Introduction to P2P

2

Based on a Natively support
component commodity networks
Open MPI P2P Architecture architecture * Infiniband
= Flexible run-time = Myrinet GM / MX
tuning = LAPI
George Bosilca - UTK = “Plug-ins” for different « Portals
; _ capabilities (e.g., .
Galen Shipman - LANL different networks) Shared memory
Tim Woodall - LANL = TCP

P2P Component Frameworks

2

P2P | e |

‘ PML ‘

BML |
GM OpenlB SM

Component Frameworks ol Bt

MPool MPool MPoal
RAcache Rcache

Example MPI Layer

Framework Not a component
= BTL - Byte Transfer Layer (interconnect abstraction) = Located in topdir/ompi/mpi
= The framework defines the interface that all
components and modules export
Component
= BTL OpenIB - The Infiniband BTL Component
provides initialization (discovery of HCA adapters, etc)

C, F77, F90 and C++ specific support/bindings are
located in corresponding subdirectories
Example source file: topdir/ompi/mpi/c/isend.c

= MPI_Isend - calls PML level through a “helper’ macro

= PML provides support for the asynchronous send
Module = In general PML level provides all messaging semantics

= For the BTL OpenIB a module is created for each required for MPI point-to-point
Active Port on HCA

PML

Provides MPI Point-to-point semantics

= Standard

= Buffered

= Ready

= Synchronous

Message Progression

Request Completion and Notification (via
request objects)

PML

Internal MPI messaging protocols

= Eager send

= Rendezvous

Support for various types of interconnect
= Send/Recv

= RDMA

= Hybrids

PML Interfaces

pml_add_procs - peer resource discovery (via BML)
pml_del_procs - clean up peer resources (via BML)
pml_progress - progress BTLS (via BML)

pml_add_comm - add PML data structures to the communicator
pml_del_comm - remove PML data structures from communicator
pml_irecv_init - Initialize persistent receive request

pml_irecv - Asynchronous receive

pml_isend_init - Initialize persistent send request

pml_isend - Asynchronous send

pml_iprobe - Probe receive queues for match

.... Mirrors MP! interfaces

PML

Framework located in topdir/ompi/pml

= Interfaces defined in topdirfompi/pml/pml.h
2 Components currently available in this
framework

= OB1 -Default

= DR - Data reliability (under development)

OB1 found in topdir/fompi/pml/ob1

PML

OB1 Component
= Defined in topdir/ompi/mca/pml/ob1/pml_ob1.h

= Each function prototype defined by the
framework is implemented by the component
and modules

OB1 instantiates a single module
= Think of this as a singleton in object speak

BTL

BTL - Byte Transfer Layer

= Provides abstraction over the underlying
interconnect

= A simple tag based interface for Send/Recv
similar to active messaging

= Provides facilities for RDMA operations
including preparing memory registrations

= Supports both Put and Get RDMA operations
= Provides completion callback functions

BTL Interfaces

btl_add_procs - discover peer resources and setup endpoints to the
peer

btl_del_procs - remove resources allocated to remote peer
btl_register - register a active message callback

btl_alloc - allocate a descriptor

btl_free - free a descriptor

btl_prepare_src - prepare a source descriptor
btl_prepare_dst - prepare a destination descriptor
btl_send - send a descriptor to an endpoint

btl_put - put a descriptor to an endpoint (RDMA write)
btl_get - get a descriptor from an endpoint (RDMA read)

BTL descriptor

The BTL descriptor contains a list of
source/destination segments, completion
callback function and callback data

Tca_bil_base_segment {

mca_bil_base descriptor t

des_cbdata
des_context

KeyBl4]
}seg_key

BTL support

Infiniband - OpenIB/MVAPI

Myrinet - GM/MX

Portals

Process Loopback - Self

Quadrics - ELAN 4 - under development
Shared Memory - SM

TCP

uDAPL - under development

Open IB BTL

OpeniB BTL Component

= Provides support for Infiniband HCAs through
the OpenlIB Driver and Libs

= Uses RC based communication

= Send/Recv including inline data

= SRQ support

= RDMA support (read/write)

= Small message RDMA (ala Gleb)

