 178
hwloc_bitmap_zero, 178
hwloc_const_bitmap_t, 167
Thread Safety, 63
too_complex
hwloc_topology_diff_u, 273
Topology Attributes: Distances, Memory Attributes and
CPU Kinds, 49
Topology Creation and Destruction, 106
hwloc_topology_abi_check, 106
hwloc_topology_check, 106
hwloc_topology_destroy, 107
hwloc_topology_dup, 107
hwloc_topology_init, 107
hwloc_topology_load, 107
hwloc_topology_t, 106
Topology Detection Configuration and Query, 132
HWLOC_TOPOLOGY_FLAG_DONT_CHANGE_BINDING,
137
HWLOC_TOPOLOGY_FLAG_IMPORT_SUPPORT,
135
HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED,
133
HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM,
134
HWLOC_TOPOLOGY_FLAG_NO_CPUKINDS, 137
HWLOC_TOPOLOGY_FLAG_NO_DISTANCES, 137
HWLOC_TOPOLOGY_FLAG_NO_MEMATTRS, 137
HWLOC_TOPOLOGY_FLAG_RESTRICT_TO_CPUBINDING,
136
HWLOC_TOPOLOGY_FLAG_RESTRICT_TO_MEMBINDING,
136
HWLOC_TOPOLOGY_FLAG_THISSYSTEM_ALLOWED RESOURCE
134
hwloc_topology_flags_e, 132
hwloc_topology_get_flags, 138
hwloc_topology_get_support, 138
hwloc_topology_get_type_filter, 139
hwloc_topology_get_userdata, 139
hwloc_topology_is_thissystem, 139
hwloc_topology_set_all_types_filter, 139

Generated by Doxygen

INDEX

299

hwloc_topology_set_cache_types_filter, 140
hwloc_topology_set_flags, 140
hwloc_topology_set_icache_types_filter, 140
hwloc_topology_set_io_types_filter, 140
hwloc_topology_set_type_filter, 141
hwloc_topology_set_userdata, 141
hwloc_type_filter_e, 137
HWLOC_TYPE_FILTER_KEEP_ALL, 137
HWLOC_TYPE_FILTER_KEEP_IMPORTANT, 138
HWLOC_TYPE_FILTER_KEEP_NONE, 137
HWLOC_TYPE_FILTER_KEEP_STRUCTURE, 138

Topology differences, 225

hwloc_topology_diff_apply, 227
hwloc_topology_diff_apply_flags_e, 226
HWLOC_TOPOLOGY_DIFF_APPLY_REVERSE,
226
hwloc_topology_diff_build, 227
hwloc_topology_diff_destroy, 228
hwloc_topology_diff_export_xml, 228
hwloc_topology_diff_export_xmlbuffer, 228
hwloc_topology_diff_load_xml, 229
hwloc_topology_diff_load_xmlbuffer, 229
HWLOC_TOPOLOGY_DIFF_OBJ_ATTR, 227
HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_INFO, 227
HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_NAME,
226
HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_SIZE, 226
hwloc_topology_diff_obj_attr_type_e, 226
hwloc_topology_diff_obj_attr_type_t, 226
hwloc_topology_diff_t, 226
HWLOC_TOPOLOGY_DIFF_TOO_COMPLEX, 227
hwloc_topology_diff_type_e, 227
hwloc_topology_diff type_t, 226

total_memory

type

hwloc_obj, 263

hwloc_cl_device_topology_amd, 250
hwloc_component, 251

hwloc_location, 256

hwloc_obj, 263
hwloc_obj_attr_u::hwloc_cache_attr_s, 248
hwloc_obj_attr_u::hwloc_osdev_attr_s, 265

uint64
hwloc_topology_diff_obj_attr_u, 270
unused
hwloc_cl_device_topology_amd, 250
Upgrading to the hwloc 2.0 API, 87
upstream
hwloc_obj_attr_u::hwloc_bridge_attr_s, 247
upstream_type
hwloc_obj_attr_u::hwloc_bridge_attr_s, 247
userdata
hwloc_obj, 263

value
hwloc_info_s, 255

values
hwloc_distances_s, 254

vendor _id
hwloc_obj_attr_u::hwloc_pcidev_atir_s, 266

weighted_interleave_membind
hwloc_topology_membind_support, 276
Windows-specific helpers, 210

hwloc_windows_get_nr_processor_groups, 210

hwloc_windows_get_processor_group_cpuset, 211

hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_generic_s,

268

hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_string_s,

270

hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_uint64_s,

271

hwloc_topology_diff_u::hwloc_topology_diff_generic_s,

268

hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s,

269

hwloc_topology_diff_u::hwloc_topology_diff too_complex_s,

272

Generated by Doxygen

	1 Hardware Locality
	1.1 Table of Contents
	1.2 hwloc Overview
	1.3 Command-line Examples
	1.4 Programming Interface
	1.4.1 Portability
	1.4.2 API Example

	1.5 Questions and Bugs
	1.6 History / Credits

	2 Installation
	2.1 Basic Installation
	2.2 Optional Dependencies
	2.3 Installing from a Git clone

	3 Compiling software on top of hwloc's C API
	3.1 Compiling on top of hwloc's C API with GNU Make
	3.2 Compiling on top of hwloc's C API with CMake

	4 Terms and Definitions
	4.1 Objects
	4.2 Indexes and Sets
	4.3 Hierarchy, Tree and Levels

	5 Command-Line Tools
	5.1 lstopo and lstopo-no-graphics
	5.2 hwloc-bind
	5.3 hwloc-calc
	5.4 hwloc-info
	5.5 hwloc-distrib
	5.6 hwloc-ps
	5.7 hwloc-annotate
	5.8 hwloc-diff, hwloc-patch and hwloc-compress-dir
	5.9 hwloc-dump-hwdata
	5.10 hwloc-gather-topology and hwloc-gather-cpuid

	6 Environment Variables
	6.1 Environment variables for changing the source of topology information
	6.2 Environment variables for tweaking topology objects
	6.3 Environment variables for tweaking hwloc heuristics
	6.4 Environment variables for changing allowed resources
	6.5 Environment variables for controlling components and plugins
	6.6 Environment variables for changing the verbosity

	7 CPU and Memory Binding Overview
	7.1 Binding Policies and Portability
	7.2 Joint CPU and Memory Binding (or not)
	7.3 Current Memory Binding Policy

	8 I/O Devices
	8.1 Enabling and requirements
	8.2 I/O objects
	8.3 OS devices
	8.4 PCI devices and bridges
	8.5 Consulting I/O devices and binding
	8.6 Examples

