
Open MPI State of the Union
Community Meeting SC‘11

Jeff Squyres George Bosilca Shinjii Sumimoto Rolf vandeVaart

November 16, 2011

Agenda

•  Open MPI Project / Community

•  Roadmap

•  Select organization project updates
! Nvidia, Fujitsu, U. Tennessee, Cisco, others

•  The (continuing) road to MPI-3

•  Community questions
!  Feedback: http://www.open-mpi.org/sc2011

Open MPI Is…

•  Evolution of several
prior MPI’s

•  Open source project
and community
!  Production quality

!  Vendor-friendly

!  Research- and
academic-friendly

•  MPI-2.1 compliant

PACX-MPI

LAM/MPI

LA-MPI

FT-MPI

Sun CT 6

Members, Contributors, Partners

Jeff Squyres

Roadmap

Versioning scheme

•  Open MPI has 2 concurrent release series
!  “Feature series” " v1.<odd>

!  “Super stable series” " v1.<even>

•  Both are tested and QA’ed
! Main difference between the two is time

Development
trunk

Transition to super stable

Feature Series
T

im
e

v1.5
v1.5.1
v1.5.2

New features,
enhancements

v1.6
v1.6.1 Bug fixes only

New branch, to become v1.7 / v1.8

Branch to create
Feature series

v1.4 Series Sunset

•  v1.4 is the current “super stable series”

•  Likely to only have one more release
!  A few more bug fixes have crept in

!  v1.4.5 possibly in December

 So long, v1.4 series!

v1.5 " v1.6 Transition

•  ABI change since v1.4

•  New features over the v1.5 series
!  Support for Mellanox “MXM” and offloaded

collectives support (Voltaire)

!  ARM support

!  InfiniBand failover transport

! WinVerbs support

!  Significant run-time scalability, robustness

! …oodles of little improvements and fixes

v1.5 " v1.6 Transition

•  One more release in v1.5
!  Final MPI-2.2 functionality (no strong demand)

!  hwloc version bump

!  Stronger PMI support

! Usual array of bug fixes, minor enhancements

•  Aiming for December, 2011
! US holiday schedule may force pushing to Jan

!  Transition to v1.6 a fixed time after that

!  ESTIMATE: Q1 2012

v1.7 Sunrise

•  Several upcoming v1.7 features discussed
later in this presentation

•  ABI break from v1.5 / v1.6

•  Gating factors for v1.7 branch:
!  v1.6 release

!  Stability of new trunk features

! Have not yet elected v1.7 release managers

•  ESTIMATE: Q2 2012

Rolf vandeVaart

Nvidia Update

NVIDIA and Open MPI

Rolf vandeVaart

November 16, 2011

Why

"   Tremendous growth in CUDA adoption

Joined in April, 2011

Make Open MPI aware of CUDA

"   Allow users to send and receive GPU buffers directly

"   Hide complexity with the MPI stack

Make Open MPI aware of CUDA

"   Stage data in host
memory prior to MPI
calls

cuMemAlloc(devptr, size)
kernel<<grid, block>>(devptr)
hostptr = malloc(size)
cuMemcpy(hostptr, devptr, size)
MPI_Send(hostptr, …)

"   Access device memory
directly from MPI calls

cuMemAlloc(devptr, size)
kernel<<grid, block>>(devptr)
MPI_Send(devptr, …)

Move GPU buffers within MPI

"   Original

"   New

Open MPI Plan

Three Phases

1.  Add basic support - Done

2.  Add registration of internal buffers - Done

3.  Add interprocess memory support within a node –
prototype working

Phase 1

"   All changes were made in datatype and convertor
code.

"   Add new pointer in convertor that points to a
memcpy routine.

"   When MPI request is initialized, input buffer is
queried and memcpy routine can be changed to
CUDA routine, cuMemcpy

"   Modify opal_convertor_need_buffers() to return true
if buffer is device memory (special flag added to
convertor).

Phase 1 - Continued

"   Code is enabled with –with-cuda and –with-cuda-
libdir.

"   Added to Open MPI trunk April, 2011
" http://www.open-mpi.org/faq/?category=building#build-cuda

" http://www.open-mpi.org/faq/?category=running#mpi-cuda-support

Support

"   With these changes, we can support all the following
APIs.
"   MPI_Send, MPI_Recv, MPI_Isend, etc.

"   MPI_Bcast, MPI_Gather, MPI_Scatter, etc.

"   No support for reductions or one-sided.

"   Supports both contiguous and non-contiguous
datatypes.