GM BTL

GM BTL Component

= Provides support for Myrinet GM API

= Send/Recv

= RDMA support (put/get)

= GM mpool abstracts memory registration
= Supports PML pipeline protocol

BML

BML - BTL Management Layer

= Provides a thin multiplexing layer over the
BTL'’s (inline functions)

= Manages peer resource discovery, allowing
multiple upper layers to use the BTLs

= Allows for simple round robin scheduling
across the available BTL’s

Mpool - Memory Pool

= Provides memory management functions
Allocate
Deallocate
Register
Deregister

= May be used by various other components
BTL - on demand registration and pre-allocated fragments
PML - allows pml to make protocol decisions based whether
the user’s buffer is registered with an mpool
MPI - provides a simple sollution for MPI_Alloc_mem

Rcache

Rcache - Registration Cache
= Provides memory registration caching functions
Find
Insert
Delete
= Currently used by memory pools to cache memory
registrations for RDMA capable interconnects
= Implemented as a Red Black Tree in the RB
Component although a variety of caching techniques
could be used by simply adding another Rcache
Component.

P2P Components

Frameworks
‘ MPI ‘
‘ PML ‘
BML |
GM OpenlB SM
BIL ' BIL I BTL
| pen |B
| MPool MPoal MPoal
Hcache Rcache

b

__;/é

P2P

Component Initialization

Opens PML Components (OB1 and DR,
defaulting to OB1)
= PML opens the BML Component (R2)
= BML opens all BTL Components
Init PML Component
= PML Inits the BML Component
BML Init returns a singleton module
= BML Inits the BTL Components
BTL Init returns a list of modules
= PML registers active message callbacks with
each BTL module

Resource Discovery

Most of the work is at the BTL level during

open/init

= Local resource discovery, for OpenlB this
includes:

= opening devices

= checking for active ports

= creating a module for each active port
= Publish port information to the GPR

= Set recv call back for OOB messages
(dynamic connection establishment)

Determining Peer Reachability

MPI_Init creates a list of process structures via
ORTE for each peer in MPI_COMM_WORLD
Calls add procs on the PML passing in the
process list

PML calls add procs on the BML

= Call add procs on each BTL passing the list of process
structures

= For each peer the BTL creates an endpoint data
structure which will represent a potential connection to
the peer and caches the peers addressing information

Determining Peer Reachability

Add procs continued
= After the BTL endpoint is created the BML
creates a data structure to cache the BTL
endpoint and module used to reach a peer
= The BML caches an array of these data
structures grouping them by BTL functionality
btl_eager - used for eager frags (low latency)
btl_send - send/receive capable
btl_rdma - RDMA capable

OpenlB Peer Resource

Discovery

Open IB BTL example
= Prior to add procs the GPR distributes all the
peers addressing information to every process
= BTL will query peer resources (Number of
ports/lids from cached GPR data)
= BTL endpoint is created, matching the BTL
module’s port/subnet with the peer's

= Note that a connection is not yet established and will
be wired up on the first message sent to the peer via
the endpoint

OpenlB Peer Resource
Discovery - Continued

OpenIB BTL example continued

= A mirror of the ompi_proc_t structure is created at the
BTL level

= Caches information from the OMPI proc
= Stores port information

= Stores an array of endpoints to the peer used in
establishing connections based on port/subnet

Data Structures

Asingle proc per

Abmi_bil per module Asingle openib proc per
peer siores
Tea bl base bU T P —
P76 Tame (bml_bt [mca_bil_openib_proc_t
proc arch B proc_omp
proc_convertor b endpoit proc_guid
o proc_ports
bil_froe() proc_port count
bil_send() proc_endpoint
. | bt prepare sreidst) proc_endpoint_count
3 bil_putiget) T
Tca bl base_endpoint { |- i 1
..... bmi_endpoint) !
= 5;';;5;’]‘""‘ proct) Ed B Gpenl_ Sndgor ¢
L encpont_bi
4 f:”'\:[[‘] moa_bi_openib_module T endpoint_proc
I — lel_ap_hp
ibv_device el
ABME erdpcint perpesr. ibv_dev_context Icl_op_att_hp
i_cq hp Iel_gp_aitr_lp
i_oq_Ip sd_tokens 1p
ib_port_atr subnet
send_free_eager etc
send_fee_max
send_free fiag ABTL endpoint per
L peer "Connection” (QPs)

