
Open MPI State of the Union XI
Community Meeting SC17

Josh
Hursey

Gilles
Gouaillardet

Jeff
Squyres

George
Bosilca

David
Bernholdt

Interactive / Online / SC thingy
• Online question topic submission: Linklings
• BOF feedback form

www.open-mpi.org/sc17/

https://eurompi2018.bsc.es/
Full paper submission deadline: 1st May 2018

GitHub / Community Contributions

Quick Review

Contribute!

We

(we love GitHub pull requests)

Contribution policy
• “Signed-off-by” required in commit messages:

• Open MPI Contributor’s Declaration
§ See the full definition here
§ Can automatically be added by “git commit –s”

Some awesome new feature

Signed-off-by: Jeff Squyres <jsquyres@cisco.com>

Lots of CI and
release engineering automation

• CI provided by community members
§ Special thanks to AWS for significant automation / CI investment

IBM CI

Mellanox CI
AWS, LANL,
U. Houston CI

22 different CI
environments

Open MPI versioning

Open MPI versioning
• Open MPI uses “A.B.C” version number triple
• Each number has a specific meaning:

This number changes when backwards
compatibility breaks
This number changes when new features
are added
This number changes for all other releases

A

B

C

Definition
• Open MPI vY is backwards compatible with

Open MPI vX (where Y>X) if:
§ Users can compile a correct MPI / OSHMEM

program with vX
§ Run it with the same CLI options and MCA

parameters using vX or vY
§ The job executes correctly

What does that encompass?
• “Backwards compatibility” covers several areas:

§ Binary compatibility, specifically the MPI / OSHMEM
API ABI

§ MPI / OSHMEM run time system
§ mpirun / oshrun CLI options
§ MCA parameter names / values / meanings

What does that not encompass?
• Open MPI only supports running exactly the

same version of the runtime and MPI /
OSHMEM libraries in a single job
§ If you mix-n-match vX and vY in a single job…

ERROR
…except for one (new) case

See PMIx slides, later

Current version series
• V2.0.x series

§ End of life
• v2.1.x series

§ Prior stable series

• v3.0.x series
§ Current stable series

• v3.1.x series
§ Upcoming series

Releases / branches

v2.x

v2.0.0

v2.0.x
v2.0.1

v3.0.x

master

v2.0.2 v2.0.3 v2.0.4

v2.1.0 v2.1.1 v2.1.2 v2.1.3

v3.0.0 v3.0.1

v3.1.0
v3.1.x

Version Roadmaps

v2.0.x series (EOL)
• Release managers

§ Howard Pritchard, Los
Alamos National Lab

§ Jeff Squyres, Cisco
Systems, Inc.

• Last release: v2.0.4
§ November 10, 2017
§ Minor / accumulated bug

fixes

• End of life
§ No further releases

expected

v2.1.x series (prior stable)
• Release managers

§ Howard Pritchard, Los
Alamos National Lab

§ Jeff Squyres, Cisco
Systems, Inc.

• Current release: v2.1.2
§ September 20, 2017
§ v2.1.3 expected Q1 2018

• Maintenance only
§ No new features

• Backwards compatible
with v2.0.x
§ v2.0.x users (strongly)

encouraged to upgrade

v3.0.x series (current stable)
• Release managers

§ Brian Barrett, AWS
§ Howard Pritchard, Los

Alamos National Lab

• Current release: v3.0.0
§ September 12, 2017
§ v3.0.1 expected Q1 2018

• Maintenance only
§ No new features

• Not backwards
compatible with v2.x
§ v2.x users encouraged to

investigate / upgrade

v3.1.x series (upcoming)
• Release managers

§ Ralph Castain, Intel
§ Brian Barrett, AWS

• Expected release:
§ Q1 2018

• Minor new features
• Backwards compatible

with v3.0.x

Deprecation notice: MPIR
• MPIR interface is used internally to launch /

attach tools and debuggers
• The maintainer for Open MPI’s MPIR is retiring!
• Unless someone else takes over, this is the plan:

§ Deprecation notice in NEWS in early CY2018
§ User runtime warnings in mid/late CY2018
§ Removal in CY2019

George Bosilca
University of Tennessee

Threading/Collectives/Resilience/Tools

Injection rate in OMPI
• Decent performance for most

of the one-sided approaches
§ Point-to-point less efficient
§ Multi-threaded …

• Problems:
§ The matching

• Out-of-sequence messages
§ Out-of-order fragments in the PML
§ Request completion
§ Progress

• OMPI support multi-threading

MPI_THREAD_MULTIPLE (Legacy design)

Condition

PROGRESS

2N mutex operation
N progression

N signal operation

signal

MPI_WAIT*
(XX)

Check

MPI_WAIT*
(XX)

Check

REQ
COMPLETE

• Each request completion wakes up all
threads in waiting mode
§ Cache (un)friedly: each thread has to check

again the status of all associated requests

• Single thread in the progress at any
moment
§ Network drained at the speed of a thread
§ No help from the other threads that are in the

MPI library

MPI_THREAD_MULTIPLE (New design)

Wait_sync

PROGRESS

signal REQ
COMPLETE

MPI_WAIT*
(XX)

Attach Detach

MPI_WAIT*
(XX)

Attach Detach

• Each request completion only affects the
corresponding wait_sync synchronization
object

• A thread only becomes active when the
waiting condition become true (any,
some, all)
§ Otherwise a thread sleeps, saving energy

• Single thread in the progress at any
moment
§ Network drained at the speed of a thread
§ No help from the other threads that are in the MPI

library

MPI_THREAD_MULTIPLE (New design)

Wait_sync

signal REQ
COMPLETE

MPI_WAIT*
(XX)

Attach Detach

MPI_WAIT*
(XX)

Attach Detach

PROGRESS

• Each request completion only affects the
corresponding wait_sync synchronization
object

• A thread only becomes active when the
waiting condition become true (any,
some, all)
§ A thread is now available to help

• Multiple threads in the progress
§ Network drained faster
§ Generic helper (progress BTLs)
§ Specialized helper (tasking based on the current

needs)
• Partial progress, collective op, packing/unpacking, …

MPI_THREAD_MULTIPLE (New design)

• With these changes we moved the
bottleneck
§ We need to increase the number of

insertion/extraction channels

MPI_THREAD_MULTIPLE (New design)

