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Open MPI Is… 

•  Evolution of several 
prior MPI’s 

•  Open source project 
and community 
§  Production quality 
§  Vendor-friendly 
§  Research- and 

academic-friendly 
•  MPI-2.1 compliant 

PACX-MPI 
LAM/MPI 

LA-MPI 
FT-MPI 

Sun CT 6 



Members, Contributors, Partners 



Versioning Scheme 

•  Open MPI has 2 concurrent release series 
§  “Feature series”   à v1.<odd> 
§  “Super stable series”  à v1.<even> 

•  Both are tested and QA’ed 
§ Main difference between the two is time 



Development 
trunk 

Transition to super stable 

Feature / Stable Series 

v1.5 
v1.5.1 
v1.5.2 

New features, 
enhancements 

v1.6 
v1.6.1 Bug fixes only 

v1.7 / v1.8 
branch 

Branch to create 
Feature series 

Ti
m

e 



v1.6 Roadmap 

•  v1.6.3 is the current stable release 
§  Bug fixes only 
§  v1.6.4 will likely happen… someday 

• We encourage all users to move away 
from the v1.4 series 

•  v1.6 updates are boring (!) 
§ … as they are intended to be 



Brian Barrett 

v1.7 Series 



1.7 Goals 

•  MPI-3.0 compliance 
•  Better resource exhaustion resilience 
•  Thread safety 
•  Cray XE/XK/XC support 
•  Memory usage at scale 



v1.7.0 Features 

•  Better Fortran bindings 
•  Java bindings 
•  Improved locality control infrastructure 
•  Improved run-time infrastructure 
•  New collectives 
•  MPI-3 features… 



v1.7.0 MPI-3.0 Compliance 

•  Matched probe 
•  Nonblocking collective operations 

§  Intercommunicators may slip to 1.7.1 
•  Version query 
•  MPI-3 Fortran support (f08 bindings) 
•  MPI_TYPE_CREATE_HINDEXED_BLOC

K 
•  MPI_COMM_SPLIT_TYPE 
•  MPI_INFO_ENV support 



MPI-3.0 Plans 

•  Features for 1.7.1 
§ New one-sided interface (including shared 

memory windows) 
• Work in progress 

§ Non-blocking collectives 
§ Non-blocking/non-collective communicator 

duplication 
§ MPIT Tools interface 
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U. Tennessee Research Update 



Hierarchical Collectives Software 
Layers - Cheetah 

Basic Collectives Framework Subgroup Framework 
IB  IB 

OFFLOAD 
Pt2Pt SM Socket IBNET Shared 

Memory 

Collective Framework 
Tuned (pt2pt)        
Collectives Comp. 

MLNX 
OFED 

ML – Hierarchical 
Collectives Comp. 

MLNX 
OFED 

Module Component Architecture 
OMPI 



Barrier – Comparison with Native 
MPI 
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Large-Scale Broadcast Performance: 
OMPI vs Native MPI large message 16 MBytes 
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Aggregate Broadcast Bandwidth  

768 processes, 32 nodes, 24 cores/node	



(a)Ethernet Cluster (32nodes) 

30x speedup! 

(b)InfiniBand Cluster (32nodes) 

~2x speedup 

HierKNEM OMPI-Tuned 
MPICH2 on Ethernet or MVAPICH2 on IB 

OMPI-Hierarch 



Aggregate Reduce Bandwidth  

(a)Ethernet Cluster (32nodes) (b)InfiniBand Cluster (32nodes) 

768 processes, 32 nodes, 24 cores/node	



3-10 X 

HierKNEM OMPI-Tuned 
MPICH2 on Ethernet or MVAPICH2 on IB 

OMPI-Hierarch 



Insensitive to process mapping 

(a) Broadcast (b) Allgather 
Impact of process mapping: aggregate Broadcast and Allgather bandwidth 
of the collective modules for two different process-core bindings: by core 

and by node (Parapluie cluster, IB20G, 768 processes, 24 cores/node). 

HierKNEM-bycore Tuned-bycore MVAPICH2-bycore 

HierKNEM-bynode Tuned-bynode MVAPICH2-bynode 



Runtime ? 
•  A helper for starting 

parallel applications 
§  Launch 
§  Connect 
§  Control 
§  I/O 

•  Critical for the 
scalability and the 
resilience of any 
programming 
paradigm 
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Communication Infrastructure 

Undirected graph G:=(V, E), |V|=n (any size) 
Node i={0,1,2,…,n-1} has links to a set of nodes U 
U={i±1, i±2,…, i±2k | 2k < n} in a circular space 

Merging all links creates 
binomial graph from each 
node of the graph 

Broadcast from any 
node in Log2(n) steps Stay connected in spite  

of failures 

Binomial Graph 



Runtime deployments 

… 

Building a BMG from the initial startup tree 



From a tree to a ring 



Scalability 

•  Startup 
§  Gracefully handle many processes per node 
§  Minimize resource consumption while maximizing parallelism: 

build specialized network overlays 

•  Business card (Modex) exchange 
§  Use the network overlays to exchange the business cards of the 

participating processes 
§  Keep one single copy per node shared between all local 

processes 
§  Update the data asynchronously 
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Figure 4: Execution time of an empty MPI appli-
cation with the PLM prsh at various � parameters
(routed ��ary tree)

vanilla ORTE and MPICH2 Hydra with rsh launcher, we
suspect Hydra is a✏icted by the same behavior.

