
Process Management
Interface – Exascale

Agenda

•  Overview
§  Introductions
§  Vision/objectives

•  Performance status
•  Integration status
•  Roadmap
•  Malleable application support
• Wrap-Up/Open Forum

PMIx – PMI exascale

Collaborative open source effort led by Intel, Mellanox
Technologies, IBM, Adaptive Computing, and SchedMD.

New collaborators are most welcome!

Contributors

•  Intel
§  Ralph Castain
§  Annapurna Dasari

•  Mellanox
§  Joshua Ladd
§  Artem Polyakov
§  Elena Shipunova
§  Nadezhda Kogteva
§  Igor Ivanov

•  HP
§  David Linden
§  Andy Riebs

•  IBM
§  Dave Solt

•  Adaptive Computing
§  Gary Brown

•  RIST
§  Gilles Gouaillardet

•  SchedMD
§  David Bigagli

•  LANL
§  Nathan Hjelmn

Motivation

•  Exascale launch times are a hot topic
§ Desire: reduce from many minutes to few

seconds
§  Target: O(106) MPI processes on O(105)

nodes thru MPI_Init in < 30 seconds
•  New programming models are exploding

§ Driven by need to efficiently exploit scale vs.
resource constraints

§ Characterized by increased app-RM
integration

La
un

ch

In
iti

al
iz

at
io

n

E
xc

ha
ng

e
M

P
I c

on
ta

ct
 in

fo

S
et

up
 M

P
I s

tru
ct

ur
es

ba
rr

ie
r

m
pi

_i
ni

t c
om

pl
et

io
n

ba
rr

ie
r

MPI_Init MPI_Finalize

RRZ, 16-nodes, 8ppn, rank=0

Ti
m

e
(µ

se
c)

What Is Being Shared?

•  Job Info (~90%)
§ Names of participating nodes
§  Location and ID of procs
§ Relative ranks of procs (node, job)
§  Sizes (#procs in job, #procs on each node)

•  Endpoint info (~10%)
§ Contact info for each supported fabric

Known to
local RM
daemon

Can be
computed for
many fabrics

La
un

ch

In
iti

al
iz

at
io

n

E
xc

ha
ng

e
M

P
I c

on
ta

ct
 in

fo

S
et

up
 M

P
I s

tru
ct

ur
es

ba
rr

ie
r

m
pi

_i
ni

t c
om

pl
et

io
n

ba
rr

ie
r

MPI_Init MPI_Finalize

RRZ, 16-nodes, 8ppn, rank=0

Ti
m

e
(µ

se
c)

Stage I

Provide method for
RM to share job

info

Work with fabric
and library

implementers to
compute endpt

from RM info

La
un

ch

In
iti

al
iz

at
io

n

E
xc

ha
ng

e
M

P
I c

on
ta

ct
 in

fo

S
et

up
 M

P
I s

tru
ct

ur
es

ba
rr

ie
r

m
pi

_i
ni

t c
om

pl
et

io
n

ba
rr

ie
r

MPI_Init MPI_Finalize

RRZ, 16-nodes, 8ppn, rank=0

Ti
m

e
(µ

se
c)

Stage II

Add on 1st
communication

(non-PMIx)

La
un

ch

In
iti

al
iz

at
io

n

E
xc

ha
ng

e
M

P
I c

on
ta

ct
 in

fo

S
et

up
 M

P
I s

tru
ct

ur
es

ba
rr

ie
r

m
pi

_i
ni

t c
om

pl
et

io
n

ba
rr

ie
r

MPI_Init MPI_Finalize

RRZ, 16-nodes, 8ppn, rank=0

Ti
m

e
(µ

se
c)

Stage III

Use HSN+Coll

Changing Needs

•  Notifications/response
§  Errors, resource changes
§ Negotiated response

•  Request allocation changes
§  shrink/expand

• Workflow management
§  Steered/conditional execution

•  QoS requests
§  Power, file system, fabric

Multiple,
use-

specific
libs?

