

Open MPI State of the Union Community Meeting SC '13

November 19, 2013

Jeff Squyres

George Bosilca

Brice Goglin

Mike Dubman

Connect. Accelerate. Outperform."

Open_MPI_Init()

Open_MPI_Current_status()

shell\$ svn log https://svn.open-mpi.org/svn/ompi -r HEAD

r29720 | vasily | 2013-11-19 00:00:21 -0700 (Tue, 19 Nov 2013) | 2 lines

"If" statement wrapping with #if MEMORY_LINUX_UMMUNOTIFY in order to prevent ptmalloc2 hooks disabling in case if OMPI was not configured with ummunotify support.

shell\$

10 years of Open MPI!

I declare November 22, 2013 to be

Go buy some Open MPI schwag: cafepress.com/openmpi

Open MPI 2014 membership

13 members, 15 contributors, 2 partners

Los Alamos

Versioning scheme

- Open MPI has 2 concurrent release series
 - "Feature series"
- \rightarrow v1.<odd>
- "Super stable series" → v1.<even>
- Both are tested and QA'ed
 - Main difference between the two is time

Feature / stable series

v1.6 roadmap

NULL

(unless someone finds a catastrophic bug, there will be no further v1.6 releases)

v1.7 Series

1.7 goals

- MPI-3[.1] full compliance
- Better resource exhaustion resilience
- Better collectives
- Improved scalability at all layers
 - Runtime, startup, memory, resources
- More transports, more offloading
- MPI_T tools interface
 - And revamp of MCA params

MPI 2.2 compliance

- As of v1.7.3: done!
- Finally finished last 2.2 features
 - IN_PLACE support for ALLTOALL
 - COMM_CREATE for intercommunicators
 - MPI_Dist_graph support
 - Ordered attribute destruction on COMM SELF
- Why the delay?
 - (Very) Few users cared about these features

(*)

MPI 3[.1] compliance

Non-blocking collectives	Done
Neighborhood collectives	v1.7.4 (already in nightly snapshots)
RMA	In progress
MPI shared memory	In progress
MPI_T tools interface	Done
Non-collective comm. create	v1.7.4 (already in nightly snapshots)
F08 bindings (beyond MPI 3.0)	Done
New datatypes	Done
Large counts	Done
Matched probe	Done

Runtime support

- OMPI layer now independent of the runtime
 - A well-defined interface between the two layers
 - Support for ORTE and PMI2 is available
 - ...other runtimes are in the works...
- Startup data is now stored in internal DB
 - Transferred when needed, exposing different levels of information (local, node, global)
- ORTE asynchronous progress

MPI bindings

- C++ bindings deprecated by the MPI Forum
 - To be disabled by default in v1.9 (but still included)
- Next generation Fortran bindings
 - Can combine mpif.h, "use mpi", and "use mpi f08"
 - "use mpi_f08" is the best way
- C bindings updated with the const keyword
- Java bindings (next generation)
 - Full support of all MPI capabilities
 - Support for Java Direct buffers

Better accelerators support

- CUDA
 - GPU direct transfer over InfiniBand using asynchronous pipelined copies
 - Support for CUDA 6.0 (new pointer attribute)
 - Better small message latency
- Intel Xeon Phi
 - Native support for SCIF interface

(*)

Transport changes

- Support
 maintained only
 for current and
 future hardware
- Older hardware should maintain older Open MPI versions

Transport	1.6	1.7 BTL	1.7 MTL
Elan			
MX			
OFUD			
SCIF			
SCTP			
UDAPL			
Portals			v4
Windows Verbs			
SMCUDA			
UGNI			
usNIC			
VADER			

(*)

Transports still supported

Transport	1.6	1.7 BTL	1.7 MTL
OpenIB (OpenFabrics)			
TCP			
Shared memory			
MX			
MXM			
PSM			