	9 Miscellaneous objects
	9.1 Misc objects added by hwloc
	9.2 Annotating topologies with Misc objects

	10 Object attributes
	10.1 Normal attributes
	10.2 Custom string infos
	10.2.1 Operating System Information
	10.2.2 hwloc Information
	10.2.3 Hardware Platform Information
	10.2.4 CPU Information
	10.2.5 OS Device Information
	10.2.5.1 GPU and Coprocessor OS Device Information
	10.2.5.2 Other OS Device Information

	10.2.6 Other Object-specific Information
	10.2.7 User-Given Information

	11 Topology Attributes: Distances, Memory Attributes and CPU Kinds
	11.1 Distances
	11.2 Memory Attributes
	11.3 CPU Kinds

	12 Heterogeneous Memory
	12.1 Memory Tiers and Default nodes
	12.2 Using Heterogeneous Memory from the command-line
	12.3 Using Heterogeneous Memory from the C API
	12.3.1 Iterating over the list of (heterogeneous) NUMA nodes
	12.3.2 Iterating over local (heterogeneous) NUMA nodes

	13 Importing and exporting topologies from/to XML files
	13.1 libxml2 and minimalistic XML backends
	13.2 XML import error management

	14 Synthetic topologies
	14.1 Synthetic description string
	14.2 Loading a synthetic topology
	14.3 Exporting a topology as a synthetic string

	15 Interoperability With Other Software
	16 Thread Safety
	17 Components and plugins
	17.1 Components enabled by default
	17.2 Selecting which components to use
	17.3 Loading components from plugins
	17.4 Existing components and plugins

	18 Embedding hwloc in Other Software
	18.1 Using hwloc's M4 Embedding Capabilities
	18.2 Example Embedding hwloc

	19 Frequently Asked Questions (FAQ)
	19.1 Concepts
	19.1.1 I only need binding, or the number of cores, why should I use hwloc ?
	19.1.2 What may I disable to make hwloc faster?
	19.1.3 Should I use logical or physical/OS indexes? and how?
	19.1.4 How do I convert between logical and OS/physical indexes?
	19.1.5 hwloc is only a structural model, it ignores performance models, memory bandwidth, etc.?
	19.1.6 hwloc only has a one-dimensional view of the architecture, it ignores distances?
	19.1.7 What are these Group objects in my topology?
	19.1.8 What happens if my topology is asymmetric?
	19.1.9 What happens to my topology if I disable symmetric multithreading, hyper-threading, etc. in the system?
	19.1.10 How may I ignore symmetric multithreading, hyper-threading, etc. in hwloc?

	19.2 Advanced
	19.2.1 I do not want hwloc to rediscover my enormous machine topology every time I rerun a process
	19.2.2 How many topologies may I use in my program?
	19.2.3 How to avoid memory waste when manipulating multiple similar topologies?
	19.2.4 How do I annotate the topology with private notes?
	19.2.5 How do I create a custom heterogeneous and asymmetric topology?

	19.3 Caveats
	19.3.1 Why is lstopo slow?
	19.3.2 Does hwloc require privileged access?
	19.3.3 What should I do when hwloc reports "operating system" warnings?
	19.3.4 Why does Valgrind complain about hwloc memory leaks?

	19.4 Platform-specific
	19.4.1 How do I enable ROCm SMI and select which version to use?
	19.4.2 How do I enable CUDA and select which CUDA version to use?
	19.4.3 How do I find the local HBM NUMA node on heterogeneous memory systems?
	19.4.4 Why do I need hwloc-dump-hwdata for memory on Intel Xeon Phi processor?
	19.4.5 How do I build hwloc for BlueGene/Q?
	19.4.6 How do I build hwloc for Windows?
	19.4.7 How to get useful topology information on NetBSD?
	19.4.8 Why does binding fail on AIX?

	19.5 Compatibility between hwloc versions
	19.5.1 How do I handle API changes?
	19.5.2 What is the difference between API and library version numbers?
	19.5.3 How do I handle ABI breaks?
	19.5.4 Are XML topology files compatible between hwloc releases?
	19.5.5 Are synthetic strings compatible between hwloc releases?
	19.5.6 Is it possible to share a shared-memory topology between different hwloc releases?

	20 Upgrading to the hwloc 2.0 API
	20.1 New Organization of NUMA nodes and Memory
	20.1.1 Memory children
	20.1.2 Examples
	20.1.3 NUMA level and depth
	20.1.4 Finding Local NUMA nodes and looking at Children and Parents

	20.2 4 Kinds of Objects and Children
	20.2.1 I/O and Misc children
	20.2.2 Kinds of objects

	20.3 HWLOC_OBJ_CACHE replaced
	20.4 allowed_cpuset and allowed_nodeset only in the main topology
	20.5 Object depths are now signed int
	20.6 Memory attributes become NUMANode-specific
	20.7 Topology configuration changes
	20.8 XML changes
	20.9 Distances API totally rewritten
	20.10 Return values of functions
	20.11 Misc API changes
	20.12 API removals and deprecations

	21 Topic Index
	21.1 Topics

	22 Directory Hierarchy
	22.1 Directories

	23 Data Structure Index
	23.1 Data Structures

	24 Topic Documentation
	24.1 Error reporting in the API
	24.2 API version
	24.2.1 Detailed Description
	24.2.2 Macro Definition Documentation
	24.2.2.1 HWLOC_API_VERSION
	24.2.2.2 HWLOC_COMPONENT_ABI

	24.2.3 Function Documentation
	24.2.3.1 hwloc_get_api_version()

	24.3 Object Sets (hwloc_cpuset_t and hwloc_nodeset_t)
	24.3.1 Detailed Description
	24.3.2 Typedef Documentation
	24.3.2.1 hwloc_const_cpuset_t
	24.3.2.2 hwloc_const_nodeset_t
	24.3.2.3 hwloc_cpuset_t
	24.3.2.4 hwloc_nodeset_t

	24.4 Object Types
	24.4.1 Detailed Description
	24.4.2 Macro Definition Documentation
	24.4.2.1 HWLOC_TYPE_UNORDERED

	24.4.3 Typedef Documentation
	24.4.3.1 hwloc_obj_bridge_type_t
	24.4.3.2 hwloc_obj_cache_type_t
	24.4.3.3 hwloc_obj_osdev_type_t

	24.4.4 Enumeration Type Documentation
	24.4.4.1 hwloc_obj_bridge_type_e
	24.4.4.2 hwloc_obj_cache_type_e
	24.4.4.3 hwloc_obj_osdev_type_e
	24.4.4.4 hwloc_obj_type_t