• Multi-modules

Oversubscription

20 cores/node

• Highly
oversubscribed
environments
§ Support integration

with any user-level
threads packages

Performance events
• Expose information not

available through other means
§ Out-of-sequence messages, time

to match, number of unexpected

• Exposed as PAPI Software-
Based Performance Counters
§ Easy integration with existing

tools: TAU, Scalasca, …
§ Work to integrate them as MPI_T

underway

CUDA support
Point-to-point communications
• Multi-level coordination protocol based on the

location of the source and destination memory
§ Support for GPUDirect

• Delocalize part of the datatype engine into the GPU
§ Provide a different datatype representation (avoid

branching in the code)
§ Driven by the CPU

• Deeply integrated support for OpenIB and shared
memory
§ BTL independent support available for everything else

Collective Communications
• Add support for collective operations, allowing to

execute the collective communications directly on
the GPU

200 600 1000 1500 2000 2500 3000 3500 4000

Matrix Size (N)

0

5

10

15

20

25

30

35

40

45

Ti
m

e
(m

s)

Pingpong Benchmark with Matrix in SM (inter-GPU)

T-2GPU
T-2GPU-MVAPICH

V-2GPU
V-2GPU-MVAPICH

V T
Ivy Bridge E5-2690 v2 @ 3.00GHz, 2
sockets 10-core, 4 K40/node
MVAPICH 2.2-GDR

Collective communications
• Dataflow collective: different algorithms

compose naturally (using a dynamic
granularity for the pipelining fragments)

• Architecture aware: Each level reshape
tuned collective to account for
architecture capabilities

• The algorithm automatically adapts to
network conditions

• Resistant to system noise

Collective Op

Collective Op

Collective Op

Collective: performance
• NERSC’s Cori (Cray XC40)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

La
te

nc
y

Ti
m

e
(m

s)

0

5

10

15

20

25

30
Performance of Broadcast varies by MSG size on 1K cores

64K 128K 256K 512K 1M 2M 4M
Message Size

0

5

10

15

20

25
Performance of Reduce varies by MSG size on 1K cores

Cray
MVAPICH
Intel MPI
OMPI-adapt
OMPI-tuned

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

La
te

nc
y

Ti
m

e
(m

s)

0

5

10

15

20

25

30

35

Strong Scalability of Broadcast with CPU data
NB nodes from 8 to 32, MSG=4MB

Cray
MVAPICH
Intel MPI

OMPI-adapt
OMPI-tuned

128 256 512 1024
NB processes

5

10

15

20

25

30

35

40

Strong Scalability of Reduce with CPU data
NB nodes from 8 to 32, MSG=4MB

Collective: Noise
Resistance

• Add noise to the application
to see the impact on the
collective performance

0.0 0.2 0.4 0.6 0.8 1.0

Noise Slowdown (%)

0.0

0.2

0.4

0.6

0.8

1.0

La
te

nc
y

Ti
m

e
(m

s)

241% 47% 40% 16% 53%
0

10

20

30

40

50

60
Performance of Broadcast with CPU data varies by noise injection, MSG=4MB

154%
Cray

36%
MVAPICH

32%
Intel MPI

26%
OMPI-adapt

43%
OMPI-tuned

0

10

20

30

40

50

60
Performance of Reduce with CPU data varies by noise injection, MSG=4MB

no noise random noise

96%
OMPI-tuned Topo

16%
OMPI-adapt Topo

Noise Slowdown (%)

0
1
2
3
4
5
6
7
8
9

La
te

nc
y

Ti
m

e
(m

s)

Performance of Topology-aware Broadcast with CPU data varies by noise injection, MSG=4MB

no noise random noise

Collective: Hybrid
Architectures

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

La
te

nc
y

Ti
m

e
(m

s)

0

5

10

15

20

25
Performance of Broadcast varies by MSG size on 8 nodes(32 GPUs)

1 2 4 8 16 32

Message Size (MB)

0

20

40

60

80

100

120

140

160

180
Performance of Reduce varies by MSG size on 8 nodes(32 GPUs)

MVAPICH OMPI-adapt OMPI-tuned• Nvidia PSG machine

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

La
te

nc
y

Ti
m

e
(m

s)

0

5

10

15

20

25
Strong Scalability of Broadcast, NB nodes from 1 to 8, MSG=32MB

1:4 2:8 3:12 4:16 5:20 6:24 7:28 8:32
NB Nodes : NB GPUs

0

20

40

60

80

100

120

140

160
Strong Scalability of Reduce, NB nodes from 1 to 8, MSG=32MB

MVAPICH OMPI-adapt OMPI-tuned

Collective performance independent of
the process location

User level failure mitigation
§ ULFM 2.0 released 11/03/17

• Based on OMPI master (will remain in sync)
• Transition to include it in master

§ Scalable fault tolerant algorithms demonstrated in
practice for revoke, agreement, and failure
detection (SC’14, EuroMPI’15, SC’15, SC’16)

Introduction Early Returning Agreement Performance Evaluation Conclusion

ERA performance depending on the tree topology

���

���

���

���

����

����

����

����

�� �� �� �� �� ��

��

����������

��������������������������

��������������������
������������������
�����������������
��������������������������
����������������������

Practical Scalable Consensus 23/ 32Fault Tolerant Agreement costs
approximately 2x Allreduce

B
a
n

d
w

id
th

 (
G

b
it

/s
)

Message Size (Bytes)

Shared Memory Ping-pong Performance

Open MPI
FT Open MPI

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

1 4 16 64 256 1K 4K 16K 64K 256K 1M

L
a
te

n
c
y
 (

u
s
)

 0.5

 1

 1.5

 2

 2.5

 3

1 4 16 64 256 1K

Point to point performance unchanged
With FT enabled

Failure detector
(under 1/10 sec heartbeat)

§ Next steps:
§ Make the underlying mechanisms

available outside ULFM/OMPI
• Move the failure detector and reliable broadcast

in PMIx
• SCONS a reliable communication infrastructure

for PMIx

Josh Hursey

IBM Spectrum MPI

IBM Spectrum MPI
• IBM Spectrum MPI is a pre-built, pre-packaged version of Open MPI plus

IBM value-add components.
§ Supports both PowerPC and x86 architectures
§ Supports most of Open MPI’s components

• Spectrum MPI is based on Open MPI release branches
§ SMPI 10.1.0 based on OMPI v2.0.x branch
§ SMPI 10.1.1 based on OMPI v2.x branch (x86 only)
§ Upcoming SMPI 10.2.0 based on OMPI v3.0.x branch

IBM	Spectrum	MPI	based	on	Open	MPI

Open	MPI

IBM	Contributions

IBM		Value	Add
Collective	Library,	P2P/OSC	Optimizations,	Cluster	Test	Tools,	ISV/OEM	models,	

enhanced	LSF	launch,	and	more...