(difficult for RM
community to

support)

Single,
multi-

purpose
lib?

Objectives

•  Establish an independent, open community
§  Industry, academia, lab

•  Standalone client/server libraries
§  Ease adoption, enable broad/consistent support
§  Open source, non-copy-left
§  Transparent backward compatibility

•  Support evolving programming requirements
•  Enable “Instant On” support

§  Eliminate time-devouring steps
§  Provide faster, more scalable operations

Today’s Goal

•  Inform the community
•  Solicit your input on the roadmap
•  Get you a little excited
•  Encourage participation

Agenda

•  Overview
§  Introductions
§  Vision/objectives

•  Performance status
•  Integration/development status
•  Roadmap
•  Malleable/Evolving application support
• Wrap-Up/Open Forum

PMIx End Users

•  OSHMEM consumers
§  In Open MPI OSHMEM:

𝑠ℎ𝑚𝑒𝑚_𝑖𝑛𝑖𝑡=𝑚𝑝𝑖_𝑖𝑛𝑖𝑡+𝐶
•  Job launch scales as MPI_Init.

§  Data driven communication patterns
•  Assume dense connectivity

•  MPI consumers
§  Large class of applications have spare connectivity

•  Ideal for an API that supports the direct modex
concept

What’s been done
•  Worked closely with customers, OEMs, and open source community to design a scalable API that addresses measured

limitations of PMI2
§  Data driven design.

•  Led to the PMIx v1.0 API
•  Implementation and imminent release of PMIx v1.1

§  November 2015 release scheduled.
•  Significant architectural changes in Open MPI to support direct modex

§  “Add procs” in bulk MPI_Init à “Add proc” on-demand on first use outside MPI_init.
§  Available in the OMPI v2.x release Q1 2016.

•  Integrated PMIx into Open MPI v2.x
§  For native launching as well as direct launching under supported RMs.
§  For mpirun launched jobs, ORTE implements PMIx callbacks.
§  For srun launched jobs, SLURM implements PMIx callbacks in the PMIx plugin.
§  Client side framework added to OPAL with components for

•  Cray PMI
•  PMI1
•  PMI2
•  PMIx
•  backwards compatibility with PMI1 and PMI2.

•  Implemented and submitted upstream SLURM PMIx plugin
§  Currently available in SLURM Head
§  To be released in SLURM 16.05
§  Client side PMIx Framework and S1, S2, PMIxxx components in OPAL

•  PMIx unit tests integrated into Jenkins test harness

srun --mpi=xxx hello_world

0

1

2

3

4

5

6

7

8

0 500 1000 1500 2000 2500 3000 3500 4000

Ti
m

e
(s

ec
.)

MPI/OSHMEM Processes

MPI_Init / Shmem_init

PMIx async

PMIx

PMI2

Open MPI Trunk

SLURM 16.05 prerelease with PMIx plugin

PMIx v1.1

BTLs openib,self,vader

Stage I-II

srun --mpi=pmix ./hello_world

0

10

20

30

40

50

60

70

80

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

PMIx async projected performance

Stage I-II

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50 60 70

Ti
m

e
(m

ill
is

ec
)

Nodes

bin-true

orte-no-op

mpi hello world

async modex

Daemon wireup – linear scaling needs to be
addressed

mpirun/oshrun ./hello_world

Conclusions

•  API is implemented and performing well in a variety of settings
§  Server integrated in OMPI for native launching and in SLURM as PMIx plugin for

direct launching.