Issues - Performance

"   Each call to cuMemcpy incurs a 10us overhead.

"   For IB and TCP, forcing usage of the pipelined send
protocol can affect large message performance.

"   For SM, overhead of cuMemcpy limits performance
for large messages also.

Phase 2

"   Register internal host buffers with
cuMemHostRegister.

"   Improved IB performance

"   Allows possible change to asynchronous
cuMemcpys in the MPI library.

"   Added to Open MPI trunk August, 2011

Phase 3 – Improve on-node
performance

"   CUDA 4.1 added new interprocess communication
utilities.

"   cuIpcGetMemHandle
"   cuIpcOpenMemHandle
"   cuIpcCloseMemHandle
"   cuIpcGetEventHandle
"   cuIpcOpenEventHandle

Remote GET for GPU memory

Memory Handles

"   cuIpcGetMemHandle – 1 usec

"   cuIpcOpenMemHandle – 100 usec

"   Therefore, cache the memory handles from remote
processes and reuse them if the user reuses them.
Similar to IB BTL.

"   Great benefit where user buffers are reused.

GPU to GPU within node

1.00E+000 1.00E+002 1.00E+004 1.00E+006 1.00E+008
0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

4000.0

4500.0

5000.0

Bandwidth Comparison - Within Node

p2p
MPI-Pin
MPI-Unpin
No RDMA

Bytes

M
b

yt
e

/s
e

c

!"#$%&'(")*"+*,%&'"-(*$&"."/"0(
!"#$ %&% '()*+,-

. ./0 0/. 0/. 0/0
& ./0 0/& 0/& 0/.
1 ./0 0/1 0/1 0/.
2 &/0 0/3 0/2 0/&
.4 1/0 ./5 ./5 0/6
7& 4/0 7/1 7/7 0/3
41 .&/0 4/5 4/6 ./2
.&2 7&/0 .7/7 .7/0 7/5
&64 47/0 &4/6 &6/2 5/1
6.& .&6/0 6&/5 6./& .1/2
.0&1 &60/0 .06/& .0&/. &3/5
&012 112/0 &04/6 &0./2 62/6
1034 253/0 644/0 .5/5 ..5/0
2.3& .1&6/0 .0.1/5 76/. &70/3
.4721 &.3&/0 .45./1 50/1 1.3/1
7&542 &3.6/0 &143/7 .73/0 171/6
46674 7162/0 7&63/& &42/2 655/0
.7.05& 73&2/0 7252/6 6&7/5 43./7
&4&.11 1.50/0 1&3&/2 355/4 546/6
6&1&22 17&&/0 16&5/7 .2&0/1 202/&
.012654 1733/0 14.2/. &5.7/1 2&3/0
&035.6& 1172/0 157./6 7670/5 21&/.
1.31701 1165/0 155./7 1..3/5 216/4

,89:8"; ,89:<;%";

Future

"   More use of CUDA asynchronous copies

"   Improved GPU to GPU memory communication
between nodes.

"   Better noncontiguous datatypes and collectives.
(NVIDIA funding university research into this)

The ‘Super’ Computing Company
From Super Phones to Super Computers

Thanks

rvandevaart@nvidia.com

Shinjii Sumimoto

Fujitsu / K Computer Update

#1, baby!

•  10.51 petaflops
!  K “cranked it up to 11” (rounding up #)

.51

George Bosilca

Bleeding edge research

RUNTIME

Flexibility

•  Support several backend runtimes
!  Eventually with different levels of integrations

•  Notifiers / specialized logging services might not be
available everywhere

!  And different capabilities
•  MPI 2 dynamic processing or fault tolerance might

be only partially supported in some environments.

•  Open RTE, PMI, Hydra, local

Scalability

•  Startup
!  Gracefully handle many processes per node

!  Minimize resource consumption while maximizing parallelism:
build specialized network overlays

•  Business card (Modex) exchange
!  Use the network overlays to exchange the business cards of the

participating processes

!  Keep one single copy per node shared between all local
processes

!  Update the data asynchronously

Bosilca, G., Herault, T., Razmerita, A., Dongarra, Jack J., “On Scalability for MPI
Runtime Systems ,” Cluster 2011.

Bosilca, G., Herault, T., Lemarinier, P., Razmerita, A., Dongarra, Jack J., “Scalable
Runtime for MPI: Efficiently Building the Communication Infrastructure,” EuroMPI
2011 - poster.