Community	Contributions

Usability features
$$ mpirun -np 4 -host node01:2,node02:2 -prot –TCP ./hello
Host 0 [node01] ranks 0 - 1
Host 1 [node02] ranks 2 - 3

host | 0 1
======|===========

0 : shm tcp
1 : tcp shm

Connection summary:
on-host: all connections are shm
off-host: all connections are tcp

0/ 4) [node01] 61808 Hello, world!
1/ 4) [node01] 61809 Hello, world!
2/ 4) [node02] 100697 Hello, world!
3/ 4) [node02] 100698 Hello, world!

[Affinity options]
-aff on : turn on affinity (bandwidth)
-aff off : turn off affinity (unbind)
-aff v / -aff vv : verbose
-aff bandwidth : interleave sockets
-aff latency : pack ranks
-aff cycle:<unit> : interleave binding over <unit>
-aff width:<unit> : bind each rank to an element of this

size <unit> can be hwthread, core,
socket, or numa.

-aff default : same as "bandwidth" above
-aff auto[matic] : same as "bandwidth" above
-aff none : same as "off" above
-aff <option>,<option>,.. : comma separated list of above

[Interconnect selection]
-PAMI / -pami : IBM PAMI
-MXM / -mxm : Mellanox MXM
-TCP / -tcp : TCP/IP
-IBV / -ibv : OpenFabrics OFI
-PSM / -psm : (x86) Intel PSM
-PSM2 / -PSM2 : (x86) Intel Omni-Path
-USNIC / -usnic : (x86) Cisco usNIC

[Additional PAMI options]
-verbsbypass <ver>
-pami_noib

[GPU support]
-gpu : Enable GPU awareness in PAMI

[On-host communication method]
-intra nic : use off-host BTL for on-host traffic
-intra vader : Open MPI’s vader shared memory BTL
-intra shm : alias for -intra vader

[IP network selection]
-netaddr <spec>,<spec>,..
-netaddr <type>:<spec>,<spec>,..
<type> can be any of

rank : MPI traffic
control : Control traffic (out-of-band)
mpirun : synonym for "control”

<spec> can be either
interface name : eg eth0 or ib0 etc
CIDR notation : eg 10.10.1.0/24

$$ mpicc --version
IBM XL C/C++ for Linux, V13.1.5 (5725-C73, 5765
Version: 13.01.0005.0000
$$
$$ mpixlc --version
IBM XL C/C++ for Linux, V13.1.5 (5725-C73, 5765
Version: 13.01.0005.0000
$$
$$ mpipgicc --version

pgcc 16.10-0 linuxpower target on Linuxpower
The Portland Group - PGI Compilers and Tools
Copyright (c) 2016, NVIDIA CORPORATION.
reserved.
$$
$$ OMPI_CC=gcc mpicc --version
gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5
Copyright (C) 2015 Free Software Foundation, Inc

Value-add features
• MPI_ROOT

§ Can have multiple installed versions; switch between them at runtime by setting a single
environment variable

• Compiler support (single install)
§ GNU, XL (power), PGI (power), Intel (x86)

• Multiple concurrent PMPI interface wrapping
§ -entry/-entrybase options

• PAMI over IB verbs
§ Verbs by-pass feature further improves latency for small messages

• libcollectives library with advanced selection logic
§ 1.6x-11.8x faster than Open MPI’s ’basic’ and ‘tuned’ over PAMI

• Lightweight core files

IBM Testing and Support
• Extensive level of testing for IBM releases

§ Standard Open MPI release testing…
§ …Plus Platform MPI test suites
§ …Plus HPC stack integration testing

• IBM Customer Support
§ For customers running a licensed copy of IBM Spectrum MPI
§ IBM will work with customers and partners to resolve issues in non IBM-owned

components
• Contribute to community testing

§ MTT nightly regression testing on IBM PowerPC servers
§ Jenkins CI testing on IBM PowerPC servers

CORAL – Summit & Sierra
• Delivering more than 100 petaFLOP/s peak performance by combining

IBM POWER9 CPUs + NVIDIA Volta GPUs + Mellanox EDR InfiniBand
• Spectrum MPI will play a critical role in application performance at scale on

ORNL’s Summit and LLNL’s Sierra systems
§ Lots of work on MPI point-to-point, collective, and one-sided performance and resource

consumption as applications scale.
• The Job Step Manager (JSM) replaces ORTE as the job launcher.

§ PMIx 2.x compliant runtime project tuned for the IBM LSF/CSM computing environment.
§ Focus on fast job launch, and managing multiple concurrent jobs within a single LSF

allocation.

Charting the PMIx Roadmap BoF
Thursday, Nov. 16

12:15-1:15pm

OMPI BOF – a user perspective

Gilles Gouaillardet <gilles@rist.or.jp>

Open MPI @ HPCI
• High Performance Computing

Infrastructure (HPCI)
§ Connects flagship K computer

and other major
supercomputers in Japan

§ XSEDE-like (or PRACE-like) in
Japan

• Open MPI is indirectly used on
Fujitsu systems (Linux / Sparc /
ToFu) via Fujitsu MPI.

• HPCI is available free of charge to
worldwide researchers

• Visit us at booth #219!

Open MPI information
• Official website
§https://www.open-mpi.org

• Three mailing lists
§announce@lists.open-mpi.org
§users@lists.open-mpi.org
§devel@lists.open-mpi.org

• Github repository
§https://github.com/open-mpi/ompi

Open MPI support

• Community based support for vanilla Open MPI

• Contact vendors (Bull, Fujitsu, IBM, Cisco,
Mellanox, etc.) directly if you are using an Open
MPI based vendor MPI

users@lists.open-mpi.org 1/2
• The best way to contact us !