ABTL module per
active

>

Send / Receive

Send (MPI_Send)

Does any parameter validation (if enabled)
Calls the PML interface
= mca_pml.pml_send()

Send Request Init
(mca_pml_ob1 _send)

Allocate a send request (from PML free
list)

Initialize the send request

= Lookup ompi_proc_t associated with the dest
Create (copy) and initialize the converter
for this request

= Note that a converter is cached for the peer on
the pml proc structure based on peer
architecture and user datatype Start the send
request

Send Request Start

Cached on the ompi_proc_t is a BML endpoint

= contains a list of BML_BTL data structures (combines
the BTL module and the BTL endpoint for the peer)

The next BML_BTL is selected round robin for
this request

Small messages are scheduled via
mca_pml_ob1_send_request_start_copy

Eager Send

(mca_pml_ob1_send_request_start_copy)

The PML will allocate a send descriptor by calling
mca_bml_base_alloc

= specifying the amount of the message to send (up to
eager limit) plus reserve for headers

= The send descriptor is allocated by the BTL from a
free list

= An Mpool associated with the BTL is used to grow the
free list if necessary (may use pre-registered memory)
The converter is then used to pack the user data
into the send descriptor
Header information is populated including the tag
value (for active message callback)

Eager Send - Continued

A callback is set on the descriptor and the
send request is set as callback data

The descriptor is ready for sending
mca_bml_base_send is called

On sender side completion, the
descriptor’s callback function is called
along with the callback data (send request)
The callback is a PML function which
returns the send request and frees the
descriptor

Open IB BTL Send Example

mca_bml_base_send calls the BTL level

send, passing in the endpoint and module

If this is the first descriptor to the peer

= Queue the descriptor at the BTL

= Initialize the QP locally

= Send the QP information to the peer via the
OOB (triggers the recv callback registered with
the OOB)

= On receipt of the peers QP information finish
establishing the QP Connection

= Send any queued fragments to the peer

Receive - Posting

MPI_Recv simply calls the PML recv
(mca_pml_ob1_recv)
Allocate a recv request (from global free list)
Initialize the recv request

= Lookup ompi_proc_t associated with the dest
Unlike the send request, the recv request does not
initialize a converter for the request until the recv is
matched (saves resources)
Start the recv request

= Check the unexpected recv list for the match

= If not found post it to the right list for matching later

Receive - Fragments

Messages are received via the progress engine

For polling progress mca_bml_r2_progress is registered
as a progress function and is called via orte_progress
mca_bmil_r2_progress loops through the BTL’s and calls
a component level progress function

Receiving data is BTL specific

After receipt of the data BTL progress will lookup and
invoke the active message callback based on the tag
value specified in the message header passing in the
descriptor

Receive - Active Message

Callback

Recall the active message callback was
registered earlier with the BTL

PML OB1 uses a single active message
callback mca_pml_ob1_recv_frag_callback
The callback is specific to the type of send
that was initiated

= for small eager messages the receiver will

attempt to find a match by calling
mca_pml_ob1_recv_frag_match

Receive - Matching

If the message is matched
= Copy and initialize a converter for the request

= Note that a converter is cached for the peer on
the pml proc structure based on peer
architecture and user datatype

= mca_pml_ob1_recv_request_match is called

Otherwise the data is buffered and the
match is posted to the unexpected list

Receive - Unpack

Assuming the receive is matched

With the converter now initialized the data is unpacked
into the user’s buffer

A small message (less than eager limit) is now complete
and the receive request is signaled complete at the MPI
level
The PML level resources are then released and the
request returned to the global free list

= For non-blocking receives the request is not freed until MPI_Test

or MPI_Wait

Note that the BTL descriptor is only valid for the life of the
active message callback so the descriptor must be
unpacked into the user’s buffer or buffered at the PML
level

>

“Leave Pinned”

“Leave Pinned”

“Leave Pinned”