•  PMIx shows improvement over other state-of-the-art PMI2
implementations when doing a full modex
§  Data blobs versus encoded metakeys
§  Data scoping to reduce the modex size

•  PMIx supported direct modex significantly outperforms full modex
operations for BTL/MTLs that can support this feature

•  Direct modex still scales as O(N)
•  Efforts and energy should be focused on daemon bootstrap problem
•  Instant-on capabilities could be used to further reduce deamon

bootstrap time

Next Steps
•  Leverage PMIx features
•  Reduce modex size with data scoping
•  Change MTL/PMLs to support direct modex
•  Investigate the impact of direct modex on densely

connected applications
•  Continue to improve collective performance

§  Still need to have a scalable solution
•  Focus more efforts on the daemon bootstrap problem –

this becomes the limiting factor moving to exascale
§  Leverage instant-on here as well

Agenda

•  Overview
§  Introductions
§  Vision/objectives

•  Performance status
•  Integration/development status
•  Roadmap
•  Malleable application support
• Wrap-Up/Open Forum

Client Implementation Status

•  PMIx 1.1.1 released
§ Complete API definition

•  Future-proof API’s with Info array/length parameter
for most calls

•  Blocking/non-blocking versions of most calls
•  Picked up by Fedora, others to come

•  PMIx MPI clients launched/tested with
§ ORTE (indirect) / ORCM (direct launch)
§  SLURM servers (direct launch)
§  IBM PMIx server (direct launch)

Server Implementation Status

•  Server implementation time is greatly
reduced through the PMIx convenience
library
§ Handles all server/client interactions
§ Handles many PMIx requests that can be

handled locally
§  Bundles many off-host requests

•  Optional
§ RMs free to implement their own

Server Implementation Status

•  Moab
§  Integrated PMIx server in scheduler/launcher
§ Currently integrating PMIx effort with Moab
§  Scheduled for general availability: no time set

•  ORTE/ORCM
§  Full embedded PMIx reference server

implementation
§  Scheduled for release with v2.0

Server Implementation Status

•  SLURM
§  PMIx support for initial job launch/wireup

currently developed & tested
§  Scheduled for GA: 16.05 release

•  IBM/LSF
§ CORAL

•  PMIx support for initial job launch/wireup currently
developed & tested w/PM

•  Full PMIx support planned for CORAL
§  Integration to LSF to follow (TBD)

Agenda

•  Overview
§  Introductions
§  Vision/objectives

•  Performance status
•  Integration/development status
•  Roadmap
•  Malleable/Evolving application support
• Wrap-Up/Open Forum

Scalability

•  Memory footprint
§  Distributed database for storing Key-Values

•  Memory cache, DHT, other models?
§  One instance of database per node

•  "zero-message" data access using shared-memory

•  Launch scaling
§  Enhanced support for collective operations

•  Provide pattern to host, host-provided send/recv functions,
embedded inter-node comm?

§  Rely on HSN for launch, wireup support
•  While app is quiescent, then return to OOB

Flexible Allocation Support

•  Request additional resources
§  Compute, memory, network, NVM, burst buffer
§  Immediate, forecast
§  Expand existing allocation, separate allocation

•  Return extra resources
§  No longer required
§  Will not be used for some specified time, reclaim

(handshake) when ready to use
•  Notification of preemption

§  Provide opportunity to cleanly pause

I/O Support

•  Asynchronous operations
§  Anticipatory data fetch, staging
§  Advise time to complete
§  Notify upon available

•  Storage policy requests
§  Hot/warm/cold data movement
§  Desired locations and striping/replication patterns
§  Persistence of files, shared memory regions across

jobs, sessions
§  ACL to generated data across jobs, sessions

Spawn Support

•  Staging support
§  Files, libraries required by new apps
§  Allow RM to consider in scheduler

•  Current location of data
•  Time to retrieve and position
•  Schedule scalable preload

•  Provisioning requests
§  Allow RM to consider in selecting resources,

minimize startup time due to provisioning
§ Desired image, packages

Network Integration

•  Quality of service requests
§  Bandwidth, traffic priority, power constraints
§ Multi-fabric failover, striping prioritization
§  Security requirements

•  Network domain definitions, ACLs

•  Notification requests
§  State-of-health
§ Update process endpoint upon fault recovery

•  Topology information
§  Torus, dragonfly, …

Power Control/Management

•  Application requests
§  Advise of changing workload requirements
§  Request changes in policy
§  Specify desired policy for spawned applications
§  Transfer allocated power to specifed job