• All developers read and answer questions
• End users often share their experience
• Questions are generally replied the same day
• All questions are treated equally

• The right place to
• Ask about an Open MPI feature
• Report a bug
• Request a feature

users@lists.open-mpi.org 2/2
• This list is for Open MPI only

• MPI standard should be discussed at the MPI forum http://mpi-
forum.org

• General MPI questions (non specific to Open MPI) can be
discussed elsewhere (http://stackoverflow.com for example)

• Bug reports for vendor MPI based on Open MPI
• Bug reports for other MPI libraries

Frequently Answered Questions

• Some questions are frequently asked by the
community

• Here is a short overview with answers

MPI task binding
• Still confusion about what the (default) process-to-

core binding is about
• 3 concepts in Open MPI

1. Mapping: assign each task to a location
2. Binding: bind task to specific processing element
3. Ranking: assign MPI_COMM_WORLD rank to each task

• Refer to Ralph Castain’s SC’16 slides
https://www.open-mpi.org/papers/sc-2016/
§ Starting with slide #84

One-sided communications
• RMA semantic is complex and raised a lot of

questions (bugs vs. user mistakes)
• Semantic might not be what you expect, nor

what you want
• Do not hesitate to

• (Re)Read the MPI standard
• Try another MPI library and check the behavior
• Do not jump too quickly to any conclusion

Open MPI and PBS Pro / Torque
• Open MPI must be built with tm support
• By default, Open MPI tries to build tm support

§ Use –-with-tm to have configure fail if tm is not
available

• Otherwise a multi node job will end up using all
the resources of a single node
§ …and may even fail to start because not enough

slots are available

New default IO component
• ROMIO (from MPICH) used to be the default MPI IO

component
• OMPIO (specific to Open MPI) is the new default,

unless a Lustre filesystem is used
• ompio is a less mature than the well established

ROMIO
§ You can use the --mca io romio314 mpirun

parameter to force using the ROMIO component

PGI and SLURM
• SLURM is likely built with gcc
• libpmi.la likely sets the –pthread flag
• pgcc cannot build Open MPI because
–pthread is not a valid option

$ cat /usr/pppl/pgi/17.3/linux86-64/17.3/bin/siterc
#################################
siterc for gcc commands PGI does not support
#################################
switch -pthread is

append(LDLIB1=-lpthread);

Docker and Open MPI
• Docker is great at containers, but was not designed

with HPC in mind
§ Open MPI is container agnostic
§ Can run Open MPI inside Docker containers (with no

special configuration)
§ Open MPI has no specific support for Docker

• http://singularity.lbl.gov was designed with HPC in mind
and is fully supported by Open MPI

David E. Bernholdt, ORNL
for the OMPI-X team

Open MPI for Exascale (OMPI-X)

Acknowledgements
• This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the

U.S. Department of Energy’s Office of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem, including software, applications, and
hardware technology, to support the nation’s exascale computing imperative.

• This work was carried out in part at Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S.
Department of Energy under contract number DE-AC05-00OR22725.

• Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

• This work was performed in part at Los Alamos National Laboratory, supported by the U.S. Department of
Energy contract DE-FC02-06ER25750.

• Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

ECP: Exascale Computing Project
• From https://exascaleproject.org (emphasis mine)…

ECP is chartered with accelerating delivery of a capable exascale computing ecosystem to provide
breakthrough modeling and simulation solutions to address the most critical challenges in scientific discovery,
energy assurance, economic competitiveness, and national security.
This role goes far beyond the limited scope of a physical computing system. ECP’s work encompasses the
development of an entire exascale ecosystem: applications, system software, hardware technologies and
architectures, along with critical workforce development.

• Funded by DOE Office of Science and NNSA, managed by the DOE
laboratories
§ With participation by other government agencies

• “Exascale” defined as 50x performance of current systems on applications
• Expecting initial exascale system delivery in 2021

Our Project: Open MPI for Exascale (OMPI-X)

• A project within the ECP Software Technologies (ST) / Programming
Models and Runtimes (PM) area

• Ensure that the MPI standard and its specific implementation in Open
MPI meet the needs of the ECP community in terms of performance,
scalability, and capabilities or features
§ Participating in the MPI Forum to address the needs of ECP applications and libraries
§ Working within the Open MPI community to

• Prototype and demonstrate exascale-relevant proposals under consideration by the MPI Forum
• Improve the fundamental performance, scalability, and architectural awareness of Open MPI,

particularly for exascale-relevant platforms and job sizes

• The ECP “Exascale MPI” project focuses on MPICH

The OMPI-X Team
• ORNL

§ David Bernholdt (Lead PI)
§ Manju Gorentla Venkata
§ Terry R. Jones
§ Thomas J. Naughton III
§ Geoffroy R. Vallee

• LANL
§ Nathan Graham
§ Evan Harvey
§ Nathan Hjelm
§ Howard Pritchard

• LLNL
§ Chris Chambreau
§ Murali Emani
§ Ignacio Laguna
§ Martin Schulz

• SNL
§ Ron Brightwell
§ Ryan Grant

• UTK
§ George Bosilca
§ Aurelian Bouteiller

OMPI-X Focus Areas
• Runtime Interoperability for MPI+X and

Beyond [Vallee]
§ APIs for better sharing of threads between

MPI and other thread-based runtimes
§ Intend collaboration with ExaMPI [MPICH]

and SOLLVE [OpenMP]
• Extending the MPI Standard to Better

Support Exascale Architectures [Grant]
§ Endpoints, Finepoints, Sessions

• Open MPI Scalability and Performance
[Gorentla]
§ Memory footprint, collectives, message

matching, one-sided, PMIx
§ See also George’s UTK presentation

• Supporting More Dynamic Execution
Environments [Jones]
§ Intelligent process placement and contention

management
• Resilience in MPI and Open MPI

[Bosilca]
§ ULFM, ReInit, resilience in PMIx
§ See George’s UTK presentation

• MPI Tool Interfaces [Schulz]
§ MPI_T, PMPI replacement

• Quality Assurance for Open MPI and
New Developments [Pritchard]
§ Test infrastructure deployed to ECP-relevant

systems
§ Regular testing of Open MPI and OMPI-X

developments

Survey Says…
• The OMPI-X project recently conducted a survey of the ECP Application

Development (AD) and Software Technology (ST) projects
• Survey questions covered a range of topics: Application demographics, non-

MPI applications, basic performance characterization, MPI usage patterns, MPI
tools ecosystem, memory hierarchy details, accelerator details, resilience, use
of other programming models, MPI with threads

• Received a total of 77 responses (project level), 56 of which use MPI
• Talk presented at ExaMPI Workshop paper on Sunday, paper to appear in

special issue of Concurrency and Computing: Practice and Experience
§ A Survey of MPI Usage in the U.S. Exascale Computing Project, David E. Bernholdt (ORNL), Swen

Boehm (ORNL), George Bosilca (UTK), Manjunath Gorentla Venkata (ORNL), Ryan E. Grant (SNL),
Thomas Naughton (ORNL), Howard P. Pritchard (LANL), Martin Schulz (LNLL, TU Munich), Geoffroy R.
Vallee (ORNL)