	24.4.5 Function Documentation
	24.4.5.1 hwloc_compare_types()

	24.5 Object Structure and Attributes
	24.5.1 Detailed Description
	24.5.2 Typedef Documentation
	24.5.2.1 hwloc_obj_t

	24.6 Topology Creation and Destruction
	24.6.1 Detailed Description
	24.6.2 Typedef Documentation
	24.6.2.1 hwloc_topology_t

	24.6.3 Function Documentation
	24.6.3.1 hwloc_topology_abi_check()
	24.6.3.2 hwloc_topology_check()
	24.6.3.3 hwloc_topology_destroy()
	24.6.3.4 hwloc_topology_dup()
	24.6.3.5 hwloc_topology_init()
	24.6.3.6 hwloc_topology_load()

	24.7 Object levels, depths and types
	24.7.1 Detailed Description
	24.7.2 Enumeration Type Documentation
	24.7.2.1 hwloc_get_type_depth_e

	24.7.3 Function Documentation
	24.7.3.1 hwloc_get_depth_type()
	24.7.3.2 hwloc_get_memory_parents_depth()
	24.7.3.3 hwloc_get_nbobjs_by_depth()
	24.7.3.4 hwloc_get_nbobjs_by_type()
	24.7.3.5 hwloc_get_next_obj_by_depth()
	24.7.3.6 hwloc_get_next_obj_by_type()
	24.7.3.7 hwloc_get_obj_by_depth()
	24.7.3.8 hwloc_get_obj_by_type()
	24.7.3.9 hwloc_get_root_obj()
	24.7.3.10 hwloc_get_type_depth()
	24.7.3.11 hwloc_get_type_or_above_depth()
	24.7.3.12 hwloc_get_type_or_below_depth()
	24.7.3.13 hwloc_topology_get_depth()

	24.8 Converting between Object Types and Attributes, and Strings
	24.8.1 Detailed Description
	24.8.2 Function Documentation
	24.8.2.1 hwloc_obj_attr_snprintf()
	24.8.2.2 hwloc_obj_type_snprintf()
	24.8.2.3 hwloc_obj_type_string()
	24.8.2.4 hwloc_type_sscanf()
	24.8.2.5 hwloc_type_sscanf_as_depth()

	24.9 Consulting and Adding Info Attributes
	24.9.1 Detailed Description
	24.9.2 Function Documentation
	24.9.2.1 hwloc_obj_add_info()
	24.9.2.2 hwloc_obj_get_info_by_name()
	24.9.2.3 hwloc_obj_set_subtype()

	24.10 CPU binding
	24.10.1 Detailed Description
	24.10.2 Enumeration Type Documentation
	24.10.2.1 hwloc_cpubind_flags_t

	24.10.3 Function Documentation
	24.10.3.1 hwloc_get_cpubind()
	24.10.3.2 hwloc_get_last_cpu_location()
	24.10.3.3 hwloc_get_proc_cpubind()
	24.10.3.4 hwloc_get_proc_last_cpu_location()
	24.10.3.5 hwloc_get_thread_cpubind()
	24.10.3.6 hwloc_set_cpubind()
	24.10.3.7 hwloc_set_proc_cpubind()
	24.10.3.8 hwloc_set_thread_cpubind()

	24.11 Memory binding
	24.11.1 Detailed Description
	24.11.2 Enumeration Type Documentation
	24.11.2.1 hwloc_membind_flags_t
	24.11.2.2 hwloc_membind_policy_t

	24.11.3 Function Documentation
	24.11.3.1 hwloc_alloc()
	24.11.3.2 hwloc_alloc_membind()
	24.11.3.3 hwloc_alloc_membind_policy()
	24.11.3.4 hwloc_free()
	24.11.3.5 hwloc_get_area_membind()
	24.11.3.6 hwloc_get_area_memlocation()
	24.11.3.7 hwloc_get_membind()
	24.11.3.8 hwloc_get_proc_membind()
	24.11.3.9 hwloc_set_area_membind()
	24.11.3.10 hwloc_set_membind()
	24.11.3.11 hwloc_set_proc_membind()

	24.12 Changing the Source of Topology Discovery
	24.12.1 Detailed Description
	24.12.2 Enumeration Type Documentation
	24.12.2.1 hwloc_topology_components_flag_e

	24.12.3 Function Documentation
	24.12.3.1 hwloc_topology_set_components()
	24.12.3.2 hwloc_topology_set_pid()
	24.12.3.3 hwloc_topology_set_synthetic()
	24.12.3.4 hwloc_topology_set_xml()
	24.12.3.5 hwloc_topology_set_xmlbuffer()

	24.13 Topology Detection Configuration and Query
	24.13.1 Detailed Description
	24.13.2 Enumeration Type Documentation
	24.13.2.1 hwloc_topology_flags_e
	24.13.2.2 hwloc_type_filter_e

	24.13.3 Function Documentation
	24.13.3.1 hwloc_topology_get_flags()
	24.13.3.2 hwloc_topology_get_support()
	24.13.3.3 hwloc_topology_get_type_filter()
	24.13.3.4 hwloc_topology_get_userdata()
	24.13.3.5 hwloc_topology_is_thissystem()
	24.13.3.6 hwloc_topology_set_all_types_filter()
	24.13.3.7 hwloc_topology_set_cache_types_filter()
	24.13.3.8 hwloc_topology_set_flags()
	24.13.3.9 hwloc_topology_set_icache_types_filter()
	24.13.3.10 hwloc_topology_set_io_types_filter()
	24.13.3.11 hwloc_topology_set_type_filter()
	24.13.3.12 hwloc_topology_set_userdata()

	24.14 Modifying a loaded Topology
	24.14.1 Detailed Description
	24.14.2 Enumeration Type Documentation
	24.14.2.1 hwloc_allow_flags_e
	24.14.2.2 hwloc_restrict_flags_e

	24.14.3 Function Documentation
	24.14.3.1 hwloc_obj_add_other_obj_sets()
	24.14.3.2 hwloc_topology_alloc_group_object()
	24.14.3.3 hwloc_topology_allow()
	24.14.3.4 hwloc_topology_free_group_object()
	24.14.3.5 hwloc_topology_insert_group_object()
	24.14.3.6 hwloc_topology_insert_misc_object()
	24.14.3.7 hwloc_topology_refresh()
	24.14.3.8 hwloc_topology_restrict()