•  RM notifications
§  Need to change power policy

•  Allow application to accept, request pause
§  Preemption notification

•  Provide backward compatibility with
PowerAPI

PMIx: Fault Tolerance

•  Notification
§  App can register for error notifications, incipient faults

•  RM will notify when app would be impacted
•  App responds with desired action

§  Terminate/restart job, wait for checkpoint, etc.
•  RM/app negotiate final response

§  App can notify RM of errors
•  RM will notify specified, registered procs

•  Restart support
§  Specify source (remote NVM checkpoint, global filesystem, etc)
§  Location hints/requests
§  Entire job, specific processes

Agenda

•  Overview
§  Introductions
§  Vision/objectives

•  Performance status
•  Integration/development status
•  Roadmap
•  Malleable/Evolving application support
• Wrap-Up/Open Forum

Job Types

•  Rigid
•  Moldable
•  Malleable
•  Evolving
•  Adaptive (Malleable + Evolving)

Job Type Characteristics

•  Resource Allocation Type
§  Static
§ Dynamic

Who Decides
When it is decided

At job submission
(static allocation)

During job execution
(dynamic allocation)

User Rigid Evolving
Scheduler Moldable Malleable

Rigid Job

8
7
6
5
4
3
2
1

0	 	 	 	 	 15	 	 	 	 30	 	 	 	 45	 	 	 	 	 60	 	 	 	 75	 	 	 	 90	 	 	 105	 	 120	 	 135	 	 150	 	 165	 	 	 180	 	 195	 	 210	 	 225	 	 240	

•  Job Resources
§  4 nodes
§  60 minutes

Moldable Job

8
7
6
5
4
3
2
1

0	 	 	 	 	 15	 	 	 	 30	 	 	 	 45	 	 	 	 	 60	 	 	 	 75	 	 	 	 90	 	 	 105	 	 120	 	 135	 	 150	 	 165	 	 	 180	 	 195	 	 210	 	 225	 	 240	

•  Job Resources
§  4 nodes/60 min
§  2 nodes/120 min
§  1 node/240 min

8
7
6
5
4
3
2
1

0	 	 	 	 	 15	 	 	 	 30	 	 	 	 45	 	 	 	 	 60	 	 	 	 75	 	 	 	 90	 	 	 105	 	 120	 	 135	 	 150	 	 165	 	 	 180	 	 195	 	 210	 	 225	 	 240	

Malleable Job

•  Job Resources
§  1-8 nodes
§  1000 node-min

8
7
6
5
4
3
2
1

0	 	 	 	 	 15	 	 	 	 30	 	 	 	 45	 	 	 	 	 60	 	 	 	 75	 	 	 	 90	 	 	 105	 	 120	 	 135	 	 150	 	 165	 	 	 180	 	 195	 	 210	 	 225	 	 240	

C
B A

D

Phases	 A,	 B,	 C	
and	 D	 (each	
phase	 2x	 nodes	
of	 previous	
phase)	

Evolving Job

•  Job Resources
§  1-8 nodes
§  1000 node-min

Adaptive Job

8
7
6
5
4
3
2
1

C
B A

D1

D2

Phases	 A,	 B,	 C	 and	 D	
(each	 phase	 2x	 nodes	
of	 previous	 phase)	

Scheduler	 takes	 4	 nodes	
halfway	 through	 Phase	 D	
and	 phase	 D2	 takes	 2x	 as	
long	 as	 phase	 D1	

0	 	 	 	 	 15	 	 	 	 30	 	 	 	 45	 	 	 	 	 60	 	 	 	 75	 	 	 	 90	 	 	 105	 	 120	 	 135	 	 150	 	 165	 	 	 180	 	 195	 	 210	 	 225	 	 240	

•  Job Resources
§  1-8 nodes
§  1000 node-min

Motivations

•  New Programming Models
•  New Algorithmic Techniques
•  Unconventional Cluster Architectures