• Considering broadening survey and opening it to the wider community

Runtime Interoperability for MPI+X and Beyond

Motivation and Goals
• Both MPI and OpenMP runtimes use

threads, but there is no coordination
• Optimal placement of MPI ranks and

threads is therefore difficult on complex
architectures

• Investigate runtime coordination for
optimal placement of threads and MPI
ranks
§ Data exchange between runtimes
§ Implement optimized placement policies

• Eventually, generalize to other node-level
threading models

Recent Progress
• Modify the OpenMP LLVM compiler to

interface with PMIx (Open MPI and some
resource managers already rely on PMIx)

• Data exchange between the MPI and
OpenMP runtimes via PMIx

• Implement a placement policy based on
the number of MPI ranks and available
cores/HT per node

• Upcoming work: evaluation and
implementation of more advanced policies
(collaboration with ECP SOLLVE project)

Survey:
• 86% of projects plan to use multiple threads per rank
• 45% use OpenMP; 21% use Kokkos or RAJA

Finepoints
• Finepoints provides efficient multi-threading for MPI
• Each thread sends a portion of a message
• MPI aggregates partitions and send messages efficiently
• Allows for early-bird overlapping where data can be sent before a

traditional fork-join-send model
• Initial results on KNL promising, allowing high ”perceived bandwidth”

Early-bird Communication Example

 0

 5000

 10000

 15000

 20000

 1
02

4

 4
09

6

 1
63

84

 6
55

36

 2
62

14
4

 1
.0

48
58

x1
0
6

 4
.1

94
3x

10
6

 1
.6

77
72

x1
0
7

 6
.7

10
89

x1
0
7

 2
.6

84
35

x1
0
8

B
a

n
d

w
id

th

Total Buffer Size

KNL 100ms Compute 1% Noise

 16 threads Finepoints
 16 threads Multi Send
 16 threads Single Send

(a) 16 threads

 0

 5000

 10000

 15000

 20000

 1
02

4

 4
09

6

 1
63

84

 6
55

36

 2
62

14
4

 1
.0

48
58

x1
0
6

 4
.1

94
3x

10
6

 1
.6

77
72

x1
0
7

 6
.7

10
89

x1
0
7

 2
.6

84
35

x1
0
8

B
a

n
d

w
id

th

Total Buffer Size

KNL 100ms Compute 1% Noise

 32 threads Finepoints
 32 threads Multi Send
 32 threads Single Send

(b) 32 threads

 0

 5000

 10000

 15000

 20000

 1
02

4

 4
09

6

 1
63

84

 6
55

36

 2
62

14
4

 1
.0

48
58

x1
0
6

 4
.1

94
3x

10
6

 1
.6

77
72

x1
0
7

 6
.7

10
89

x1
0
7

 2
.6

84
35

x1
0
8

B
a

n
d

w
id

th

Total Buffer Size

KNL 100ms Compute 1% Noise

 64 threads Finepoints
 64 threads Multi Send
 64 threads Single Send

(c) 64 threads

Fig. 5. Partitioned Communication with 1% noise and a 100ms compute load per loop

 0

 5000

 10000

 15000

 20000

 1
02

4

 4
09

6

 1
63

84

 6
55

36

 2
62

14
4

 1
.0

48
58

x1
0
6

 4
.1

94
3x

10
6

 1
.6

77
72

x1
0
7

 6
.7

10
89

x1
0
7

 2
.6

84
35

x1
0
8

B
a

n
d

w
id

th
 (

M
iB

/s
)

Total Buffer Size (Bytes)

KNL 10ms Compute 10% Noise

 16 threads Finepoints
 16 threads Multi Send
 16 threads Single Send

(a) 16 threads

 0

 5000

 10000

 15000

 20000

 1
02

4

 4
09

6

 1
63

84

 6
55

36

 2
62

14
4

 1
.0

48
58

x1
0
6

 4
.1

94
3x

10
6

 1
.6

77
72

x1
0
7

 6
.7

10
89

x1
0
7

 2
.6

84
35

x1
0
8

B
a

n
d

w
id

th
 (

M
iB

/s
)

Total Buffer Size (Bytes)

KNL 10ms Compute 10% Noise

 32 threads Finepoints
 32 threads Multi Send
 32 threads Single Send

(b) 32 threads

 0

 5000

 10000

 15000

 20000

 1
02

4

 4
09

6

 1
63

84

 6
55

36

 2
62

14
4

 1
.0

48
58

x1
0
6

 4
.1

94
3x

10
6

 1
.6

77
72

x1
0
7

 6
.7

10
89

x1
0
7

 2
.6

84
35

x1
0
8

B
a

n
d

w
id

th
 (

M
iB

/s
)

Total Buffer Size (Bytes)

KNL 10ms Compute 10% Noise

 64 threads Finepoints
 64 threads Multi Send
 64 threads Single Send

(c) 64 threads

Fig. 6. Partitioned Communication with 10% noise and a 10ms compute load per loop

 0

 20000

 40000

 60000

 80000

 100000

 120000

 1
02

4

 4
09

6

 1
63

84

 6
55

36

 2
62

14
4

 1
.0

48
58

x1
0
6

 4
.1

94
3x

10
6

 1
.6

77
72

x1
0
7

 6
.7

10
89

x1
0
7

 2
.6

84
35

x1
0
8

B
a

n
d

w
id

th
 (

M
iB

/s
)

Total Buffer Size (Bytes)

KNL 100ms Compute 10% Noise

 16 threads Finepoints
 16 threads Multi Send
 16 threads Single Send

(a) 16 threads

 0

 20000

 40000

 60000

 80000

 100000

 120000

 1
02

4

 4
09

6

 1
63

84

 6
55

36

 2
62

14
4

 1
.0

48
58

x1
0
6

 4
.1

94
3x

10
6

 1
.6

77
72

x1
0
7

 6
.7

10
89

x1
0
7

 2
.6

84
35

x1
0
8

B
a

n
d

w
id

th
 (

M
iB

/s
)

Total Buffer Size (Bytes)

KNL 100ms Compute 10% Noise

 32 threads Finepoints
 32 threads Multi Send
 32 threads Single Send

(b) 32 threads

 0

 20000

 40000

 60000

 80000

 100000

 120000

 1
02

4

 4
09

6

 1
63

84

 6
55

36

 2
62

14
4

 1
.0

48
58

x1
0
6

 4
.1

94
3x

10
6

 1
.6

77
72

x1
0
7

 6
.7

10
89

x1
0
7

 2
.6

84
35

x1
0
8

B
a

n
d

w
id

th
 (

M
iB

/s
)

Total Buffer Size (Bytes)

KNL 100ms Compute 10% Noise

 64 threads Finepoints
 64 threads Multi Send
 64 threads Single Send

(c) 64 threads

Fig. 7. Partitioned Communication with 10% noise and a 100ms compute load per loop