	24.15 Kinds of object Type
	24.15.1 Detailed Description
	24.15.2 Function Documentation
	24.15.2.1 hwloc_obj_type_is_cache()
	24.15.2.2 hwloc_obj_type_is_dcache()
	24.15.2.3 hwloc_obj_type_is_icache()
	24.15.2.4 hwloc_obj_type_is_io()
	24.15.2.5 hwloc_obj_type_is_memory()
	24.15.2.6 hwloc_obj_type_is_normal()

	24.16 Finding Objects inside a CPU set
	24.16.1 Detailed Description
	24.16.2 Function Documentation
	24.16.2.1 hwloc_get_first_largest_obj_inside_cpuset()
	24.16.2.2 hwloc_get_largest_objs_inside_cpuset()
	24.16.2.3 hwloc_get_nbobjs_inside_cpuset_by_depth()
	24.16.2.4 hwloc_get_nbobjs_inside_cpuset_by_type()
	24.16.2.5 hwloc_get_next_obj_inside_cpuset_by_depth()
	24.16.2.6 hwloc_get_next_obj_inside_cpuset_by_type()
	24.16.2.7 hwloc_get_obj_index_inside_cpuset()
	24.16.2.8 hwloc_get_obj_inside_cpuset_by_depth()
	24.16.2.9 hwloc_get_obj_inside_cpuset_by_type()

	24.17 Finding Objects covering at least CPU set
	24.17.1 Detailed Description
	24.17.2 Function Documentation
	24.17.2.1 hwloc_get_child_covering_cpuset()
	24.17.2.2 hwloc_get_next_obj_covering_cpuset_by_depth()
	24.17.2.3 hwloc_get_next_obj_covering_cpuset_by_type()
	24.17.2.4 hwloc_get_obj_covering_cpuset()

	24.18 Looking at Ancestor and Child Objects
	24.18.1 Detailed Description
	24.18.2 Function Documentation
	24.18.2.1 hwloc_get_ancestor_obj_by_depth()
	24.18.2.2 hwloc_get_ancestor_obj_by_type()
	24.18.2.3 hwloc_get_common_ancestor_obj()
	24.18.2.4 hwloc_get_next_child()
	24.18.2.5 hwloc_obj_is_in_subtree()

	24.19 Looking at Cache Objects
	24.19.1 Detailed Description
	24.19.2 Function Documentation
	24.19.2.1 hwloc_get_cache_covering_cpuset()
	24.19.2.2 hwloc_get_cache_type_depth()
	24.19.2.3 hwloc_get_shared_cache_covering_obj()

	24.20 Finding objects, miscellaneous helpers
	24.20.1 Detailed Description
	24.20.2 Function Documentation
	24.20.2.1 hwloc_bitmap_singlify_per_core()
	24.20.2.2 hwloc_get_closest_objs()
	24.20.2.3 hwloc_get_numanode_obj_by_os_index()
	24.20.2.4 hwloc_get_obj_below_array_by_type()
	24.20.2.5 hwloc_get_obj_below_by_type()
	24.20.2.6 hwloc_get_obj_with_same_locality()
	24.20.2.7 hwloc_get_pu_obj_by_os_index()

	24.21 Distributing items over a topology
	24.21.1 Detailed Description
	24.21.2 Enumeration Type Documentation
	24.21.2.1 hwloc_distrib_flags_e

	24.21.3 Function Documentation
	24.21.3.1 hwloc_distrib()

	24.22 CPU and node sets of entire topologies
	24.22.1 Detailed Description
	24.22.2 Function Documentation
	24.22.2.1 hwloc_topology_get_allowed_cpuset()
	24.22.2.2 hwloc_topology_get_allowed_nodeset()
	24.22.2.3 hwloc_topology_get_complete_cpuset()
	24.22.2.4 hwloc_topology_get_complete_nodeset()
	24.22.2.5 hwloc_topology_get_topology_cpuset()
	24.22.2.6 hwloc_topology_get_topology_nodeset()

	24.23 Converting between CPU sets and node sets
	24.23.1 Detailed Description
	24.23.2 Function Documentation
	24.23.2.1 hwloc_cpuset_from_nodeset()
	24.23.2.2 hwloc_cpuset_to_nodeset()

	24.24 Finding I/O objects
	24.24.1 Detailed Description
	24.24.2 Function Documentation
	24.24.2.1 hwloc_bridge_covers_pcibus()
	24.24.2.2 hwloc_get_next_bridge()
	24.24.2.3 hwloc_get_next_osdev()
	24.24.2.4 hwloc_get_next_pcidev()
	24.24.2.5 hwloc_get_non_io_ancestor_obj()
	24.24.2.6 hwloc_get_pcidev_by_busid()
	24.24.2.7 hwloc_get_pcidev_by_busidstring()

	24.25 The bitmap API
	24.25.1 Detailed Description
	24.25.2 Macro Definition Documentation
	24.25.2.1 hwloc_bitmap_foreach_begin
	24.25.2.2 hwloc_bitmap_foreach_end

	24.25.3 Typedef Documentation
	24.25.3.1 hwloc_bitmap_t
	24.25.3.2 hwloc_const_bitmap_t

	24.25.4 Function Documentation
	24.25.4.1 hwloc_bitmap_allbut()
	24.25.4.2 hwloc_bitmap_alloc()
	24.25.4.3 hwloc_bitmap_alloc_full()
	24.25.4.4 hwloc_bitmap_and()
	24.25.4.5 hwloc_bitmap_andnot()
	24.25.4.6 hwloc_bitmap_asprintf()
	24.25.4.7 hwloc_bitmap_clr()
	24.25.4.8 hwloc_bitmap_clr_range()
	24.25.4.9 hwloc_bitmap_compare()
	24.25.4.10 hwloc_bitmap_compare_first()
	24.25.4.11 hwloc_bitmap_copy()
	24.25.4.12 hwloc_bitmap_dup()
	24.25.4.13 hwloc_bitmap_fill()
	24.25.4.14 hwloc_bitmap_first()
	24.25.4.15 hwloc_bitmap_first_unset()
	24.25.4.16 hwloc_bitmap_free()
	24.25.4.17 hwloc_bitmap_from_ith_ulong()
	24.25.4.18 hwloc_bitmap_from_ulong()
	24.25.4.19 hwloc_bitmap_from_ulongs()
	24.25.4.20 hwloc_bitmap_intersects()
	24.25.4.21 hwloc_bitmap_isequal()
	24.25.4.22 hwloc_bitmap_isfull()
	24.25.4.23 hwloc_bitmap_isincluded()
	24.25.4.24 hwloc_bitmap_isset()
	24.25.4.25 hwloc_bitmap_iszero()
	24.25.4.26 hwloc_bitmap_last()
	24.25.4.27 hwloc_bitmap_last_unset()
	24.25.4.28 hwloc_bitmap_list_asprintf()
	24.25.4.29 hwloc_bitmap_list_snprintf()
	24.25.4.30 hwloc_bitmap_list_sscanf()
	24.25.4.31 hwloc_bitmap_next()
	24.25.4.32 hwloc_bitmap_next_unset()
	24.25.4.33 hwloc_bitmap_not()
	24.25.4.34 hwloc_bitmap_nr_ulongs()
	24.25.4.35 hwloc_bitmap_only()
	24.25.4.36 hwloc_bitmap_or()
	24.25.4.37 hwloc_bitmap_set()
	24.25.4.38 hwloc_bitmap_set_ith_ulong()
	24.25.4.39 hwloc_bitmap_set_range()
	24.25.4.40 hwloc_bitmap_singlify()
	24.25.4.41 hwloc_bitmap_snprintf()
	24.25.4.42 hwloc_bitmap_sscanf()
	24.25.4.43 hwloc_bitmap_taskset_asprintf()
	24.25.4.44 hwloc_bitmap_taskset_snprintf()
	24.25.4.45 hwloc_bitmap_taskset_sscanf()
	24.25.4.46 hwloc_bitmap_to_ith_ulong()
	24.25.4.47 hwloc_bitmap_to_ulong()
	24.25.4.48 hwloc_bitmap_to_ulongs()
	24.25.4.49 hwloc_bitmap_weight()
	24.25.4.50 hwloc_bitmap_xor()
	24.25.4.51 hwloc_bitmap_zero()

