
Process Management
Interface – Exascale

Agenda

• Since we last met…
§ Address some common questions
§ Outline PMIx standards process

• PMIx v1.x release series
§ What has been included and planned
§ Review launch performance status

• Roadmap
§ Features in the pipeline
§ Potential future features

• Questions/comments/discussion

Charter?

• Define
§ set of agnostic APIs (not affiliated with specific model code base) to

support application ó system mgmt software (SMS) interactions
• Develop

§ an open source (non-copy-left licensed) standalone “convenience” library
to facilitate adoption

• Retain
§ transparent compatibility across all PMI/PMIx versions

• Support
§ the Instant On initiative

• Work
§ to define/implement new APIs for evolving programming models.

What Is PMIx?

• Standardized APIs
§ Four header files (client, server, common, tool)
§ Enable portability across environments
§ Support interactions between applications and

system management stack
• Convenience library

§ Facilitate adoption
§ Serves as validation platform for standard

• Community

What Is PMIx?

• Standardized APIs
§ Four header files (client, server, common, tool)
§ Enable portability across environments
§ Support interactions between applications and

system management stack
• Convenience library

§ Facilitate adoption
§ Serves as validation platform for standard

• Community

Required: Caveat

• Containerized operations
§ Require cross-boundary compatibility
§ Wireup library of containerized app must be

compatible with the local resource manager
• Issues occur when migrating

§ Build under one environment using custom
implementation

§ Move to another environment using different
implementation

• Convenience library mitigates the problem

Why Not Part of MPI Forum?

• PMIx is agnostic
§ No concept of “communicator”
§ No understanding of MPI
§ Used by non-MPI libraries

• Discussions underway
§ Bring it into Forum process in some

appropriate fashion

PMIx “Standards” Process

• Modifications/additions
§ Proposed as RFC
§ Include prototype implementation

• Pull request to convenience library
§ Notification sent to mailing list

• Reviews conducted
§ RFC and implementation
§ Continues until consensus emerges

• Approval given
§ Developer telecon (2x/week)

PMIx Numbering

Major . Minor . Release

Version of Standard

Track convenience
library revisions

Regression Testing?

• Limited direct capability
§ Run basic API tests on each PR

• Extensive embedded testing
§ Open MPI includes PMIx master, regularly

updated
§ 20k+ tests run every night

• Tests all spawn, wireup, publish/lookup,
connect/disconnect APIs

• Not 100% code coverage

Adoption?

• Already released
§ SLURM 16.05 (PMIx v1.1.5)

• Planned
§ IBM, Fujitsu, Adaptive Solutions, Altair, Microsoft

• Reference server
§ Provides surrogate support until native support

becomes available
§ Supports full PMIx standard, limited by RM capabilities
§ Launches network of PMIx servers across allocation

Agenda

• Since we last met…
§ Address some common questions
§ Outline PMIx standards process

• PMIx v1.x release series (Artem Polyakov, Mellanox)
§ What has been included and planned
§ Review launch performance status

• Roadmap
§ Features in the pipeline
§ Potential future features

• Questions/comments/discussion

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30 35

MPI_Init	(sec)

nodes

key	exchange	type:
collective direct-fetch direct-fetch/async

PMIx/UCX job-start use case

Hardware:
• 32 nodes
• 2 processors

(Xeon E5-2680 v2)
• 20 cores per node
• 1 proc per core

• Open MPI v2.1 (modified to enable ability
to avoid the barrier at the end of MPI_Init)

• PMIx v1.1.5
• UCX (f3f9ad7)

*

* direct-fetch/async assumes no synchronization barrier inside MPI_Init.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30 35

MPI_Init	(sec)

nodes

key	exchange	type:
collective direct-fetch direct-fetch/async

PMIx/UCX job-start usecase

“allgatherv” on all
submitted keys

Synchronization
overhead

v1.2.0

• Extension of v1.1.5
§ v1.1.5

• Each proc stores own copy of data
§ v1.2

• Data stored in shared memory owned by PMIx
server

• Each proc has read-only access

• Benefits
§ Minimizes memory footprint
§ Faster launch times

Shared memory data storage
(architecture)

R
T
E

da
em
on

M
PI

pr
oc
es
s

PMIx-client

PMIx-server

M
PI

pr
oc
es
s

PMIx-clientPMIx

Shared mem
(store blobs)us

oc
k

us
oc

k

• Server provides all the data through the shared memory
• Each process can fetch all the data with 0 server-side CPU cycles!
• In the case of direct key fetching if a key is not found in the shared

memory – a process will request it from the server using regular
messaging mechanism.

Shared memory data storage
(architecture)

R
T
E

da
em
on

M
PI

pr
oc
es
s

PMIx-client

PMIx-server

M
PI

pr
oc
es
s

PMIx-clientPMIx

Shared mem
(store blobs)us

oc
k

us
oc

k

• Server provides all the data through the shared memory
• Each process can fetch all the data with 0 server-side CPU cycles!
• In the case of direct key fetching if a key is not found in the shared

memory – a process will request it from the server using regular
messaging mechanism.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 100 200 300 400 500 600 700

PMIx_Get(all),	sec

processes

Messages

Shmem

Shared memory data storage
(synthetic performance test)

Hardware:
• 32 nodes
• 2 processors

(Intel Xeon E5-2680 v2)
• 20 cores per node
• 1 proc per core

• Open MPI v2.1
• PMIx v1.2

https://github.com/pmix/master/tree/master/contrib/perf_tools

• 10 keys per process
• 100-element arrays of

integers

Shared memory data storage
(synthetic performance test) [2]

Nodes procs Messages (us) Shmem (us)
local key remote key local key remote key

1 20 8.8 6.4
2 40 8.9 9.2 6.5 6.5
4 80 8.8 9.2 6.5 6.5
8 160 8.7 9.2 6.4 6.4
16 320 8.4 9.2 6.5 6.5
32 640 8.2 9.2 6.5 6.5

Advantages:
• Stable timings for a separate key access(no difference

between local and remote key access)
• Up to 30% improvement for the remote key fetch
• Significant CPU offload on the SMP systems with large

core count.