 0

 5000

 10000

 15000

 20000

 1
02

4

 3
27

68

 1
.0

48
58

x1
0
6

 3
.3

55
44

x1
0
7

B
a

n
d

w
id

th

Total Buffer Size

Aggregation Optimization KNL 100ms Compute 1% Noise

 16 threads 4K
 16 threads 8K
 16 threads 16K
 16 threads 128K
 16 threads 256K
 16 threads 512K
 16 threads 1M

(a) 16 threads

 0

 5000

 10000

 15000

 20000

 1
02

4

 3
27

68

 1
.0

48
58

x1
0
6

 3
.3

55
44

x1
0
7

B
a

n
d

w
id

th

Total Buffer Size

Aggregation Optimization KNL 100ms Compute 1% Noise

 32 threads 4K
 32 threads 8K
 32 threads 16K
 32 threads 128K
 32 threads 256K
 32 threads 512K
 32 threads 1M

(b) 32 threads

 0

 5000

 10000

 15000

 20000

 1
02

4

 4
09

6

 1
63

84

 6
55

36

 2
62

14
4

 1
.0

48
58

x1
0
6

 4
.1

94
3x

10
6

 1
.6

77
72

x1
0
7

 6
.7

10
89

x1
0
7

 2
.6

84
35

x1
0
8

B
a

n
d

w
id

th

Total Buffer Size

Aggregation Optimization KNL 100ms Compute 1% Noise

 64 threads 4K
 64 threads 8K
 64 threads 16K
 64 threads 128K
 64 threads 256K
 64 threads 512K
 64 threads 1M

(c) 64 threads

Fig. 8. Partitioned Communication with aggregation of messages for a sliding window of aggregation thresholds with varying numbers of threads. This figure demonstrates
the trade-offs of different aggregation thresholds, where messages are aggregated into a larger transfer of at least the threshold size before they are sent to the target node.

Survey: 52% of projects do
not need thread-level
addressability on the target

Implement, demonstrate, and evaluate
prototype of MPI Sessions proposal

Goals
• The proposed Sessions extensions to the

MPI standard is intended to provide a
tighter integration with the underlying
runtime used by an MPI implementation,
as well as provide a more scalable
mechanism for applications to specify
communication requirements than is
currently supported by the MPI standard.

Recent Progress
• The Sessions working group has been

using feedback from Martin Schulz’s
presentation at the September ‘17 MPI
Forum to consider alternatives to the
original Sessions proposal.
§ The WG is considering reusing concepts from

the endpoint proposal to support important
Sessions concepts like isolation, etc.

• The WG is working with the PMIx group to
ensure PMIx will have hooks in place to
support implementing Sessions (or
whatever it ends up being called) in Open
MPI - https://github.com/pmix/pmix/pull/69

Survey: interest in job-to-job communication
capabilities, could be facilitated by Sessions

OpenMPI Performance Improvements
• Developed native one-sided (RMA) component for OMPI
• Significantly improved performance over previous method
• MiniFE now scales to full size of Trinity Haswell nodes
• Latencies and throughputs are comparable to vendor optimized MPI

all cases the reported bandwidth is the cumulative bandwidth of
all threads for a particular process. Similarly, reported latency
is the latency of the slowest thread for a particular process.
This creates roughly 22,000 data points which we post-process
to provide a general overview of performance in Tables IV - VI.
In each of these tables we present slices of the data filtered
by a particular attribute. Each value in the table corresponds
to the median value. Micro-benchmark results were collected
on an active production system. For Open MPI we modified
the default MCA variable configuration to set the FMA/BTE
switch-over point to 16k. This switch-over point was picked as
it represents the best multi-threaded performance with Open
MPI when using RMA-MT. The aprun and mpirun process
launchers were used for Cray-MPI and Open MPI to launch the
benchmark with two MPI processes placed across two nodes
on the same Aries ASIC. MPI process bindings were disabled
using the -cc none and –bind-to none options for aprun and
mpirun respectively.

For Example in Table IV, we have binned all results as
either put or get operations (represented as sub-rows) and small,
medium, and large messages (columns  64B, 128 to 16 KiB
and > 16KiB, respectively). As such, Table IV masks the
impact of thread count and synchronization method (which
are shown in the remaining tables). While this is not a perfect
representation, it is detailed enough to provide an overview of
performance and concise enough to fit within the page limits.

These tables reveal that DMAPP performance is generally
better than Open MPI, by a significant amount. This difference
is most noticeable for small messages and medium sized mes-
sages and at higher thread counts. This is not all that surprising
given DMAPP includes architecture specific enhancements for
the Cray Aries network not available when using the ugni library
that Open MPI uses. The exception to this is large messages
using less than 8 threads, where Open MPI outperforms Cray-
MPI’s DMAPP RMA implementation by about approximately
5%.

For small messages the Cray-MPI RMA-MT implementa-
tion benefits from the DMAPP API’s non-blocking implicit
functions. These allow multiple put operations to be combined
into a single network transfer. The ugni library used by Open
MPI does not support this feature. This gives Cray-MPI an
advantage when running a bandwidth benchmark. Work is
ongoing within Open MPI to attempt to provide a similar
feature if any of the target memory regions are contiguous or
overlap.

For large messages sent over the Aries network. The
BTE mode requires that the memory region associated with
the source or target memory on the initiator (put and get
respectively) be registered before it can be used for an RDMA
operation. To reduce the costs associated with this registration
Open MPI keeps a cache of recently used memory registrations.
This cache is currently implemented with a synchronous data
structure. A lock is used to protect this structure from errors
due to multi-threaded access. As the thread count increases,
this lock serialization point quickly becomes a bottle-neck
within Open MPI. Cray-MPI and the DMAPP library also
use a registration cache but we do not have any details on
how Cray-MPI manages its memory registration cache. We
attempted to use a Cray library (udreg) for memory registration

a
g
g
re

g
a
te

 la
te

n
cy

 (
u
se

cs
)

msg. size per thread (B)

Multithread DMAPP Latency (lockall put)

1 thread
2 thread
4 thread

8 thread
16 thread
32 thread

64 thread

 0

 100

 200

 300

 400

 500

 600

 700

 800

1 2 4 8 16 32 64 128
256

512
1KiB

2KiB
4KiB

8KiB
16KiB

32KiB

64KiB

128KiB

256KiB

512KiB

1M
iB

Fig. 1: DMAPP latency put-lockall

a
g
g
re

g
a
te

 la
te

n
cy

 (
u
se

cs
)

msg. size per thread (B)

Multithread OMPI Latency (lockall put)

1 thread
2 thread
4 thread

8 thread
16 thread
32 thread

64 thread

 0

 100

 200

 300

 400

 500

 600

 700

 800

1 2 4 8 16 32 64 128
256

512
1KiB

2KiB
4KiB

8KiB
16KiB

32KiB

64KiB

128KiB

256KiB

512KiB

1M
iB

Fig. 2: OMPI latency put-lockall

but found that it reduced performance for Open MPI on KNL
nodes.