	24.26 Exporting Topologies to XML
	24.26.1 Detailed Description
	24.26.2 Enumeration Type Documentation
	24.26.2.1 hwloc_topology_export_xml_flags_e

	24.26.3 Function Documentation
	24.26.3.1 hwloc_export_obj_userdata()
	24.26.3.2 hwloc_export_obj_userdata_base64()
	24.26.3.3 hwloc_free_xmlbuffer()
	24.26.3.4 hwloc_topology_export_xml()
	24.26.3.5 hwloc_topology_export_xmlbuffer()
	24.26.3.6 hwloc_topology_set_userdata_export_callback()
	24.26.3.7 hwloc_topology_set_userdata_import_callback()

	24.27 Exporting Topologies to Synthetic
	24.27.1 Detailed Description
	24.27.2 Enumeration Type Documentation
	24.27.2.1 hwloc_topology_export_synthetic_flags_e

	24.27.3 Function Documentation
	24.27.3.1 hwloc_topology_export_synthetic()

	24.28 Retrieve distances between objects
	24.28.1 Detailed Description
	24.28.2 Enumeration Type Documentation
	24.28.2.1 hwloc_distances_kind_e
	24.28.2.2 hwloc_distances_transform_e

	24.28.3 Function Documentation
	24.28.3.1 hwloc_distances_get()
	24.28.3.2 hwloc_distances_get_by_depth()
	24.28.3.3 hwloc_distances_get_by_name()
	24.28.3.4 hwloc_distances_get_by_type()
	24.28.3.5 hwloc_distances_get_name()
	24.28.3.6 hwloc_distances_release()
	24.28.3.7 hwloc_distances_transform()

	24.29 Helpers for consulting distance matrices
	24.29.1 Detailed Description
	24.29.2 Function Documentation
	24.29.2.1 hwloc_distances_obj_index()
	24.29.2.2 hwloc_distances_obj_pair_values()

	24.30 Add distances between objects
	24.30.1 Detailed Description
	24.30.2 Typedef Documentation
	24.30.2.1 hwloc_distances_add_handle_t

	24.30.3 Enumeration Type Documentation
	24.30.3.1 hwloc_distances_add_flag_e

	24.30.4 Function Documentation
	24.30.4.1 hwloc_distances_add_commit()
	24.30.4.2 hwloc_distances_add_create()
	24.30.4.3 hwloc_distances_add_values()

	24.31 Remove distances between objects
	24.31.1 Detailed Description
	24.31.2 Function Documentation
	24.31.2.1 hwloc_distances_release_remove()
	24.31.2.2 hwloc_distances_remove()
	24.31.2.3 hwloc_distances_remove_by_depth()
	24.31.2.4 hwloc_distances_remove_by_type()

	24.32 Comparing memory node attributes for finding where to allocate on
	24.32.1 Detailed Description
	24.32.2 Typedef Documentation
	24.32.2.1 hwloc_memattr_id_t

	24.32.3 Enumeration Type Documentation
	24.32.3.1 hwloc_local_numanode_flag_e
	24.32.3.2 hwloc_location_type_e
	24.32.3.3 hwloc_memattr_id_e

	24.32.4 Function Documentation
	24.32.4.1 hwloc_get_local_numanode_objs()
	24.32.4.2 hwloc_memattr_get_best_initiator()
	24.32.4.3 hwloc_memattr_get_best_target()
	24.32.4.4 hwloc_memattr_get_by_name()
	24.32.4.5 hwloc_memattr_get_initiators()
	24.32.4.6 hwloc_memattr_get_targets()
	24.32.4.7 hwloc_memattr_get_value()
	24.32.4.8 hwloc_topology_get_default_nodeset()

	24.33 Managing memory attributes
	24.33.1 Detailed Description
	24.33.2 Enumeration Type Documentation
	24.33.2.1 hwloc_memattr_flag_e

	24.33.3 Function Documentation
	24.33.3.1 hwloc_memattr_get_flags()
	24.33.3.2 hwloc_memattr_get_name()
	24.33.3.3 hwloc_memattr_register()
	24.33.3.4 hwloc_memattr_set_value()

	24.34 Kinds of CPU cores
	24.34.1 Detailed Description
	24.34.2 Function Documentation
	24.34.2.1 hwloc_cpukinds_get_by_cpuset()
	24.34.2.2 hwloc_cpukinds_get_info()
	24.34.2.3 hwloc_cpukinds_get_nr()
	24.34.2.4 hwloc_cpukinds_register()

	24.35 Linux-specific helpers
	24.35.1 Detailed Description
	24.35.2 Function Documentation
	24.35.2.1 hwloc_linux_get_tid_cpubind()
	24.35.2.2 hwloc_linux_get_tid_last_cpu_location()
	24.35.2.3 hwloc_linux_read_path_as_cpumask()
	24.35.2.4 hwloc_linux_set_tid_cpubind()