For contiguous data

Uses the Mpool to register the entire buffer
up front and cache the registration via the
Rcache

Initiate a single RDMA read or write (per
available RDMA BTL)

Subsequent send/receive from the same
user buffer can avoid registration by
searching for the registration in the Rcache

Only for messages over the eager limit

Requires a Rendezvous

= For RDMA Write the receiver must be notified of the request
(match) and responds with the target address, the sender then
“puts” the data

= For RDMA Read the receiver is notified of the request and given
the senders address, the receiver then “gets” the data
For registration cache coherency memory hooks are
used to detect changes in virtual/physical mappings or
sbrk is disabled

“Leave Pinned”

MPI_Send --> mca_pml|_ob1_send
Check user buffer contiguous = true

Find a cached registration (mca_pml_ob1_rdma_btls)
= Each BTL module is cached in the bml_endpoint, loop through
each BTL
Check if the user buffer is registered mpool_find(...)
If no registration is found, register the user buffer and cache it using
mpool_register(....., MCA_MPOOL_FLAGS_CACHE)
Mpools use the Rcache to cache/search the registration

Send Rendezvous

(mca_pml_ob1_send_request_start_rdma)

mca_pml_ob1_send_request_start_rdma is
called passing in the registration found/registered
previously

If the BTL supports RDMA Read and there is
only one RDMA BTL available

= Prepare a source descriptor for the entire message

= Send an RDMA GET control message including the

descriptor segments

Otherwise send a rendezvous header (no eager
data is sent)

Rendezvous Received

mca_pml_ob1_recv_frag_callback

Generate ACK
mca_pml_ob1_recv_request_ack

On the receipt of the fragment the active

message callback

mca_pml_ob1_recv_frag_callback is called

Matching logic is called for a rendezvous

header (mca_pml_ob1_recv_frag_match)

= If the receive is not posted, insert the fragment
on the unexpected list

= When the receive is matched generate an ack
and schedule the receive request

Using the converter check if the user buffer is contiguous
(ompi_convertor_need_buffers)
Find a cached registration (or register and cache if not
found)
Cache the available registrations and corresponding
BTLs on the receive request
Generate an ack to the peer setting RDMA offset to zero
= The RDMA offset tells the sender how much data to schedule via
send/receive
= An offset of zero indicates the receiver will schedule the entire
message

Receiver Side Schedule

mca_pml_ob1_recv_request_schedule

Schedule the message over the available
registrations/BTLs.

Fragment the message based on a static
BTL weighting factor (currently percentage
of configured bandwidth)

For each BTL, use the BML/BTL
mca_bml_base_prepare_dst interface to
create a descriptor as the destination of the
RDMA

Receiver Side Schedule - Continued

For each BTL, send a control message

(PUT) with the RDMA target address to the

source

= Use the BTL on which the RDMA should be
scheduled

= Include a reference to the RDMA descriptor at
the destination (sent back on RDMA
completion)

Sender - PUT Control
Message Received

On receipt of the “PUT” control message
= mca_pml_ob1_send_request_put is called
= The sender side registration is obtained from
the mpool/rcache for this BTL
= A descriptor corresponding to the user buffer
is obtained via
mca_bml_base_prepare_src

Sender Initiates RDMA Write

mca_pml_ob1_send_request_put

The descriptor is updated to point to the
destination segments returned in the PUT
control message

mca_pml_ob1_put is called on the
descriptor

On local completion the descriptor callback
is invoked

= mca_pml_ob1_put_completion

Sender Side RDMA Completion

mca_pml_ob1_put_completion

Receiver - RDMA FIN
received

The send request is updated w/ bytes transferred
If bytes transferred == message size, MPI
completion is signalled
A descriptor is allocated
An RDMA FIN control message is sent to the
peer to indicate remote completion

= included in this message is the RDMA write descriptor

reference (for the receiver)

Free the RDMA descriptor btl_free

On local completion the descriptor used for the
control message is returned via btl_free

A reference to the receiver's RDMA descriptor is included
in the RDMA control message
= The local completion callback associated with this
descriptor is called (simulates remote completion)

mca_pml_ob1_put_completion
Different function.. Same name :-(

The RDMA descriptor is freed (mca_bml_base_free)
The MPI request is signalled complete

“Leave Pinned” - PUT

Sender Receiver

4 Match T
7——_&91

3 match ()

)

i

|

|

! prepare_ost ()
|

:

ACK Match + RDMA PUT
prepare_sre ()

i

I

|

ADMA Writg !

