

Open MPI State of the Union XII Community Meeting SC19

Jeff Squyres

Brian Barrett

Josh Hursey

BOF Feedback Form

https://www.open-mpi.org/sc19/

EuroMPI/USA'20

September 21-24, 2020 Austin, TX

💾 Important Dates

Full paper Submission: April 22, 2020. (AOE)

Notification of acceptance (Paper): July 1, 2020.

Workshops and Tutorials Submission: February 24, 2020. (AOE)

https://eurompi.github.io/

Open MPI versioning

Quick review

Open MPI versioning

- Open MPI uses "A.B.C" version number triple
- Each number has a specific meaning:
 - A This number changes when backwards compatibility breaks
 - B This number changes when new features are added
 - **C** This number changes for all other releases

Definition

- Open MPI vY is <u>backwards compatible</u> with Open MPI vX (where Y>X) if:
 - Users can compile a correct MPI / OSHMEM program with vX
 - Run it with the same CLI options and MCA parameters using vX or vY
 - The job executes correctly

What does that encompass?

- "Backwards compatibility" covers several areas:
 - Binary compatibility, specifically the MPI / OSHMEM API ABI
 - MPI / OSHMEM run time system
 - mpirun / oshrun CLI options
 - MCA parameter names / values / meanings

Version Roadmaps

v3.0.x (Prior stable)

- Release managers
 - Brian Barrett, AWS
 - Jeff Squyres, Cisco

- Immanent release: v3.0.5
 - November 2019
 - Maybe one more release...?
- Maintenance mode
 - No new features for life of series
- Major features
 - MPI_THREAD_MULTIPLE support by default

v3.1.x (Prior stable)

- Release managers
 - Brian Barrett, AWS
 - Jeff Squyres, Cisco

- Immanent release: v3.1.5
 - November 2019
 - *Maybe* one more release...?
- Maintenance mode
 - No new features for life of series
- Many usability features over 3.0.x

v4.0.x (Current stable)

Release managers

- Howard Pritchard, Los Alamos National Lab
- Geoff Paulsen, IBM

- Current release: v4.0.2
 - November 2019
- Lots of bug fixes and performance improvements
 - Big changes:
 - 1. Removed MPI-1 APIs not prototyped in mpi.h by default
 - 2. IB support now via UCX
 - 3. ABI compatible with 3.x
 - 4. MPIR usage deprecated

Deprecation notice: MPIR

- MPIR interface is used internally to launch / attach tools and debuggers
- The maintainer for Open MPI's MPIR is retiring!
- Initially announced at SC'17 BOF:
 - Unless someone else takes over, this is the plan:
 - Deprecation notice in NEWS in early CY2018
 - User runtime warnings in mid/late CY2019 (v4.0.0)
 - Removal in CY2020 (replaced by PMIx-based tool support)

v5.0.x (Future)

- Still under active discussion
 - https://github.com/open-mpi/ompi/wiki/5.0.x-FeatureList
- Some potentially contentious issues:
 - Remove the openib BTL
 - Remove C++ bindings
 - Remove support for ancient gfortran
 - Remove MPI-1 / MPI-2 deleted interfaces
 - Remove MPIR
 - Break ABI compatibility with v3.x / v4.x
 - Make PMIx a first-class internal API
 - Remove support for PMI-1, PMI-2

The role of PMIx

- PMIx has effectively replaced much of Open MPI's runtime system (ORTE)
 - Apps directly depend on PMIx
- ORTE still exists
 - Only used with mpirun / mpiexec (in any environment)
 - Typical for ssh-based launching for unmanaged environments
- Open MPI still contains an embedded copy of PMIX
 - But also supports compiling against an external PMIx

How to debug PMIx issues?

PMIx logging variables

- DIR is "client" or "server"
- This one gives general information:
 - PMIX_MCA_pmix_DIR_base_verbose
- These give specific types of information:
 - PMIX_MCA_pmix_DIR_get_verbose
 - PMIX_MCA_pmix_DIR_connect_verbose
 - PMIX_MCA_pmix_DIR_fence_verbose
 - PMIX_MCA_pmix_DIR_pub_verbose
 - PMIX_MCA_pmix_DIR_spawn_verbose
 - PMIX_MCA_pmix_DIR_event_verbose
 - PMIX_MCA_pmix_DIR_iof_verbose

Set via environment variable

mpirun -x \
PMIX_MCA_pmix_client_base_verbose=100 ...

Or PMIx site-wide config

\$prefix/etc/pmix-mca-params.conf

UTK Open MPI Activities

George Bosilca University of Tennessee

SPC: MPI_T Software Performance Counters

- Similar to PAPI counters but exposing internal information not available through other means
 - Out-of-sequence messages, time to match, number of unexpected, instant bandwidth, collective bins
- Can be configured to expose counters into a jobid shared file (XML + binary)
- PMIx plugins to gather or monitor online the state of the job
- Can detect deadlocks or pinpoint slowdowns in different metrics (such as message rate or bandwidth)

Threading

- Released Multirate benchmark
 - Different communications patterns with different workloads
 - Between different entities (threads or processes)
 - Multiple communicators
 - Enforced thread/process binding

ECP Milestone Report A Survey of MPI Usage in the U. S. Exascale Computing Project WBS 2.3.1.11 Open MPI for Exascale (OMPI-X) (formerly WBS 1.3.1.13), Milestone STPM13-1/ST-PR-13-1000

Threading

 Houston we have a problem !