	24.36 Interoperability with Linux libnuma unsigned long masks
	24.36.1 Detailed Description
	24.36.2 Function Documentation
	24.36.2.1 hwloc_cpuset_from_linux_libnuma_ulongs()
	24.36.2.2 hwloc_cpuset_to_linux_libnuma_ulongs()
	24.36.2.3 hwloc_nodeset_from_linux_libnuma_ulongs()
	24.36.2.4 hwloc_nodeset_to_linux_libnuma_ulongs()

	24.37 Interoperability with Linux libnuma bitmask
	24.37.1 Detailed Description
	24.37.2 Function Documentation
	24.37.2.1 hwloc_cpuset_from_linux_libnuma_bitmask()
	24.37.2.2 hwloc_cpuset_to_linux_libnuma_bitmask()
	24.37.2.3 hwloc_nodeset_from_linux_libnuma_bitmask()
	24.37.2.4 hwloc_nodeset_to_linux_libnuma_bitmask()

	24.38 Windows-specific helpers
	24.38.1 Detailed Description
	24.38.2 Function Documentation
	24.38.2.1 hwloc_windows_get_nr_processor_groups()
	24.38.2.2 hwloc_windows_get_processor_group_cpuset()

	24.39 Interoperability with glibc sched affinity
	24.39.1 Detailed Description
	24.39.2 Function Documentation
	24.39.2.1 hwloc_cpuset_from_glibc_sched_affinity()
	24.39.2.2 hwloc_cpuset_to_glibc_sched_affinity()

	24.40 Interoperability with OpenCL
	24.40.1 Detailed Description
	24.40.2 Function Documentation
	24.40.2.1 hwloc_opencl_get_device_cpuset()
	24.40.2.2 hwloc_opencl_get_device_osdev()
	24.40.2.3 hwloc_opencl_get_device_osdev_by_index()
	24.40.2.4 hwloc_opencl_get_device_pci_busid()

	24.41 Interoperability with the CUDA Driver API
	24.41.1 Detailed Description
	24.41.2 Function Documentation
	24.41.2.1 hwloc_cuda_get_device_cpuset()
	24.41.2.2 hwloc_cuda_get_device_osdev()
	24.41.2.3 hwloc_cuda_get_device_osdev_by_index()
	24.41.2.4 hwloc_cuda_get_device_pci_ids()
	24.41.2.5 hwloc_cuda_get_device_pcidev()

	24.42 Interoperability with the CUDA Runtime API
	24.42.1 Detailed Description
	24.42.2 Function Documentation
	24.42.2.1 hwloc_cudart_get_device_cpuset()
	24.42.2.2 hwloc_cudart_get_device_osdev_by_index()
	24.42.2.3 hwloc_cudart_get_device_pci_ids()
	24.42.2.4 hwloc_cudart_get_device_pcidev()

	24.43 Interoperability with the NVIDIA Management Library
	24.43.1 Detailed Description
	24.43.2 Function Documentation
	24.43.2.1 hwloc_nvml_get_device_cpuset()
	24.43.2.2 hwloc_nvml_get_device_osdev()
	24.43.2.3 hwloc_nvml_get_device_osdev_by_index()

	24.44 Interoperability with the ROCm SMI Management Library
	24.44.1 Detailed Description
	24.44.2 Function Documentation
	24.44.2.1 hwloc_rsmi_get_device_cpuset()
	24.44.2.2 hwloc_rsmi_get_device_osdev()
	24.44.2.3 hwloc_rsmi_get_device_osdev_by_index()

	24.45 Interoperability with the oneAPI Level Zero interface.
	24.45.1 Detailed Description
	24.45.2 Function Documentation
	24.45.2.1 hwloc_levelzero_get_device_cpuset()
	24.45.2.2 hwloc_levelzero_get_device_osdev()
	24.45.2.3 hwloc_levelzero_get_sysman_device_cpuset()
	24.45.2.4 hwloc_levelzero_get_sysman_device_osdev()

	24.46 Interoperability with OpenGL displays
	24.46.1 Detailed Description
	24.46.2 Function Documentation
	24.46.2.1 hwloc_gl_get_display_by_osdev()
	24.46.2.2 hwloc_gl_get_display_osdev_by_name()
	24.46.2.3 hwloc_gl_get_display_osdev_by_port_device()

	24.47 Interoperability with OpenFabrics
	24.47.1 Detailed Description
	24.47.2 Function Documentation
	24.47.2.1 hwloc_ibv_get_device_cpuset()
	24.47.2.2 hwloc_ibv_get_device_osdev()
	24.47.2.3 hwloc_ibv_get_device_osdev_by_name()

	24.48 Topology differences
	24.48.1 Detailed Description
	24.48.2 Typedef Documentation
	24.48.2.1 hwloc_topology_diff_obj_attr_type_t
	24.48.2.2 hwloc_topology_diff_t
	24.48.2.3 hwloc_topology_diff_type_t

	24.48.3 Enumeration Type Documentation
	24.48.3.1 hwloc_topology_diff_apply_flags_e
	24.48.3.2 hwloc_topology_diff_obj_attr_type_e
	24.48.3.3 hwloc_topology_diff_type_e

	24.48.4 Function Documentation
	24.48.4.1 hwloc_topology_diff_apply()
	24.48.4.2 hwloc_topology_diff_build()
	24.48.4.3 hwloc_topology_diff_destroy()
	24.48.4.4 hwloc_topology_diff_export_xml()
	24.48.4.5 hwloc_topology_diff_export_xmlbuffer()
	24.48.4.6 hwloc_topology_diff_load_xml()
	24.48.4.7 hwloc_topology_diff_load_xmlbuffer()

	24.49 Sharing topologies between processes
	24.49.1 Detailed Description
	24.49.2 Function Documentation
	24.49.2.1 hwloc_shmem_topology_adopt()
	24.49.2.2 hwloc_shmem_topology_get_length()
	24.49.2.3 hwloc_shmem_topology_write()

	24.50 Components and Plugins: Discovery components and backends
	24.50.1 Detailed Description
	24.50.2 Typedef Documentation
	24.50.2.1 hwloc_disc_phase_t

	24.50.3 Enumeration Type Documentation
	24.50.3.1 hwloc_disc_phase_e
	24.50.3.2 hwloc_disc_status_flag_e

	24.50.4 Function Documentation
	24.50.4.1 hwloc_backend_alloc()
	24.50.4.2 hwloc_backend_enable()

	24.51 Components and Plugins: Generic components
	24.51.1 Detailed Description
	24.51.2 Typedef Documentation
	24.51.2.1 hwloc_component_type_t