Better processor / memory affinity

- Evolving hardware architectures
 - Evolving application affinity needs
- Smallest unit of affinity is hyperthread
 - "mpirun –bind-to-core" binds to all hyperthreads in a core
 - "mpirun –report-bindings" much more readable
- Probe nodes for topology at run-time
- Location Aware Mapping Algorithm
 - New / additional affinity options
 - Available starting with v1.7.1
- A NUMA-aware process mapper: mindist

(Hierarchical) Collectives communication

- Support for FCA 3.0
- Support for Mellanox HCOL
- Support for Portals 4 collectives
- Support for MPI-3 neighborhood collectives
- New general collective algorithms
 - ORNL / LANL
 - Scheduled for v1.7.4

PMI for exascale (PMIx)

- Extend PMI to support emerging exascale requirements
 - Scale to 100k+ nodes, 10M+ processes
- Fully support current PMI-1/2 interfaces
 - More scalable algorithms for distributing key-values
 - Plug-in architecture for algorithm development
- Extend APIs
 - Add support for binary payloads
 - Pack/unpack routines
 - User datatype definitions
 - Heterogeneous support
- Reduces number of required keys
 - Add non-blocking interfaces
 - Callback notification when requested data becomes available

MPI_T tools interface

- Control variables
 - All MCA parameters available programmatically
 - Read, write (before MPI_INIT)
- Performance variables
 - Only a few exposed to far
 - Cisco usNIC BTL -- network statistics
 - Users: ask for what you want

MPI_THREAD_MULTIPLE

- More users are asking about it
- Continues to be an elusive goal
 - ...but we're working on it
 - It is <u>the</u> topic on the December Open MPI developer's meeting in Chicago
- To be blunt: we will not promise a timeline
 - (Extremely) unlikely to be before v1.8

(*)

Moar featurez

- C99 enabled
- MCA parameters overhaul
 - Supports all POSIX types
 - "Levels" of MCA params (reflecting MPI_T)
- Better support for MPI dynamic processing
 - MPI_COMM_SPAWN and MPI_COMM_MERGE
 - Particularly: shared memory support on Cray
- mpirun CLI <TAB> completion
 - CLI options
 - MCA parameters (!!!)

Removed features

- Windows support
 - Lack of developer support
 - Native Cygwin builds available from Cygwin
- Fault tolerance
 - Hopefully to be put back before 1.8
- PERUSE

MPI Forum Fault Tolerance Working Group

Define a minimal set of semantics and interfaces to enable fault tolerant applications and libraries to be constructed portably

- User Level Failure Mitigation
 - MPI Forum Fault Tolerance Working Group: https://svn.mpi-forum.org/trac/mpi-forum-web/ wiki/FaultToleranceWikiPage
- Prototype in Open MPI is guiding proposal development
 - http://fault-tolerance.org/

Netloc (Network Locality)

Brice Goglin
Inria – Bordeaux – France
Brice.Goglin@inria.fr

Locality matters

- Inside the servers
 - You got hwloc in Open MPI about 3 years ago
 - NUMA, shared caches, I/O affinities, etc.
 - Mostly used for distributing and binding processes inside nodes

What about the network topology?

- Papers about placing processes according to network topology
 - Reduce the distance between related processes
- Papers about adapting collective implementations to the network topology
- Distance, shared links, contention matter
 - More than inside servers ?
 - Depends on the size of the network

Introducing netloc (Network Locality)

- hwloc companion
- Takes care of network topology
- and joins hwloc and network information
 - Global « map » of your cluster
 - Connects hwloc objects to network edges
- Public API made of
 - Network queries (nodes, edges, etc.)
 - Global map queries
 - hwloc API when looking inside servers

Netloc global « Map »

(Network) Portability

- Trying to be as generic as possible
 - More than just IB fat-trees
 - No need to run proprietary scripts anymore
- Existing backends
 - InfiniBand
 - Ethernet
 - Through OpenFlow for now
 - Maybe SNMP/LLDP for small clusters one day?
- Upcoming Cray Gemini and Aries support?

