2

Open Run-Time Environment

Jeff Squyres

ORTE

Run-time support system

= Basis for Open MPI launch, kill, etc.

= But can be used independently

Ties into back-end run-time environments
= ...or not!

Started as tiny subsystem in OMPI

= Evolving into its own project

= Other projects using ORTE without OMPI

= May [someday] be a separate project

ORTE Objectives

- S Cluster {‘.\.
e py _ : Q i
__-._-._ Seamless, transparent .v”
environment for high-
Grid performance
applications

+ Dynamic “spawn” of processes,
| applications both within and

Single \across cells / e

Computer {
. - =
A —

“Cell = one or more computers sharing a common launch environment/point

* Inter-process communications - \
within and across cells i
+ Support event-driven logic Ll .\‘
across applications, cells il
* Persistent, fault tolerant /
Cluster
G
IR

ORTE Architecture

Cluster

Resourc

Runtime |/ Name
o M9 A senvice
Allocation /& ‘@

ONIVERSE "
-
-

<4
Resource General %
Discove Purpose Data
A Registry j services

State

Process |\ g
Launch P Monitoring-
v Reporting
Resource
\ Mapper

Cluster

Computer

The ORTE Universe

The ORTE Universe

Collection of services and resources
= Supports multiple simultaneous applications
= Configurable environment
= Maintains system status, inter-process
coordination
= Monitors state-of-health
Processes, resources

Head Node Process (HNP)
= Resides on machine from which processes
are launched on that cell
E.g., front end of a cluster, grid master
= Responsible for...
Launching all processes on that cell
Monitoring cell state-of-health (nodes, processes)
Reporting cell state to rest of universe
Routing communications between cells

Uniqueness

User can have multiple simultaneous universes
= Named or “default’

Jobs and processes within a given universe can
communicate, synchronize
Access restrictions
= Scope can be set by user
Public - accessible by anyone (be careful!)
Private - accessible by user only (default)

Exclusive - dedicated to a specific job, no subsequent
connections allowed

= Relies on operating system security

Universe Globals

Process name: <jobid>.<pset>.<vpid>
Job (jobid)
= Unique within a given universe
= One issued per each execution of “orterun”
Note: “orterun” = “mpiexec” = “mpirun”
Process set (pset)

= Collection of processes within a given job that were initiated with
a common “spawn”

= Unique within a given job

= pset=0 reserved for daemons that might be launched by the job
Virtual process ID (vpid)

= |D of process - unique within a given process set

= Usually equal to the MPI_COMM_WORLD rank

Universe Types

Non-persistent universe (current default)
= Ends with application completion
Persistent universe

= Exists outside of any particular application

= Used for multiple synchronized application
operations across cells
= In MPI context, frequently used for MPI-2
dynamic operations
Connect, accept, join

Universe Elements

Support
Services

Name
Service

Runtime
Msg

Data
Resource General Services

Allocation PurpOSe
Registry Stale
Resource

" onltonng
Discovery Reporllng

Resource Process Error Error
Mgmt Launch Resource Mgmt Mgmt
Mapper

General Purpose Registry

Data storagef/retrieval system
= All common data types plus user-defined

= Heterogeneity between storing process and recipient
automatically resolved

= Still a single instance; working on distributed
Publish / subscribe
= Support event-driven coordination and notification

= Subscribe to individual data elements, groups of
elements, wildcard collections

= Specify actions that trigger notifications, information to
be returned

Universe Elements

Support
Services

Name
Service

Runtime
Msg

Rnsource /neral

Al\ocat\on (Purpose)

Reglstry P o
Sesaurce | Monitoring-
iscovery V \Reporting
Resource Sor) Error Error
Mgmt Launc'x

Magmt Magmt
. / 9

Data
Services

J

—

Resource
Mapper
~—

Runtime Messaging Layer

Single point-of-contact for Multiple parallel network
routing and delivery of transports

messages within ORTE
= Not intended for high- N
performance, large available transports
message communications RML selects “best”
= Inter-cell routing option(s))
= Inter-universe messaging Message fragmentation not
not supported supported
i Auto-update of connection
Guaranteed dellvery information to support
= Blocking, non-blocking addition, deletion of
= Broadcast, process-to- processes
process Heterogeneity
automatically resolved
= Byte order, size differences

= QOut-of-band (OOB)
framework auto-selects

Data Services

Single interface for all declared data types
= Register data types, manipulation functions
= Unstructured or structured
Pack / unpack for network communications
= Resolve data heterogeneity issues
= Construct / deconstruct buffers for transmission over RML
Support transparent data manipulation within ORTE
= All declared data types
Copy, compare, size, print, release
= Arithmetic functions for integer data types
Add, subtract, divide, multiply
Increment, decrement

Name Services &

I/O Forwarding

Name Services
Generate unique

1/0O Forwarding
Source / sink: file

names = (including stdin / out /
Support name err)
passing to child From application start
processes = Setup before main()
Provide support Only basic usage
functions currently supported by
= Get peers for process mpirun

sets, jobs = We should do more!