 0

 1

 2

 3

 4

 5

 0 100 200 300 400 500 600 700 800 900

Ti
m

e
(s

)

Number of nodes

 0
 0.2
 0.4
 0.6
 0.8

 1

 10 20 30 40 50 60

Ti
m

e
(s

)

Number of nodes

! = 2
! = 4
! = 8

! = 16
! = 32
! = 64

Figure 4: Execution time of an empty MPI appli-
cation with the PLM prsh at various δ parameters
(routed δ−ary tree)

vanilla ORTE and MPICH2 Hydra with rsh launcher, we
suspect Hydra is afflicted by the same behavior.

Using a launcher dedicated to clusters management, SLURM,
both vanilla ORTE and MPICH2 Hydra achieve a notably
higher performance: not being responsible to launch each
and every rsh commands, they can remain in the main loop
to accept incoming connections, and avoid the connection
re-emission penalty. However, because the only contact in-
formation that can be passed to the launcher is the contact
information of the only existing process at the time of the
launch (mpirun), the approach remains centralized. There-
fore, every daemon has to connect to the mpirun to boot-
strap the contact information exchange. At larger scales
(above 500 nodes), the overhead of handling the increas-
ing number of connections becomes significant, and the dis-
tributed approach of the PLM prsh is able to achieve a lower
overhead even when compared with a scalable launcher.

One can also see by comparing both prsh measurements
that the message routing topology, has no measurable effect
on the performance of a non-MPI application. When launch-
ing such an application, the only impact of this topology is
on the phase 3 of the launch process: different broadcast
trees are used. However, both broadcast trees (binomial
tree and δ−ary tree) appear to provide similar performance.

MPI overhead. Figure 4 is similar to Figure 2: it presents
the evaluation of the impact of the δ parameter, on an empty
MPI application. The behavior is significantly different in
this case: all versions keep a consistent behavior, and the
progression of the execution time becomes linear.

The Open MPI library, when it enters its MPI_Init rou-
tine, starts by exchanging a significant amount of informa-
tion above the out-of-band messaging system of ORTE, dur-
ing an operation called the modex. This operation consists
in an all-gather of the contact information of the MPI pro-
cesses themselves (including low level communication device
connection information). This modex operation dominates
the launching time, and introduces a linear progression. To
tackle this overhead, it will be necessary to adapt the modex
operation, which is left for future work.

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600 700 800 900

Ti
m

e
(s

)

Number of nodes

MPICH2 hydra with rsh
MPICH2 hydra with slurm

(Vanilla) ORTE, PLM rsh, routed binomial
ORTE, PLM slurm, routed binomial

ORTE, PLM prsh, ! = 32, routed binomial
ORTE, PLM prsh, ! = 32, routed !-ary tree

Figure 5: Execution time of an empty MPI applica-
tion with the PLM prsh, and comparison with other
runtimes

MPI overhead comparaison. As illustrated by Figure 5,
when compared to the state of the art runtime environments,
the PLM prsh still provides significant reductions of the Init
/ Finalize overhead. Based on the data in the figure, at 900
nodes the PLM prsh provides a factor 5 speedup when com-
pared to other rsh-based launchers. In the case of SLURM-
based launcher, even if this factor is reduced, it remains ap-
parent starting from 500 nodes and going up to about 2 at
900. All runtimes, including the SLURM-based launchers,
exhibit linear behaviors when launching MPI applications.
However, the slope of the PLM prsh is the smallest one,
potentially offering the most scalable approach.
When comparing the two PLM prsh curves, one using

the δ−ary tree the other a binomial tree as the underling
routing topology, one can see small variations in the execu-
tion time. The modex operation is done using a all-gather
above the routing tree. Using different trees to complete this
operation does not introduce a significant performance dif-
ference; however another implementation for the all-gather
could take advantage of the routing information to improve
the dissemination of information.

6. DISCUSSION

A linear regression of the empty MPI applications launch-
ing times for both rsh-based frameworks, and for the PLM
prsh, estimates that the PLM prsh has a progression slope
an order of magnitude smaller than the others rsh-based
launchers. The estimation forecasts that up to 20,000 com-
puting nodes can be launched in less than a minute. It is
thus reasonable to consider it for nowadays supercomputers.
Improvement in the MPI library and the routing systems
will need to be considered to prepare for larger scales. From
the experience harnessed while developing the PLM prsh, we
isolate two major features that we think crucial to obtain a
reasonable launching / managing overhead:

1) Parallel Launching. Parallel launching remains a key
component to obtain a lower launching time, one cannot
afford to iterate over a set of launching commands. Using
a more efficient approach is required, such as a recursive

like a2a, or even a simple empty MPI application, like initfinalize. This is
due to the third phase of the launching in ORTE, the modex (see Section 3),
that introduces a linear component to the performance. As illustrated by the
fact that there is no significant difference between a2a and initfinalize, once
this modex is completed, all nodes are able to communicate without significant
overhead, highlighting the benefit of this initial exchange of MPI-level contact
information.