Using a launcher dedicated to clusters management, SLURM,
both vanilla ORTE and MPICH2 Hydra achieve a notably
higher performance: not being responsible to launch each
and every rsh commands, they can remain in the main loop
to accept incoming connections, and avoid the connection
re-emission penalty. However, because the only contact in-
formation that can be passed to the launcher is the contact
information of the only existing process at the time of the
launch (mpirun), the approach remains centralized. There-
fore, every daemon has to connect to the mpirun to boot-
strap the contact information exchange. At larger scales
(above 500 nodes), the overhead of handling the increas-
ing number of connections becomes significant, and the dis-
tributed approach of the PLM prsh is able to achieve a lower
overhead even when compared with a scalable launcher.

One can also see by comparing both prsh measurements
that the message routing topology, has no measurable e↵ect
on the performance of a non-MPI application. When launch-
ing such an application, the only impact of this topology is
on the phase 3 of the launch process: di↵erent broadcast
trees are used. However, both broadcast trees (binomial
tree and ��ary tree) appear to provide similar performance.

MPI overhead. Figure 4 is similar to Figure 2: it presents
the evaluation of the impact of the � parameter, on an empty
MPI application. The behavior is significantly di↵erent in
this case: all versions keep a consistent behavior, and the
progression of the execution time becomes linear.

The Open MPI library, when it enters its MPI_Init rou-
tine, starts by exchanging a significant amount of informa-
tion above the out-of-band messaging system of ORTE, dur-
ing an operation called the modex. This operation consists
in an all-gather of the contact information of the MPI pro-
cesses themselves (including low level communication device
connection information). This modex operation dominates
the launching time, and introduces a linear progression. To
tackle this overhead, it will be necessary to adapt the modex
operation, which is left for future work.
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Figure 5: Execution time of an empty MPI applica-
tion with the PLM prsh, and comparison with other
runtimes

MPI overhead comparaison. As illustrated by Figure 5,
when compared to the state of the art runtime environments,
the PLM prsh still provides significant reductions of the Init
/ Finalize overhead. Based on the data in the figure, at 900
nodes the PLM prsh provides a factor 5 speedup when com-
pared to other rsh-based launchers. In the case of SLURM-
based launcher, even if this factor is reduced, it remains ap-
parent starting from 500 nodes and going up to about 2 at
900. All runtimes, including the SLURM-based launchers,
exhibit linear behaviors when launching MPI applications.
However, the slope of the PLM prsh is the smallest one,
potentially o↵ering the most scalable approach.
When comparing the two PLM prsh curves, one using

the ��ary tree the other a binomial tree as the underling
routing topology, one can see small variations in the execu-
tion time. The modex operation is done using a all-gather
above the routing tree. Using di↵erent trees to complete this
operation does not introduce a significant performance dif-
ference; however another implementation for the all-gather
could take advantage of the routing information to improve
the dissemination of information.

6. DISCUSSION
A linear regression of the empty MPI applications launch-

ing times for both rsh-based frameworks, and for the PLM
prsh, estimates that the PLM prsh has a progression slope
an order of magnitude smaller than the others rsh-based
launchers. The estimation forecasts that up to 20,000 com-
puting nodes can be launched in less than a minute. It is
thus reasonable to consider it for nowadays supercomputers.
Improvement in the MPI library and the routing systems
will need to be considered to prepare for larger scales. From
the experience harnessed while developing the PLM prsh, we
isolate two major features that we think crucial to obtain a
reasonable launching / managing overhead:

1) Parallel Launching. Parallel launching remains a key
component to obtain a lower launching time, one cannot
a↵ord to iterate over a set of launching commands. Using
a more e�cient approach is required, such as a recursive

like a2a, or even a simple empty MPI application, like initfinalize. This is
due to the third phase of the launching in ORTE, the modex (see Section 3),
that introduces a linear component to the performance. As illustrated by the
fact that there is no significant di↵erence between a2a and initfinalize, once
this modex is completed, all nodes are able to communicate without significant
overhead, highlighting the benefit of this initial exchange of MPI-level contact
information.
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Fig. 2: Comparison with other MPI
runtime systems

Fig. 2 compares the two ORTE imple-
mentations with Hydra (MPICH2), and
ScELA (MVAPICH) for the three bench-
marks, and various number of nodes. Al-
though Hydra performs slightly better
than both ORTE implementations at a
small scale, ORTE reaches the same per-
formance for 154 nodes and above. After
about 166 nodes, both Hydra and ScELA
for the /bin/true benchmark su↵er from
connections storms, that impact the per-
formance by introducing a delay of 3s, due
to TCP SYN packets retransmission. The tree launching capability of ScELA is
limited to MPI applications, and ScELA keeps a similar, although measurably
lower, performance as the two ORTE implementations. A tight integration of
the communication infrastructure building process and the launching system, as
implemented in ORTE, enables to obtain a better scalability.