	24.51.3 Enumeration Type Documentation
	24.51.3.1 hwloc_component_type_e

	24.51.4 Function Documentation
	24.51.4.1 hwloc_plugin_check_namespace()

	24.52 Components and Plugins: Core functions to be used by components
	24.52.1 Detailed Description
	24.52.2 Macro Definition Documentation
	24.52.2.1 HWLOC_SHOW_ALL_ERRORS
	24.52.2.2 HWLOC_SHOW_CRITICAL_ERRORS

	24.52.3 Function Documentation
	24.52.3.1 hwloc__insert_object_by_cpuset()
	24.52.3.2 hwloc_alloc_setup_object()
	24.52.3.3 hwloc_hide_errors()
	24.52.3.4 hwloc_insert_object_by_parent()
	24.52.3.5 hwloc_obj_add_children_sets()
	24.52.3.6 hwloc_topology_reconnect()

	24.53 Components and Plugins: Filtering objects
	24.53.1 Detailed Description
	24.53.2 Function Documentation
	24.53.2.1 hwloc_filter_check_keep_object()
	24.53.2.2 hwloc_filter_check_keep_object_type()
	24.53.2.3 hwloc_filter_check_osdev_subtype_important()
	24.53.2.4 hwloc_filter_check_pcidev_subtype_important()

	24.54 Components and Plugins: helpers for PCI discovery
	24.54.1 Detailed Description
	24.54.2 Function Documentation
	24.54.2.1 hwloc_pcidisc_check_bridge_type()
	24.54.2.2 hwloc_pcidisc_find_bridge_buses()
	24.54.2.3 hwloc_pcidisc_find_cap()
	24.54.2.4 hwloc_pcidisc_find_linkspeed()
	24.54.2.5 hwloc_pcidisc_tree_attach()
	24.54.2.6 hwloc_pcidisc_tree_insert_by_busid()

	24.55 Components and Plugins: finding PCI objects during other discoveries
	24.55.1 Detailed Description
	24.55.2 Function Documentation
	24.55.2.1 hwloc_pci_find_by_busid()
	24.55.2.2 hwloc_pci_find_parent_by_busid()

	24.56 Components and Plugins: distances
	24.56.1 Detailed Description
	24.56.2 Typedef Documentation
	24.56.2.1 hwloc_backend_distances_add_handle_t

	24.56.3 Function Documentation
	24.56.3.1 hwloc_backend_distances_add_commit()
	24.56.3.2 hwloc_backend_distances_add_create()
	24.56.3.3 hwloc_backend_distances_add_values()

	25 Directory Documentation
	25.1 hwloc Directory Reference
	25.2 include Directory Reference

	26 Data Structure Documentation
	26.1 hwloc_backend Struct Reference
	26.1.1 Detailed Description
	26.1.2 Field Documentation
	26.1.2.1 disable
	26.1.2.2 discover
	26.1.2.3 flags
	26.1.2.4 get_pci_busid_cpuset
	26.1.2.5 is_thissystem
	26.1.2.6 phases
	26.1.2.7 private_data

	26.2 hwloc_obj_attr_u::hwloc_bridge_attr_s Struct Reference
	26.2.1 Detailed Description
	26.2.2 Field Documentation
	26.2.2.1 depth
	26.2.2.2 domain
	26.2.2.3 [union]
	26.2.2.4 downstream_type
	26.2.2.5 [struct] [1/2]
	26.2.2.6 pci [2/2]
	26.2.2.7 secondary_bus
	26.2.2.8 subordinate_bus
	26.2.2.9 [union]
	26.2.2.10 upstream_type

	26.3 hwloc_obj_attr_u::hwloc_cache_attr_s Struct Reference
	26.3.1 Detailed Description
	26.3.2 Field Documentation
	26.3.2.1 associativity
	26.3.2.2 depth
	26.3.2.3 linesize
	26.3.2.4 size
	26.3.2.5 type

	26.4 hwloc_cl_device_pci_bus_info_khr Struct Reference
	26.4.1 Field Documentation
	26.4.1.1 pci_bus
	26.4.1.2 pci_device
	26.4.1.3 pci_domain
	26.4.1.4 pci_function

	26.5 hwloc_cl_device_topology_amd Union Reference
	26.5.1 Field Documentation
	26.5.1.1 bus
	26.5.1.2 data
	26.5.1.3 device
	26.5.1.4 function
	26.5.1.5 [struct]
	26.5.1.6 [struct]
	26.5.1.7 type
	26.5.1.8 unused

	26.6 hwloc_component Struct Reference
	26.6.1 Detailed Description
	26.6.2 Field Documentation
	26.6.2.1 abi
	26.6.2.2 data
	26.6.2.3 finalize
	26.6.2.4 flags
	26.6.2.5 init
	26.6.2.6 type

	26.7 hwloc_disc_component Struct Reference
	26.7.1 Detailed Description
	26.7.2 Field Documentation
	26.7.2.1 enabled_by_default
	26.7.2.2 excluded_phases
	26.7.2.3 instantiate
	26.7.2.4 name
	26.7.2.5 phases
	26.7.2.6 priority

	26.8 hwloc_disc_status Struct Reference
	26.8.1 Detailed Description
	26.8.2 Field Documentation
	26.8.2.1 excluded_phases
	26.8.2.2 flags
	26.8.2.3 phase

	26.9 hwloc_distances_s Struct Reference
	26.9.1 Detailed Description
	26.9.2 Field Documentation
	26.9.2.1 kind
	26.9.2.2 nbobjs
	26.9.2.3 objs
	26.9.2.4 values

	26.10 hwloc_obj_attr_u::hwloc_group_attr_s Struct Reference
	26.10.1 Detailed Description
	26.10.2 Field Documentation
	26.10.2.1 depth
	26.10.2.2 dont_merge
	26.10.2.3 kind
	26.10.2.4 subkind

	26.11 hwloc_info_s Struct Reference
	26.11.1 Detailed Description
	26.11.2 Field Documentation
	26.11.2.1 name
	26.11.2.2 value

	26.12 hwloc_location Struct Reference
	26.12.1 Detailed Description
	26.12.2 Field Documentation
	26.12.2.1 location
	26.12.2.2 type

	26.13 hwloc_location::hwloc_location_u Union Reference
	26.13.1 Detailed Description
	26.13.2 Field Documentation
	26.13.2.1 cpuset
	26.13.2.2 object

	26.14 hwloc_obj_attr_u::hwloc_numanode_attr_s::hwloc_memory_page_type_s Struct Reference
	26.14.1 Detailed Description
	26.14.2 Field Documentation
	26.14.2.1 count
	26.14.2.2 size