 0

 1

 2

 3

 4

 5

 6

 7

82 nodes 154 nodes 226 nodes

C
o
m

p
le

tio
n
 T

im
e
 (

s)

O
p
e
n
 M

P
I
-

B
M

G

O
p
e
n
 M

P
I
-

F
lo

o
d
in

g

M
P

IC
H

 H
yd

ra
M

V
A

P
IC

H
 S

cE
L
A

O
p
e
n
 M

P
I
-

B
M

G

O
p
e
n
 M

P
I
-

F
lo

o
d
in

g

M
P

IC
H

 H
yd

ra
M

V
A

P
IC

H
 S

cE
L
A

O
p
e
n
 M

P
I
-

B
M

G

O
p
e
n
 M

P
I
-

F
lo

o
d
in

g

M
P

IC
H

 H
yd

ra

M
V

A
P

IC
H

 S
cE

L
A

/bin/true
initfinalize

alltoall

Fig. 2: Comparison with other MPI
runtime systems

Fig. 2 compares the two ORTE imple-
mentations with Hydra (MPICH2), and
ScELA (MVAPICH) for the three bench-
marks, and various number of nodes. Al-
though Hydra performs slightly better
than both ORTE implementations at a
small scale, ORTE reaches the same per-
formance for 154 nodes and above. After
about 166 nodes, both Hydra and ScELA
for the /bin/true benchmark suffer from
connections storms, that impact the per-
formance by introducing a delay of 3s, due
to TCP SYN packets retransmission. The tree launching capability of ScELA is
limited to MPI applications, and ScELA keeps a similar, although measurably
lower, performance as the two ORTE implementations. A tight integration of
the communication infrastructure building process and the launching system, as
implemented in ORTE, enables to obtain a better scalability.

5 Conclusion

In this paper, we presented two strategies for the construction of a runtime com-
munication infrastructure running in parallel with the deployment of the runtime
processes and the deployment of the parallel application. The first strategy uses
an improved flooding algorithm, that enables any runtime process to communi-
cate with any other directly, thus providing an arbitrary routing topology for
the runtime. The second strategy uses an ad-hoc self-adapting algorithm, that
transforms the initial spawning tree into a binomial graph, not only sharing the
needed contact information (and only this information), but also establishing
at the same time the corresponding links. We implemented both algorithms in
ORTE, the runtime system of Open MPI, and compared the implementations
with the state of the art runtime environments for MPI. Experiments demon-
strated an improved scalability, highlighting the importance of tight integration
between launching and communication infrastructure construction, and the ad-
vantages of a flexible routing topology at the runtime level.

•  Self-adapting algorithms to
evolve from any type of
spanning tree toward BMG

•  Good candidate for resilient
runtime

Fault Tolerance

Correlated Set in Message Logging

Coordinated C/R

•  A complete checkpoint is taken
at specified time intervals

•  In case of a failure all
processes rollback to the last
valid checkpoint

•  The time to checkpoint strongly
depends on the checkpoint
support (I/O bandwidth)

Uncoordinated C/R

•  A single checkpoint is taken at
specified time intervals

•  In case of a failure one
process rollback to the last
valid checkpoint

•  The time to checkpoint barely
depends on the checkpoint
support (I/O bandwidth)

Correlated Set Coordinated Message Logging

•  Hybrid between coordinated and uncoordinated
•  Codependent failures are defined as sets of processes

prone to fail simultaneously (cores of a same node)
•  Codependent processes use coordinated checkpoint: relieves

the need for expensive sender-based logging
•  Non codependent processes are still uncoordinated and

benefit from faster recovery

P0

P1

P2

m1

m2

m3

m4 m5

C0
1

C2
1 C1

1

P3

P4

S2

S1

Correlated Set in Message Logging

 0.01

 0.1

 1

 10

 100

1 4 16 64 256
1K 4K 16K

64K
256K

1M 4M

B
an

dw
id

th
 (G

b/
s)

Message Size (bytes)