5 Conclusion

In this paper, we presented two strategies for the construction of a runtime com-
munication infrastructure running in parallel with the deployment of the runtime
processes and the deployment of the parallel application. The first strategy uses
an improved flooding algorithm, that enables any runtime process to communi-
cate with any other directly, thus providing an arbitrary routing topology for
the runtime. The second strategy uses an ad-hoc self-adapting algorithm, that
transforms the initial spawning tree into a binomial graph, not only sharing the
needed contact information (and only this information), but also establishing
at the same time the corresponding links. We implemented both algorithms in
ORTE, the runtime system of Open MPI, and compared the implementations
with the state of the art runtime environments for MPI. Experiments demon-
strated an improved scalability, highlighting the importance of tight integration
between launching and communication infrastructure construction, and the ad-
vantages of a flexible routing topology at the runtime level.

•  Self-adapting algorithms to 
evolve from any type of 
spanning tree toward BMG 

•  Good candidate for resilient 
runtime 



Supported C/R strategies 

Coordinated C/R 

•  A complete checkpoint is taken 
at specified time intervals 

•  In case of a failure all 
processes rollback to the last 
valid checkpoint 

•  The time to checkpoint strongly 
depends on the checkpoint 
support (I/O bandwidth) 

Uncoordinated C/R 

•  A single checkpoint is taken at 
specified time intervals 

•  In case of a failure one 
process rollback to the last 
valid checkpoint 

•  The time to checkpoint barely 
depends on the checkpoint 
support (I/O bandwidth) 



Correlated Set Coordinated Message Logging 

•  Hybrid between coordinated and uncoordinated 
•  Codependent failures are defined as sets of processes 

prone to fail simultaneously (cores of a same node) 
•  Codependent processes use coordinated checkpoint: relieves 

the need for expensive sender-based logging 
•  Non codependent processes are still uncoordinated  and 

benefit from faster recovery 
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Correlated Set in Message Logging 
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4.3 Cluster of Multicore Performance

Figure 6 presents the performance of the HPL benchmark on the Dancer cluster,
with a one process per core deployment. For small matrix sizes, the behavior is
similar between the three MPI versions. However, for slightly larger matrix sizes,
the performance of regular message logging su↵ers. Conversely the coordinated
message logging algorithm performs better, and only slightly slower than the
non fault tolerant MPI, regardless of the problem size.

On the Dancer cluster, the available 500MB of memory per core is a strong
limitation. In this memory envelope, the maximum computable problem size on
this cluster is N=28260. The extra memory consumed by payload copy limits the
maximum problem size to only N=12420 for regular message logging, while the
reduction on the amount of logged messages enables the coordinated message
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Fig. 6. HPL cluster performance (Dancer cluster, IB20G, 8 nodes, 64 cores)

logging approach to compute problems as large as N=19980. Not only does
partial coordination of the message logging algorithm increase communication
performance, it also decreases memory consumption.

5 Related Works

Recent advances in message logging have decreased the cost of event logging [3].
As a consequence, more than the logging scheme adopted, the prominent source
of overhead in message logging is the copy of message payload caused by in-

transit messages [4]. While attempts at decreasing the cost of payload copy have
been successful to some extent [2], these optimizations are hopeless at improving
shared memory communication speed. Our approach circumvents this limitation
by completely eliminating the need for copies inside many-core processors.

Communication Induced Checkpoint (CIC) [12] is another approach that
aims at constructing a consistent recovery set without coordination. The CIC
algorithm maintains the dependency graph of events and checkpoints to compute
Z-paths as the execution progresses. Forced checkpoints are taken whenever a
Z-path would become a consistency breaking Z-cycle. This approach has several
drawbacks: it adds piggyback to messages, and is notably not scalable because
the number of forced checkpoints grows uncontrollably [1].

Group coordinated checkpoint have been proposed in MVAPICH2 [10] to
solve I/O storming issues in coordinated checkpointing. In this paper, the group
coordination refers to a particular scheduling of the checkpoint tra�c, intended
to avoid overwhelming the I/O network. Unlike our approach, which is partially
uncoordinated, this algorithm builds a completely coordinated recovery set.