Global path across your cluster

Multirail / Multipath Locality

Hierarchy of Neighbors

Current Status

- Under discussion since SC12
- Netloc 0.5 released for SC13
- Public API not finalized yet
 - Needs users' feedback
- Written in C99
- Requires hwloc (bonus features if ≥ 1.8)
- Source code publicly available on github

Get involved!

- Currently developed by
 - University of Wisconsin-LaCrosse (J. Hursey)
 - Inria (B. Goglin)
 - Cisco (J. Squyres)
 - Under the umbrella of the Open MPI consortium
- There's a lot to do!

Need more?

Visit the Cisco booth: #2535

 J. Squyres gives a talk about netloc on Inria booth #2116 (Wednesday 2pm)

 See Open MPI website for links, mailing lists, etc.

Thank you!

University of Wisconsin LA CROSSE

OpenSHMEM in Open MPI

Mike Dubman miked@mellanox.com

PGAS/SHMEM

- Model to allow processes to globally share variables
- Each process to see the same variable name, but each process keeps its own copy of the variable.
- Modification to another process address space is then accomplished using put/get (or write/read) semantics.

OpenSHMEM (1)

- Some similarity with MPI:
 - SPMD
 - Atomics, collectives operations
 - one-sided operations (put/get)
 - Jobstart and runtime support (mapping/ binding/...)

OpenSHMEM (2)

- Differences from MPI
 - No communicators (yet)
 - No user-defined datatypes
 - Limited set of collectives
 - Application can put/get data from pre-allocated heap or static variables

Why in OMPI

- OMPI has very flexible architecture, easy to reuse
- OMPI built with extensibility in mind
- Many OMPI layers are MPI semantics unaware and can be reused by other parallel paradigms

OMPI + OSHMEM

- Many OMPI frameworks reused (runtime, platform support, jobstart, btl, bml, mtl, profiling, autotools)
- OSHMEM specific frameworks added, keeping MCA plugin architecture (scoll, spml, atomics, synchronization and ordering enforcement)
- OSHMEM supports Mellanox p2p and collectives accelerators (mxm, fca) as long as OMPI provided transports (tcp, openib, portals, ...)

OSHMEM cheat sheet

- mpicc
- mpirun
- ompi_info
- rank
- malloc()/free()
- MPI_Init()
- MPI_Finalize()
- MPI_Send(), MPI_Put()MPI_Recv(), MPI_Get()
- User defined datatypes, basic types

- → oshcc
- → oshrun
- → oshmem_info
- \rightarrow PE
- → shmalloc()/shfree()
- > start_pes()
- \rightarrow N/A
- shmem_put()
- > shmem_get()
- basic types only

Quick Start

- Build & Install OpenSHMEM
- % wget http://www.open-mpi.org/nightly/trunk/openmpi-1.9a1r29419.tar.gz
- % tar zxvf openmpi-1.9a1r29419.tar.gz
- % cd openmpi-1.9a1r29419
- % ./configure --with-oshmem --prefix=\$PWD/install && make install
- Build example:
- % \$PWD/install/bin/oshcc -o oshmem_hello \$PWD/example/oshmem-hello.c
- Run example:
- % \$PWD/install/bin/oshrun -np 4 -H node1,node2 \$PWD/oshmem_hello

Thank You!

Connect. Accelerate. Outperform.

Where do we need help?

- Code
 - MPI 3 one-sided (this is complex)
 - Fault tolerance revival
 - ...any bug or feature that bothers you
- Release engineering
- User documentation
- Usability
- Testing

Researchers: how can we help you?

- Fork OMPI on Bitbucket or Github
 - Upstream is still SVN
- Ask questions on the devel list
- Come to Open MPI developer meetings
- Generally: be part of the open source community

Come Join Us!

http://www.open-mpi.org/

Connect. Accelerate. Outperform."