I

|

put_completion () !

i
RDMA Fiy put_completion ()

“Leave Pinned” - GET

Sender

Receivar

i
i

| 1
prepare_sc {) |
1

1

1

M !
atch + Gy o makh)

|
|
|
1
i prepare_dst ()
|
|
I
H
|

rget_corplation () AOMAFIN

‘Open MPI, MVAPICH Bandwidth

Bandwidth - KBytos
g

« 0 Byte Latency

I 3.09 usec

Open MPI - OpeniB (MP. Alloc_em) -+
MVAPICH Open's

1 10 100 1000 10000 100000 10406 1es07 1es08
Message Sizo

Pipeline Protocol

Pipeline Protocol

For contiguous data
Messages larger than BTL max send size

Overlaps memory registration with RDMA
operations

Uses Mpool to register memory in chunks
(BTL max RDMA size)

Initiate multiple RDMA operations at once
(up to BTL pipeline depth)

Pipeline Protocol - Message

Layout

L £ager Limit

MP| Message
Eager Data Send/Recy Data RDMA Pipeline Data
RDMA RDMA A A RDMA
RDMA Offsel -
(. Eager i —| Fragment1 | Fragment2 ' Fragment 3 H Fragment 4 ' Fragment 5

| MaxFDMA || Max RDMA || Max ROMA || Max RDMA || Max RDMA |
Size Size Size Size Size

10

Pipeline Protocol

Starts like Send/Recv Rendezvous
protocol

= Select next BTL from BML Endpoint’s eager
BTL list

= Allocate a descriptor using the BML/BTL

= Build a RNDV match header and pack eager
data using converter

= Send RNDV match+Eager

Pipeline Protocol -

Eager+Match

MPI Message
Eager Data

L Eager Limit -

Sender Receiver

Mmateh + eager data H

malch ()

Receive RNDV Header

On match of RNDV header
= Generate a RNDV ACK to the peer with the
RDMA offset

RDMA offset is the minimum of the
MIN_RDMA_SIZE of the RDMA devices available
on the receiver

On receipt of the RNDV ACK the source:

= The source schedules up to the RDMA offset
using send/recv semantics

= This helps cover the cost of initializing the
pipeline on the receive side

Pipeline Protocol - Send up to
RDMA Offset

Receiver Schedules RDMA

Fragments

After generating the RNDV ACK the receiver
immediately begins scheduling RDMA fragments
= The next BTL is selected from the BML endpoint’s
RDMA BTL array
= Prepare dest is used to register a segment of the user
buffer
= Each segments size is constrained by the BTL
MAX_RDMA_SIZE
= Send a PUT control message (including the segment
list of the RDMA descriptor) to the source using the
same BTL

Pipeline Protocol - Register
Receiver Side “chunks”

11

Source receives PUT control

message

Similar to the “Leave Pinned” protocol:
= Calls prepare source to build a descriptor for the
RDMA operation
The PUT control message specifies offset and size
BTL Registers the user’s buffer if required via the MPool
= Setup the descriptor to point to the destination
segments as specified in the PUT control message
= Initiate the RDMA Write
= On local completion of the RDMA Write send a FIN
control message to the peer

Pipeline Protocol - Register

and RDMA

cagorouta [Sonaocy o [—— f
- wown | eown | _roun | _rom | _rom

rswerven Nt z-pe | TN RECTY T ST TN

J

| MaxFDMA J| Max ROMA J| Max RDMA J| Max RDMA J| Max FOMA
Sizo Sz Sizo Sizo Sizo

g propare(rag 1)
READY Frag !
erovFragl
prepare frag 1)

‘ =

POl RDMA Completion)

FIN Frag 4

eloaso frag 1) s
eloase rag 1)