Shared memory data storage
(synthetic performance test) [3]

0.20

0.07 0.07

0.00

0.05

0.10

0.15

0.20

0.25

PMI2 PMIx	msg PMIx	shmem

ms
CL1:	avg(Put)

0.22

0.08 0.07

0.00

0.05

0.10

0.15

0.20

0.25

PMI2 PMIx	msg PMIx	shmem

ms
CL1:	avg(Get)

CL1 Hardware:
• 15 nodes
• 2 processors

(Intel Xeon X5570)
• 8 cores per node
• 1 proc per core

CL2 Hardware:
• 64 nodes
• 2 processors

(Intel Xeon E5-2697 v3)
• 28 cores per node
• 1 proc per core

0.37

0.06 0.06

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

PMI2 PMIx	msg PMIx	shmem

ms CL2:	avg(Put)
0.32

0.11

0.06

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

PMI2 PMIx	msg PMIx	shmem

ms CL2:	avg(Get)

PMIx Roadmap

2014

1/2016

1.1.3

11/2016

1.2.0

6/2016

1.1.4

RM Production Releases

Bug fixes

8/2016

1.1.5
Bug fixes Shared

memory
datastore

In Pipeline

David Solt
IBM

Tool Support

• Tool connection support
§ Allow tools to connect to local PMIx server
§ Specify system vs application

System
PMIx server

Mpirun/
ortedTool

RM

P

Tool Support

• Query
§ Network topology

• Array of proc network-relative locations
• Overall topology (e.g., “dragonfly”)

§ Running jobs
• Currently executing job namespaces
• Array of proc location, status, PID

§ Resources
• Available system resources
• Array of proc location, resource utilization (ala “top”)

§ Queue status
• Current scheduler queue backlog

Examples

Debuggers?

New Flexibility

• Plugin architecture
§ DLL-based system
§ Supports proprietary binary components
§ Allows multiple implementations of common

functionality
• Buffer pack/unpack operations
• Communications (TCP, shared memory,…)
• Security

Obsolescence Protection

• Plugin architecture
• Cross-version support

§ Automatic detection of client/server version
§ Properly adjust for changes in structures, protocols
§ Ensure clients always get what they can understand
§ Backward support to the v1.1.5 level

Notification

• Plugin architecture
• Cross-version support
• Event notification

§ System generated, app generated
§ Resolves issues in original API, implementation
§ Register for broad range of events

• Constrained by availability of backend support

Logging

• Plugin architecture
• Cross-version support
• Event notification
• Log data

§ Store desired data in system data store(s)
• Specify hot/warm/cold, local/remote, database and type of

database, …
§ Log output to stdout/err
§ Supports binary and non-binary data

• Heterogeneity taken care of for you

PMIx Roadmap

2014

1/2016

1.1.3

11/2016

1.2.0

6/2016

1.1.4

RM Production Releases

Bug fixes

8/2016

1.1.5
Bug fixes Shared

memory
datastore

Future

Ralph Castain
Intel

Future Features

Reference Server
• Initial version: DVM

§ Interconnected PMIx servers
§ High-speed, resilient collectives

• bcast, allgather/barrier

• Future updates: ”fill” mode
§ Servers proxy clients to host RM
§ Complete missing host functionality

Winter 2017

Future Features

Debugger Support
• Ongoing discussions with MPI Forum Tools WG

§ Implement proposed MPIR2 interface
§ Enhance scalability

• Exploit tool connection
§ Obtain proctable info
§ Use PMIx_Spawn to launch daemons, auto-wireup, localize

proctable retrieval
• Extend available supporting info

§ Network topology, bandwidth utilization
§ Event notification Winter 2017

Future Features

Network Support Framework
• Interface to 3rd party libraries
• Enable support for network features

§ Precondition of network security keys
§ Retrieval of endpoint assignments, topology

• Data made available
§ In initial job info returned at proc start
§ Retrieved by Query

Spring 2017

Future Features

IO Support
• Reduce launch time

§ Current practices
• Reactive cache/forward
• Static builds

§ Proactive pre-positioning
• Examine provided job/script
• Return array of binaries and libraries required for execution

• Enhance execution
§ Request async file positioning

• Callback when ready
§ Specify persistence options

Summer 2017

Future Features

Generalized Data Store (GDS)
• Abstracted view of data store

§ Multiple plugins for different implementations
• Local (hot) storage
• Distributed (warm) models
• Database (cold) storage

• Explore alternative paradigms
§ Job info, wireup data
§ Publish/lookup
§ Log Fall 2017

Open Discussion

We now have an interface library the RMs
will support for application-directed requests

Need to collaboratively define
what we want to do with it

Project: https://pmix.github.io/master
Code: https://github.com/pmix