Adaptive Mesh Refinement

§ Granularity

§ Node Allocation

Coarse Medium Fine è è

Few (1) Some (4) Many (64) è è

Master/Slaves

Master

Slave Slave Slave Slave Slave Slave

Slave Slave Slave Slave Slave Slave

Slave Slave Slave Slave Slave Slave

Secondary Simulations

8
7
6
5
4
3
2
1

Sim2

Primary Simulation
0	 	 	 	 	 15	 	 	 	 30	 	 	 	 45	 	 	 	 	 60	 	 	 	 75	 	 	 	 90	 	 	 105	 	 120	 	 135	 	 150	 	 165	 	 	 180	 	 195	 	 210	 	 225	 	 240	

Sim2

Sim2 Sim2

Same Network Domain
•  Cluster Booster

 Many-core “Booster”
 Multi-core “Cluster”

Multi-core jobs dynamically
burst out to parallel “booster”
nodes with accelerators

Unconventional Architectures

Apps, RTEs and Archs
Applications
•  Astrophysics
•  Brain simulation
•  Climate simulation
•  Flow solvers (QuadFlow)
•  Hydrodynamics (Lulesh)
•  Molecular Dynamics (NAMD)
•  Water reservoir storage/flow
•  Wave propagation (Wave2D)

RTEs
•  Charm++
•  OmpSs
•  Uintah
•  Radical-Pilot

Architectures
•  EU DEEP/DEEP-ER

Application

Scheduler/Malleable Job Dialog

•  Expand resource allocation

•  Contract resource allocation

Application Scheduler

Application Scheduler Application

Expand (more)

Response

Contract (less)

Response

Scheduler/Evolving Job Dialog

•  Grow resource allocation

•  Shrink resource allocation

Application Application Scheduler

Application Scheduler Application

Grow (more)

Response

Shrink (less)

Response

Adaptive Job Race Condition

•  Reason for naming convention
§  Prevent ambiguity and confusion

Application Application Scheduler
Grow (more)

Grow (more) Expand (more) ?

Need for Standard API

•  MPI: standard API for parallel communication
•  Need standard API for application /

scheduler resource management dialogs
§  Same API for applications
§  Scheduler-specific API implementations

•  Scheduler and Malleable/Evolvable
Application Dialog (SMEAD) API
§ Make part of PMIx
§ Need application use cases

Interested Parties

•  Adaptive Computing (Moab scheduler, TORQUE RM, Nitro)
•  Altair (PBS Pro scheduler/RM)
•  Argonne National Laboratory (Cobalt scheduler)
•  HLRS at University of Stuttgart
•  Jülich Supercomputing Centre (DEEP-ER)
•  Lawrence Livermore National Laboratory (Flux scheduler)
•  Partec (ParaStation)
•  SchedMD (Slurm scheduler/RM)
•  TU Darmstadt Laboratory for Parallel Programming
•  UK Atomic Weapons Establishment (AWE)
•  University of Cambridge COSMOS
•  University of Illinois at Urbana-Champaign Parallel

Programming Laboratory (Charm++ RTE)
•  University of Utah SCI Institute (Uintah RTE)

URLs

•  Need your help to design a standard API!
§ Malleable/Evolving Application Use Case Survey
§  http://goo.gl/forms/lq85y3SkV3 (Google Form)

•  Info on adaptive job types and scheduling
§  4-part blog about malleable / evolving / adaptive

jobs and schedulers
§  http://www.adaptivecomputing.com/series/

malleable-and-evolving-jobs/

Agenda

•  Overview
§  Introductions
§  Vision/objectives

•  Performance status
•  Integration/development status
•  Roadmap
•  Malleable/Evolving application support
• Wrap-Up/Open Forum

Bottom Line

We now have an interface library the RMs
will support for application-directed requests

Need to collaboratively define
what we want to do with it

For any programming model
MPI, OSHMEM, PGAS,…

Contribute or Follow Along!

§  Project: https://pmix.github.io/master
§  Code: https://github.com/pmix

Contributors/collaborators
are welcomed!