2) Detailed analysis of lock-all: The performance of passive
target synchronization (lock, lock-all, and flush) is especially
important to understand. These are the only synchronization
methods that allow for a combination of passive operation 3

and shared access amongst multiple MPI processes. Because of
its importance we have included detailed figures of the lock-all
performance (Figures 1 - 8). This provides the full performance
details not provided in the tables. In these figures, each data
point represents the median and the error bars represent the
standard deviation.

The results clearly show that there is a performance impact
for single-threaded usage with using the FMA mode of the Aries
network up to the 16 KiB message size. This is expected and the
performance benefit of avoiding the registration cache becomes
clear at higher thread counts. These results also highlight why
the average bandwidth with Open MPI appears lower when
looking at the average result across all thread counts.

3Meaning it does not involve the target node CPU.

SC’17, November 2017, Denver, CO, USA Anon.

L
a
te

n
cy

 (
s)

Msg. size per process (B)

RDMA vs Pt2Pt, Multi-thread Get Latency Lock-All

RDMA-1
RDMA-16

RDMA-32
Pt2Pt-1

Pt2Pt-16
Pt2Pt-32

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

1 2 4 8 16 32 64 128
256

512
1KiB

2KiB
4KiB

8KiB
16KiB

32KiB

64KiB

128KiB

256KiB

512KiB

1M
iB

Figure 2: pt2pt vs. rdma latency for 1, 16 and 32

threads (get, lock-all)

M
e
ss

a
g
e
 R

a
te

Msg. size per process (B)

RDMA vs Pt2Pt, Multi-threaded Get Message Rate Lock-All

RDMA-1
RDMA-16

RDMA-32
Pt2Pt-1

Pt2Pt-16
Pt2Pt-32

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

8 16 32 64 128
256

512
1KiB

2KiB
4KiB

8KiB

Figure 3: pt2pt vs. rdma message rate for 1, 16 and

32 threads (lock-all)

5.1.2 Summary of Micro-benchmarks. Tables 1-3 show that
our enhancements to rdma result in widespread improvement
in both bandwidth and latency over pt2pt . In particular,
rdma outperforms pt2pt 89 out of 96 times. At its best,
rdma achieves an almost 3X increase to bandwidth (1 thread,
small messages), a 10X increase to message rate (1 thread,
8 byte), and a 35% decrease to latency (lock-all, large mes-
sages).

5.2 Mini-application Scaling Study
The previous section’s latency and bandwidth tests evaluate
the performance of RMA-MT for two nodes. However, to
fully evaluate the efficacy of our rdma component, we need
to test at large scale. For our system we were able to scale up
to 262,144 cores on 8,192 nodes. Access to the system was in

T
im

e
 (

S
)

Cores

Runtime for HPCCG

OSC/RDMA OSC/PT2PT

 0

 50

 100

 150

 200

 250

 300

 32
 64

 128
 256

 512
 1024

 2048

 4096

 8192

 16384

 32768

 65536

 131072

 262144

Figure 4: Large scale HPCCG

T
im

e
 (

S
)

Cores

Runtime for MiniFE

OSC/RDMA OSC/PT2PT

 0

 100

 200

 300

 400

 500

 600

 32
 64

 128
 256

 512
 1024

 2048

 4096

 8192

 16384

 32768

 65536

 131072

 262144

Figure 5: Large scale MiniFE

a small time window, which limited the number of iterations
we could run at large scale. Our experiments represent the
largest scalability test of RMA-MT to date.

Figures 4 and Figure 5 show results from running HPCCG
and miniFE from 32 to 262,144 ranks. The starting point of
32 ranks, is a rank per core on a single node. As the scale
increases to 1024 ranks or 32 nodes, HPCCG performance
is roughly constant and there is a slight decrease in perfor-
mance for MiniFE. From 1024 ranks to 32,768 processes, the
rdma results roughly follow the same trends while the pt2pt
performance sharply degrades before running into a scaling
bug in the synchronization call above 4096. After 32,768 we
start to see performance degradation to both the miniapps
using the rdma module.

See also George Bosilca’s presentation

Complex Memory Hierarchies
Motivation and Goals
• Architectural Awareness
• Adapting to Fabric including Topology and Concerns
• Adapting to Deep Memories and new Memory Layers
• Take advantage of available architecture strengths &

do it automatically when possible La
te

nc
y

Capacity

DDR

HBM

NVM (a)

NVM (b)

Survey:
• 73% of projects expect to explicitly manage memory placement and movement
• 46% of projects expect to move data between different memory spaces between local

and remote nodes
• For example, main memory on source to non-volatile memory on destination

MPI Tools Interfaces
• Replacement of the PMPI interface

§ Application developers see a need for multiple tools at run time
§ MPI Forum Tools Working Group is discussing how to provide the ability to intercept MPI calls and pass

execution to multiple tools
§ OMPI-X Milestone addresses API development and prototyping

• MPI_T performance variable and event interface
§ There is interest in internal MPI profiling data
§ Software-based counters are being added as MPI_T performance variables (as described by Eberius,

Patinyasakdikul, Bosilca)
§ OMPI-X Milestone expands available performance variables and prototypes MPI_T event interface as per

the Tools Working Group

Survey:
• 27% of projects need to be able to use multiple “tools” simultaneously
• 52% of projects “interested” or “very interested” in MPI_T data

• Load balance, memory use, and message queue info
• Function call time, network counters

Continuous Integration Testing Infrastructure for
Open MPI

Goals
• Enhance Continuous Integration and Nightly

testing where required to ensure OMPI-X
contributions to Open MPI are being sufficiently
validated for correctness and performance
§ Especially on DOE exascale early access systems

• Ensure Open MPI works well with ECP’s Spack-
based install mechanism

Recent Progress
• Helped resolve problems with using the Python

client with the Open MPI MTT database server
• Investigating use of the Java Web Start approach

for connecting a slave node to a Jenkins server in
cases where the user neither has root privilege (no
access to systemd), and where the front end
nodes do not allow for persistent crontab entries.
§ See https://github.com/open-

mpi/ompi/wiki/Jenkins-Build-Agent
• For greater flexibility for Spack based installs,

added an independent PMIx Spack package.
§ Keeping Spack’s Open MPI package up to date

with Open MPI releases.