In [11], Ho, Wang and Lau propose a group-based approach that combines
coordinated and uncoordinated checkpointing, similar to the technique we use in

Non deterministic events are still 
logged, but payload in a 
correlated set is not 

HPL 

Shared Memory NetPipe 



MPI Forum Fault Tolerance Working Group 

•  User Level Failure Mitigation 
§ MPI Forum Fault Tolerance Working Group: 

https://svn.mpi-forum.org/trac/mpi-forum-web/
wiki/FaultToleranceWikiPage 

•  Prototype in Open MPI is guiding proposal 
development 
§  http://fault-tolerance.org/ 
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Cisco + Other Updates 



Cisco Ultra Low Latency Ethernet 

•  Cisco Ethernet Virtual 
Interface Card (VIC) 

•  “Userspace 
NIC” (USNIC) mode 
§  OS bypass 
§  Hardware offload 

•  Exports UD verbs 
interface 

Open MPI UD verbs BTL 

libibverbs              usnic 
plugin 

usnic.ko ibverbs.ko 

Cisco VIC hardware 



Cisco Ultra Low Latency Ethernet 

•  Back-to-back verbs 
latency 
§  1.7us HRT ping-pong 

Cisco VIC hardware 

Cisco VIC hardware 



Cisco Ultra Low Latency Ethernet 

•  Back-to-back verbs 
latency 
§  1.7us HRT ping-pong 

•  Cisco’s lowest latency 
switch 
§  190ns port-to-port 

Cisco VIC hardware 

Cisco VIC hardware 

Nexus 3548 



Cisco Ultra Low Latency Ethernet 

•  Back-to-back verbs 
latency 
§  1.7us HRT ping-pong 

•  Cisco’s lowest latency 
switch 
§  190ns port-to-port 

•  Prototype Open MPI 
BTL plugin 
§  300-400ns 

•  Total: ~2.2-2.3us 

Cisco VIC hardware 

Cisco VIC hardware 

Nexus 3548 

MPI 

MPI 



Mo’ Betta Fortran Bindings 

•  Revamped “F90” bindings support 
§  use mpi 

•  Prototypes for all MPI subroutines 
§ …but not for gfortran L 



Mo’ Betta Fortran Bindings 

•  “F08” bindings (“use mpi_f08”) 
§ New for MPI-3 

•  Many new features, including: 
§ MPI handle type safety! 
§  Type(MPI_Comm) :: my_comm 

•  Tested with: 
§  Intel, Absoft, Portland compilers 
§ …no gfortran support L (YET) 



Better Processor / Memory 
Affinity 

•  Uses Hardware Locality (hwloc) 
§  Sub-project of Open MPI 

•  Shameless plug: 
§  http://www.open-mpi.org/projects/hwloc/  
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Better Processor / Memory Affinity 

•  Probe nodes for topology at run-time 
•  Smallest unit of affinity is hyperthread 

§  “mpirun –bind-to-core” binds to all 
hyperthreads in a core 

•  “mpirun –report-bindings” much more 
readable 



Better Processor / Memory Affinity 

•  Affinity is complicated! 
•  Evolving hardware architectures 

§  Evolving application affinity needs 
•  Location Aware Mapping Algorithm 

§ New / additional affinity options 
§  v1.7.x (probably: x=1) 



VampirTrace at Scale 

•  Last scalability limit for tracing x·105 procs: 
No HPC FS handles one file per process 

•  I/O Forwarding Scalability Layer (IOFSL) 
§  Forwarding, buffering, aggregation, of I/O ops. 
§ Map many logical files to few physical files on 

few IOFSL servers in “atomic append” mode 
§ Open Source project, see http://www.iofsl.org/  

•  Full-system run on ORNL’s JaguarPF (XT5) 
•  In cooperation with ORNL and ANL 



Trace of S3D combustion code with 200,448 procs on 
ORNL’s JaguarPF, recorded using 672 IOFSL servers 

(9.4·1011 events, 4.2 TB compressed) 

Routine calls,  
MPI in red 
 

Occurrences of 
MPI_Allreduce 
 

MPI wait  
time share 
 



VampirTrace for MPI + CUDA 

•  VampirTrace supports MPI + CUDA 
§ One/multiple CUDA devices per MPI process 
§  API calls (host) and kernel executions (device) 
§ GPU hardware performance counters 
§ Host interactions (allocation, transfers, sync.) 
§ NVIDIA‘s CUPTI tool interface 

•  Now also supports NVIDIA CARMA devices 
Visit ZIH booth 4036, hall 2,  
win a NVIDIA Tesla K20 card! 



...this is just a sample 

•  Many more projects are occurring in the 
Open MPI community. 
§  clang compiler extensions 
§ MOSIX support 
§ … 

•  Come get involved! 



Come Join Us! 

http://www.open-mpi.org/ 