FIN message received

Included in the FIN message is the pointer
to the receiver's RDMA descriptor
= The RDMA descriptor’s callback is invoked
O(simulating remote completion)
= Update receive request status
may signal MPI completion
= Free the RDMA descriptor
may unregister the user’s buffer

Pipeline Protocol - Timing

Diagram

T — —) — — ——

b .
bt_send match +
h + cagor data bi_recy.catback | maton
B_alloc
+ romaoftset b1_send
birecv. calback L5 Bi_propare_dst
b S
o grope e bi_send
- At bi_prepare dst
B _send Bivai

o
lprepare sto [— gy ama oot bil_recv._callback
bil_send
daty i
i_prepare src bi_recv.callback

bil_recv.callback

i put C
.UM,
ET
"a finy
]
I \%%\
e e
g i \ bil_recy._cailback
btl_prepare_dst
T

<—agkr roma oieet

Pipeline Performance

Protocol performance - No buffer reuse (log scale)

800 T T T T T T
700 - a
pipeline
600 - copy infout
pipeline leave pinned
500 |- leave pinned -------

Bandwidth MBytes/Sec
IS
8
S
T
I

300 |- .
200 A
P s o
100 - =
0 i | . . I
1 10 100 1000 10000 100000 1e+06 1e+07

Message Size Bytes

Bandwidth MBytes/Sec

Pipeline Performance

Protocol performance - Varying Buffer reuse (log scale)

’,"' pipeline leave pinned -+«
500 |- pipeline b
- copy infout
450 K leave pinned ------- A

300 .
1 10 100

Number of Time Buffer Reused

12

2

Threading Strategies

Enabling Thread Support

Compile Time Decision
--enable-mpi-threads
Supports multiple user threads in the library
Thread locks disabled unless initialized as
MPI_THREAD_MULTIPLE
--enable-progress-threads

Threads used internally by the library to enable
asynchronous progress

Thread locks always enabled

Coding Standards

Critical sections protected by atomic
operations and/or mutexes
Macros optionally enable locking based on
configure options
OPAL_THREAD_LOCK(&lock)
/* critical section */
OPAL_THREAD_UNLOCK(&lock)

By default these are compiled out

Coding Standards (Cont)

Abstractions for mutexes and condition
variables provided in:

= opal/threads/mutex.h condition.h

Atomic operations provided in
opal/sys/atomic.h

= opal_atomic_add32(volatile int32_t*, int)
Wrappers for conditional atomics provided
in opal/threads/mutex.h

= OPAL_THREAD_ADD32(volatile int32_t*, int)

PML Request Completion

Global mutex (ompi_request_lock) protects
changes to request state

Global condition variable
(ompi_request_cond) used to wait on
request completion

Condition variables provide an abstraction
that supports progression with multiple
threading models

Single Threaded

Multiple implementations of
opal_condition_t
Single Threaded
= opal_condition_wait() spins calling
opal_progress() until condition variable is
signalled.

13

Progress Threads

User level thread polls via opal_progress()
for completion

Blocks on posix condition variable after
configurable number of cycles

BTL threads progress requests
asynchronously

Upcalls from BTL->PML will signal condition
variable on request completion.

MPI_Request_Wait

PML Locking

Multiple threads could be attempting to progress a

pending request

= Utilize a per request counter and atomic
operations to prevent multiple threads from
entering scheduling logic

MPI queues (unexpected,posted receives) are

stored on a PML datastructure associated with the

communicator

= Utilize a single per communicator lock that is
held during matching

BTL Locking

Per BTL mutex acquired when accessing
BTL specific queues/state

Atomic operations used to manage token
counts (e.g. number of send tokens
available)

Free lists (ompi_free_list_t) each maintain a
mutex to protect against concurrent access

Progress Threads
(--with-progress-threads)

BTL is responsible for progressing all
requests asynchronously

Depending on the interconnect, this may
require a thread per BTL

Myrinet/GM - we create a thread that blocks
in the driver

= gm_blocking_receive_no_spin()

Progress Threads

To improve latency, we can allow user
thread to progress events for a configurable
number of cycles

If requests do not complete, allow BTL
thread to complete them asynchronously

Need to define a standard mechanism to
signal/wake BTL thread in this case

14