Quick updates on
Open MPI technology

Short community feature updates

PMIx BoF: Thursday, Nov 16, 12:15-1:15pm
Room 210-212

(yes, that’s tomorrow!)

PMIx in OMPI

PMIx
• Process Management

Interface – Exascale
§ Underlying run-time support

for exascale applications
§ Client – server architecture
§ Standalone community,

development
• Not just targeted at exascale

Embedded PMIx versions

Open MPI version PMIx version
v2.0.x v1.1.5
v2.1.x v1.2.x
v3.0.x v2.0.x
v3.1.x v2.1.x

Git master v3.0.x

Cross-version mpirun interoperability

Open MPI version PMIx version
v2.0.x v1.1.5
v2.1.x v1.2.5+

v3.0.x v2.0.3+

v3.1.x v2.1.x
Git master v3.0.x

Any client/server
combination

Server >= Client

Cross-version mpirun interoperability

Host OS
my_mpi_application

my_mpi_application

Open MPI v2.1.x
installation

my_mpi_application

my_mpi_application

Open MPI v2.1.x
installation

Launcher can be any
PMIx version per table
on previous slide (e.g.,
mpirun from Open MPI
v3.1.x)

Container on host A

Container on host B

MPI applications
must still all be

the same version

mpirun from
Open MPI v3.1.x

Scalable startup
• Many-core node support

(memory footprint)
§ Connection and job data is

stored once per node
§ Shared memory access

given to application procs

Open MPI orted
(including PMIx client)

MPI
proc

MPI
proc

MPI
proc

MPI
proc

Connection / job data
(shared memory)

Scalable startup
• Many-node support (init time)

§ Eliminate OOB barriers during MPI_INIT
§ Connection info exchange:

• pmix_base_async_modex=1
• pmix_base_collect_data=0

§ Sync barrier at end of MPI_INIT:
• async_mpi_init=1

Only suitable for sparsely connected apps

MPI
proc

MPI
proc

MPI
proc

MPI
proc

MPI_INIT

Hardware locality (“hwloc”)

Brice Goglin

Reduced memory footprint
(and launch time) on many-cores

• hwloc uses ~1MB per process on KNL
§ Bad when using 1 process per core
§ Even worse on upcoming many-core platforms

• Topology may now be in shared-memory
§ Only 1MB per host
§ 64-rank launch on KNL down from 4.2s to 1.9s
§ No need to exchange/parse XML anymore

• Available in upcoming hwloc 2.0
§ Supported in Open MPI 3.1

Open MPI orted

MPI
proc

MPI
proc

MPI
proc

hwloc data
(shared memory)

hwloc v2.0 coming soon
• Many changes to support heterogeneous and hybrid

memories
§ KNL MCDRAM, NVDIMM, etc.

• API cleanup
§ Not ABI compatible with hwloc v1.x!

• Planned for Q1 2018
§ Please try porting your code to v2.0 NOW
§ Report issues before the v2.0 release
§ Git master snapshots available online

Open MPI on ARM

ARM64 support
• Mainly focused on ARMv8

(aarch64)
• Continues integration on

ThunderX1 ARM with InfiniBand
EDR at HPC Advisory council
cluster center

• Tested with UCX framework
• CY18: MTT testing in

collaboration with Los Alamos

Los Alamos

SLURM-related changes

• DOE trilabs encountered problems with signal
forwarding to jobs when using Open MPI 2.x
and newer with SLURM 17.0.2

• scancel didn’t work
§ MPI processes on head node of mpirun launched job

didn’t see signal, neither did mpirun

SLURM-related changes
• Problem had to do with SLURM not knowing anything about

mpirun and its child processes on the head node (not
fork/exec’d by a slurmstepd)

• Option added to change mpirun behavior to not launch local
MPI processes directly, but go through SLURM using an
MCA parameter:
§ ras_base_launch_orted_on_hn

§ Defaults to false on non-Cray XE/XC systems, true for Crays
• Note this option may add more jitter on head node

PSM2 MTL changes
• Added a set of MPI_T control variables to proxy for

PSM2 environment variables
• Added a set of MPI_T performance variables allowing

access to PSM2 runtime statistics (via
psm2_mq_get_stats) using MPI_T

Open MPI and Fujitsu

Fujitsu Limited

MPI for the Post-K computer
• Fujitsu is developing an MPI library for the post-K

computer based on Open MPI
§ Currently based on OMPI 2.0.3

• Contribution to Open MPI from post-K MPI
§ Persistent collective communication request [now working; waiting

standardization in MPI Forum]

§ Datatype for half-precision floating point [in 2018]

§ Improved Java binding [done]

§ And more [Thread parallelization, Hang-up Detection, MPI-related Statistical Information for
Application Tuning]

Community support
• Continue collaboration with Open MPI community

§ Reduced memory footprint (optimized key store, dynamic
add_proc)

§ ARM / SPARC support
§ PMIx support (integration with 2.0)

• Continue quality activity
§ Bug fixes
§ Testing

• Well-tested Open MPI for ARM [now working; expected in 2018]

Mellanox Technologies

Mellanox’s HPC-X based on Open MPI
• Add InfiniBand accelerated

libraries using latest capabilities
§ Point-to-point acceleration: UCX
§ Collective communication

Acceleration: HCOLL

§ Recent MPI features
accelerated

• RMA
• Atomics
• Tag matching: HW support
• Collective operations: Allreduce,

Allgatherv

Graph 500 RMA Acceleration

0

100

200

300

400

500

600

700

16 32 64 128 256 512 1024

Ex
ec
ut
io
n	
tim

e	
(s
ec
)

#cores

osc/rdma osc/ucx

UCX support added
Point-to-Point acceleration library

§ Send/Recv
§ Put/Get
§ Atomics

Optimized for InfiniBand hardware
§ Accelerated verbs
§ Hardware capabilities

InfiniBand SHARP collectives
Scalable High Performance Collective Offload

Barrier, Reduce, All-Reduce, Broadcast and more
Sum, Min, Max, Min-loc, max-loc, OR, XOR, AND
Integer and Floating-Point, 16/32/64 bits

Wrap up

Where do we need help?
• Code

§ Any bug that bothers you
§ Any feature that you can add

• User documentation
• Testing (CI, nightly)
• Usability
• Release engineering

We

Come join us!