	26.15 hwloc_obj_attr_u::hwloc_numanode_attr_s Struct Reference
	26.15.1 Detailed Description
	26.15.2 Field Documentation
	26.15.2.1 local_memory
	26.15.2.2 page_types
	26.15.2.3 page_types_len

	26.16 hwloc_obj Struct Reference
	26.16.1 Detailed Description
	26.16.2 Field Documentation
	26.16.2.1 arity
	26.16.2.2 attr
	26.16.2.3 children
	26.16.2.4 complete_cpuset
	26.16.2.5 complete_nodeset
	26.16.2.6 cpuset
	26.16.2.7 depth
	26.16.2.8 first_child
	26.16.2.9 gp_index
	26.16.2.10 infos
	26.16.2.11 infos_count
	26.16.2.12 io_arity
	26.16.2.13 io_first_child
	26.16.2.14 last_child
	26.16.2.15 logical_index
	26.16.2.16 memory_arity
	26.16.2.17 memory_first_child
	26.16.2.18 misc_arity
	26.16.2.19 misc_first_child
	26.16.2.20 name
	26.16.2.21 next_cousin
	26.16.2.22 next_sibling
	26.16.2.23 nodeset
	26.16.2.24 os_index
	26.16.2.25 parent
	26.16.2.26 prev_cousin
	26.16.2.27 prev_sibling
	26.16.2.28 sibling_rank
	26.16.2.29 subtype
	26.16.2.30 symmetric_subtree
	26.16.2.31 total_memory
	26.16.2.32 type
	26.16.2.33 userdata

	26.17 hwloc_obj_attr_u Union Reference
	26.17.1 Detailed Description
	26.17.2 Field Documentation
	26.17.2.1 bridge
	26.17.2.2 cache
	26.17.2.3 group
	26.17.2.4 numanode
	26.17.2.5 osdev
	26.17.2.6 pcidev

	26.18 hwloc_obj_attr_u::hwloc_osdev_attr_s Struct Reference
	26.18.1 Detailed Description
	26.18.2 Field Documentation
	26.18.2.1 type

	26.19 hwloc_obj_attr_u::hwloc_pcidev_attr_s Struct Reference
	26.19.1 Detailed Description
	26.19.2 Field Documentation
	26.19.2.1 bus
	26.19.2.2 class_id
	26.19.2.3 dev
	26.19.2.4 device_id
	26.19.2.5 domain
	26.19.2.6 func
	26.19.2.7 linkspeed
	26.19.2.8 revision
	26.19.2.9 subdevice_id
	26.19.2.10 subvendor_id
	26.19.2.11 vendor_id

	26.20 hwloc_topology_cpubind_support Struct Reference
	26.20.1 Detailed Description
	26.20.2 Field Documentation
	26.20.2.1 get_proc_cpubind
	26.20.2.2 get_proc_last_cpu_location
	26.20.2.3 get_thisproc_cpubind
	26.20.2.4 get_thisproc_last_cpu_location
	26.20.2.5 get_thisthread_cpubind
	26.20.2.6 get_thisthread_last_cpu_location
	26.20.2.7 get_thread_cpubind
	26.20.2.8 set_proc_cpubind
	26.20.2.9 set_thisproc_cpubind
	26.20.2.10 set_thisthread_cpubind
	26.20.2.11 set_thread_cpubind

	26.21 hwloc_topology_diff_u::hwloc_topology_diff_generic_s Struct Reference
	26.21.1 Field Documentation
	26.21.1.1 next
	26.21.1.2 type

	26.22 hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_generic_s Struct Reference
	26.22.1 Field Documentation
	26.22.1.1 type

	26.23 hwloc_topology_diff_u::hwloc_topology_diff_obj_attr_s Struct Reference
	26.23.1 Field Documentation
	26.23.1.1 diff
	26.23.1.2 next
	26.23.1.3 obj_depth
	26.23.1.4 obj_index
	26.23.1.5 type

	26.24 hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_string_s Struct Reference
	26.24.1 Detailed Description
	26.24.2 Field Documentation
	26.24.2.1 name
	26.24.2.2 newvalue
	26.24.2.3 oldvalue
	26.24.2.4 type

	26.25 hwloc_topology_diff_obj_attr_u Union Reference
	26.25.1 Detailed Description
	26.25.2 Field Documentation
	26.25.2.1 generic
	26.25.2.2 string
	26.25.2.3 uint64

	26.26 hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_uint64_s Struct Reference
	26.26.1 Detailed Description
	26.26.2 Field Documentation
	26.26.2.1 index
	26.26.2.2 newvalue
	26.26.2.3 oldvalue
	26.26.2.4 type

	26.27 hwloc_topology_diff_u::hwloc_topology_diff_too_complex_s Struct Reference
	26.27.1 Field Documentation
	26.27.1.1 next
	26.27.1.2 obj_depth
	26.27.1.3 obj_index
	26.27.1.4 type

	26.28 hwloc_topology_diff_u Union Reference
	26.28.1 Detailed Description
	26.28.2 Field Documentation
	26.28.2.1 generic
	26.28.2.2 obj_attr
	26.28.2.3 too_complex

	26.29 hwloc_topology_discovery_support Struct Reference
	26.29.1 Detailed Description
	26.29.2 Field Documentation
	26.29.2.1 cpukind_efficiency
	26.29.2.2 disallowed_numa
	26.29.2.3 disallowed_pu
	26.29.2.4 numa
	26.29.2.5 numa_memory
	26.29.2.6 pu

	26.30 hwloc_topology_membind_support Struct Reference
	26.30.1 Detailed Description
	26.30.2 Field Documentation
	26.30.2.1 alloc_membind
	26.30.2.2 bind_membind
	26.30.2.3 firsttouch_membind
	26.30.2.4 get_area_membind
	26.30.2.5 get_area_memlocation
	26.30.2.6 get_proc_membind
	26.30.2.7 get_thisproc_membind
	26.30.2.8 get_thisthread_membind
	26.30.2.9 interleave_membind
	26.30.2.10 migrate_membind
	26.30.2.11 nexttouch_membind
	26.30.2.12 set_area_membind
	26.30.2.13 set_proc_membind
	26.30.2.14 set_thisproc_membind
	26.30.2.15 set_thisthread_membind
	26.30.2.16 weighted_interleave_membind

	26.31 hwloc_topology_misc_support Struct Reference
	26.31.1 Detailed Description
	26.31.2 Field Documentation
	26.31.2.1 imported_support

	26.32 hwloc_topology_support Struct Reference
	26.32.1 Detailed Description
	26.32.2 Field Documentation
	26.32.2.1 cpubind
	26.32.2.2 discovery
	26.32.2.3 membind
	26.32.2.4 misc