Universe Elements

Suppol
e Services
<Rumxme Name \/\
Service

Msg =N

w< r/o/‘)\

Fwrd
Pt
\\/
(Data

e General Sonvices
Allocation Purpose \

Registry/ <®

— Reporting

Resource
Discovery

Resource (Process e\ Error Error
Mgmt Launch [Resource (Mgmt Mgmt
Mapper .
L ~
. 4

State Monitoring & Reporting

Single point for reporting changes in state
= Report changes in state as detected by system
= Notification to all interested subsystems through
registry subscription service
Internal monitoring capabilities
= Used where system doesn't provide own capability or
to augment available services
= Process state
Tracks process successful startup/shutdown, abnormal
terminations
= System state
Tracks status, performance
= Node/cell (up, down, booting, ...)
= Communications (bandwidth, connectivity)
Develops model of anticipated performance, fault prediction

Error Manager

Log ORTE errors for reporting, future analysis
Primary responsibility: fault response

= Contains defined response for given types of faults

= Responds to faults by shifting resources, processes
Secondary responsibility: resilience strategy

= Continuously update and define possible response options

= Utilizes SMR fault prediction to trigger pre-emptive action
Allows selection of various response strategies via
component system

= Run-time decision

= Selectable by command-line option, environmental parameter, or
default to local system configuration

Universe Elements

Support
AT/)\ Services
<Runtune LSN?2‘9>A\
Moo ervice
W / General
Allocation [Pu rpose
_Registry
Resource \

Discovery

Resource
Mgmt

Process
Launch Resource
Mapper

Mgmt

Resource Manager (RMGR)

Integrated, single point-of-
contact for launching jobs,
processes RMGR

Selectable components
allow multiple strategies
for interweaving functional
blocks
= URM component seems to
meet nearly all needs
= Proxy component allows
remote processes to access
resources on this/other
cells, without transferring
data

Resource Allocation

Meant to allocate resources

= E.g., submit batch job

Some RAS components currently exist
= But are really mis-placed

= Being ported back to RDS (resource
discovery)

Do not have any real RAS components yet
= Probably only use one component at run-time

Resource Discovery

Discover what resources have been given
to the job

= In resource manager job (PBS, SLURM, etc.)
= Hostfile

= Localhost only

Supports

= Hostnames

= Max process counts on each (slots)

Use all available components at run-time

Resource Mapping

Given a set of processes

= Map them to resources

Only one component: round_robin
= Node major and slot major ordering
= May have more here someday

Use one component at run-time

Process Launch

Use a back-end system to launch
= SLURM, PBS, rsh/ssh, ...

Interface supports process kill as well
Can only use one PLS component per cell

orterun

orterun Scenario

Tool for launching processes in universe
= Can launch MPI and non-MPI apps

= Sym linked to mpirun and mpiexec
Supports MPI-2 mpiexec syntax

= Supports SPMD and MPMD

= Supports process-unique MCA parameters

= Can also give a file with all commands / args
= --host works, --arch does not

See the man page (mpirun.1)

mpirun —np 4 a.out

= RMGR is invoked to spawn the job
= Query RDS and RAS

= Get a list of resources

= Invoke RMAPS to map 4 processes to
resources

= Invoke PLS to launch processes
= Invoke PLS to wait for processes to complete

MPI Startup

MPI_INIT determines its identity
Calls back to GPR as rendezvous point
= Exchange MPI pt2pt connection information

= Done as a “compound command”
Everything exchanged in one transfer per process

orterun unaware if MPI or non-MPI job

MP]_COMM_SPAWN

Essentially the same as orterun
= Invokes rmgr.spawn()
Rendezvous point is the GPR

= Hence, MPI process does not have to double
as “orterun” role

Adding Support for New RMs

Typically add two components

= RDS: query the RM to find resources allocated
to the job

= PLS: use the RM’s native mechanism to
launch, monitor, Kill
Example

= SLURM has RAS (moving to RDS) and PLS
components

Other ORTE Tools

...nhone yet

But others are under development /
contemplated

= Console-like application

= Screen-like application

= |/O multiplexer

= Universe ps, kill, etc.

Ongoing Efforts / Future Work

Remote launch from desktop/notebook
= Support disconnect/reconnect

= Remote status reporting

= Resource discovery, scheduling
Multi-cell operations

= Single application spanning multiple cells

= Multiple applications synchronized and/or
sharing data across multiple cells

Resilient operations
= Next-generation response to “faults”

»

Questions?

»

Backup Slides

ORTE vs. Grid

OpenRTE Grid
Full local autonomy, control

* Operates at user level All resources must install and
® User must be able to spawn support grid systems, protocols
process on head node of cell Operates at admin level
= Utilizes multiple
communication protocols
Component architecture
= Allows rapid, easy prototyping
and incorporation of new
features . - .
Store component in Build and dlstrlbut_e_ _Neb services
accessible location to add new capabilities, must
Tell system to use it integrate directly into application
(command line parameter,
environmental variable)
= Planned incorporation of grid
protocols to allow interaction

ORTE vs. Grid

OpenRTE Grid
Full local autonomy, control
Component architecture
Transparent

. Noﬂapplylycahon code changes specific libraries
or “glue” programming to move 5 . .
from cluster to multi-cell Customized programming to utilize
operations multiple cells to subdivide applications,

synchronize multiple applications

Application incorporates grid
programming or must be linked to grid-