HAN: Adaptive Collective communications framework

- More complex architectures demand more complex collective frameworks
 - Time for a refresh of the tuned collective framework
- Architecture aware (ADAPT)
 - Hybrid Architecture
- Shared Memory (SM²)
 - One-sided communications
- Noise Reduction (FUTURE)
- Overlap needed for non-blocking collectives

HAN: Adaptive Collective communications framework

MPI_Bcast on 4K processes on Shaheen

Resilience - User Level Failure Mitigation (ULFM)

- Move the underlying resilient mechanisms outside ULFM/OMPI
 - Failure detector and reliable broadcast in PPRTE
 - Used in OMPI ULFM and SUNY OpenSHMEM
- ULFM 4.0.2u1 released
 - Based on OMPI 4.0.2 (will remain in sync)
- ULFM master follows OMPI master
 - Long transition to integrate ULFM in OMPI master
- Scalable fault tolerant algorithms demonstrated in practice for revoke, agreement, and failure detection (SC'14, EuroMPI'15, SC'15, SC'16)

Open MPI and AWS

Brian Barrett

Elastic Fabric Adapter (EFA)

- EFA is AWS's HPC/ML-oriented NIC
 - First NIC requiring Libfabric with Open MPI
 - Lots of Libfabric development
 - Lots of Open MPI OFI MTL testing

General Improvements

- TCP BTL
 - Patches outstanding to fix multi-NIC matching
 - Should make containers and non-routable NICs more predictable
- AWS Batch Integration
 - Run Open MPI applications in cloud batch scheduler

Next Year Plans

- Continue performance work
 - OFI MTL
 - Collectives
- Lots and lots of application testing
- You tell us!
 - AWS Forums HPC section

Ralph Castain

Fifteen⁺ Years of Open MPI ...and Retirement

Los Alamos Open MPI Activities

Los Alamos - Current Work

- MPI Sessions prototype based on Open MPI:
 - https://github.com/hpc/ompi/hpc/sessions
 - https://github.com/hppritcha/mpi_sessions_tests
 - Investigating use in DASK
- Adding support for Argobots and Qthreads:
 <u>https://github.com/open-mpi/ompi/pull/6578</u>
- Release manager role for 4.0.x

Open MPI / UCX: A Performance Evaluation of CUDA support on Summit Supercomputer

Mellanox Technologies

Summit OSU MPI Latency Benchmark

Summit OSU MPI Bandwidth Benchmark

Performance Summary

	GPU HBM2	2 Lane NVLINK GPU-GPU	2-Lane NVLINK CPU-GPU	IB EDR x2
Theoretical Peak BW	900 GB/s	50 GB/s	50 GB/s	25 GB/s
Available Peak BW	723.97 GB/s	46.88 GB/s	46 GB/s	23.84 GB/s
UCX Peak BW	349.6 GB/s	45.7 GB/s	23.7 GB/s	22.7 GB/s
% Peak	48.3	97.5	51.5	95.2

IBM Spectrum MPI

Joshua Hursey IBM

IBM Spectrum

Delivering Robust & Sustained High Performance for Scalable MPI Applications

Accelerated & Enhanced MPI Point-to-Point

- Driving maximum performance from POWER9, InfiniBand, and GPU hardware.
- Supports direct transfer of GPU buffers between GPUs and across the InfiniBand network.

Dynamic & Optimized MPI Collectives

- Best algorithm selected per call at runtime.
- Includes Power optimized and hardware accelerated (e.g., SHARP) algorithms.

Usability Features Targeting Installation, Startup, Debugging, and Profiling

Scalable to thousands of nodes and nearly a million processes!

Integration with IBM solutions such as LSF, ESSL, and Spectrum Scale

Built on the open source Open MPI project with IBM value add and IBM service and support

Open MPI 4.0.x with PMIx 3.1.x

Delivering Robust & Sustained High Performance for Scalable MPI Applications

Rank	Site	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	DOE/SC/Oak Ridge National Laboratory United States	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband IBM	2,414,592	148,600.0	200,794.9	10,096
2	DOE/NNSA/LLNL United States	Sierra - IBM Power System S922LC, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband IBM / NVIDIA / Mellanox	1,572,480	94,640.0	125,712.0	7,438
10	DOE/NNSA/LLNL United States	Lassen - IBM Power System S922LC, IBM POWER9 22C 3.1GHz, Dual-rail Mellanox EDR Infiniband, NVIDIA Tesla V100 IBM / NVIDIA / Mellanox	288,288	18,200.0	23,047.2	
11	Total Exploration Production France	PANGEA III - IBM Power System AC922, IBM POWER9 18C 3.45GHz, Dual-rail Mellanox EDR Infiniband, NVIDIA Volta GV100 IBM	291,024	17,860.0	25,025.8	1,367

MPI Point-to-Point Enhancements in PAMI

When transferring GPU buffers across servers, **Spectrum MPI automatically switches** between GPUDirect RDMA and host staged protocols to **deliver the best bandwidth performance for all message sizes**.

Container Ready Supporting Applications on Bare Metal & Private/Public Cloud

Two different container modes commonly used in HPC environments

Fully Contained mode One container per node

Where do we need help?

- Code
 - Any bug that bothers you
 - Any feature that you can add
- User documentation
- Testing (CI, nightly)
- Usability
- Release engineering

Come join us!