Vanilla
Regular Message Logging

Correlated Message Logging

La
te

nc
y

(u
s)

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

1 4 16 64 256
1K

Fig. 4. Ping pong performance (Dancer node, shared memory, log/log scale)

BT

CGFT

IS

MG SP

Perf. Regular Message Logging / Perf. Vanilla
Perf. Coordinated Message Logging / Perf. Vanilla

50%
60%

80%
90%

100%

Fig. 5. NAS performance (Pluto platform, shared memory, 32/36 cores)

4.3 Cluster of Multicore Performance

Figure 6 presents the performance of the HPL benchmark on the Dancer cluster,
with a one process per core deployment. For small matrix sizes, the behavior is
similar between the three MPI versions. However, for slightly larger matrix sizes,
the performance of regular message logging suffers. Conversely the coordinated
message logging algorithm performs better, and only slightly slower than the
non fault tolerant MPI, regardless of the problem size.

On the Dancer cluster, the available 500MB of memory per core is a strong
limitation. In this memory envelope, the maximum computable problem size on
this cluster is N=28260. The extra memory consumed by payload copy limits the
maximum problem size to only N=12420 for regular message logging, while the
reduction on the amount of logged messages enables the coordinated message

 0

 100

 200

 300

 400

 500

 600

 3600 7200 10080
 14220

 17460
 19980

 24480
Pe

rfo
rm

an
ce

 (G
Fl

op
/s

)

Matrix size (N)

Theoretical peak
Vanilla Open MPI

Coordinated Message Logging
Regular Message Logging

Fig. 6. HPL cluster performance (Dancer cluster, IB20G, 8 nodes, 64 cores)

logging approach to compute problems as large as N=19980. Not only does
partial coordination of the message logging algorithm increase communication
performance, it also decreases memory consumption.

5 Related Works

Recent advances in message logging have decreased the cost of event logging [3].
As a consequence, more than the logging scheme adopted, the prominent source
of overhead in message logging is the copy of message payload caused by in-
transit messages [4]. While attempts at decreasing the cost of payload copy have
been successful to some extent [2], these optimizations are hopeless at improving
shared memory communication speed. Our approach circumvents this limitation
by completely eliminating the need for copies inside many-core processors.

Communication Induced Checkpoint (CIC) [12] is another approach that
aims at constructing a consistent recovery set without coordination. The CIC
algorithm maintains the dependency graph of events and checkpoints to compute
Z-paths as the execution progresses. Forced checkpoints are taken whenever a
Z-path would become a consistency breaking Z-cycle. This approach has several
drawbacks: it adds piggyback to messages, and is notably not scalable because
the number of forced checkpoints grows uncontrollably [1].

Group coordinated checkpoint have been proposed in MVAPICH2 [10] to
solve I/O storming issues in coordinated checkpointing. In this paper, the group
coordination refers to a particular scheduling of the checkpoint traffic, intended
to avoid overwhelming the I/O network. Unlike our approach, which is partially
uncoordinated, this algorithm builds a completely coordinated recovery set.

In [11], Ho, Wang and Lau propose a group-based approach that combines
coordinated and uncoordinated checkpointing, similar to the technique we use in

Non deterministic events are still
logged, but payload in a
correlated set is not

MPI Forum Fault Tolerance Working Group

•  Application involved fault tolerance (not transparent FT)
!  Natural & Algorithm Based Fault Tolerance (ABFT)

•  Fail-stop process failure:
!  MPI process permanently stops communicating with other

processes.
•  Two Complementary Proposals:

!  Run-Through Stabilization: (Target: MPI-3.0)

•  Continue running and using MPI even if one or more MPI processes
fail

!  Process Recovery: (Target: MPI-3.1)

•  Replace MPI processes in existing communicators, windows, file
handles

•  Prototype in Open MPI is guiding proposal development
MPI Forum Fault Tolerance Working Group:
https://svn.mpi-forum.org/trac/mpi-forum-web/wiki/FaultToleranceWikiPage

Open MPI Prototype of the
Run-Through Stabilization Proposal*

•  Pt2Pt Overhead: NetPIPE over shared memory
!  Latency: 0.84 to 0.85 microseconds (1.2%)
!  Bandwidth: 8957 to 8920 Mbps (0.4%)

•  Fault Aware Collective Performance
!  MPI_Barrier & MPI_Bcast:

Within 1% of fault-unaware, regardless of # failures

!  MPI_Comm_validate_all: New fault tolerant
agreement collective
Within 3% of MPI_Allreduce() collective, log-scaling

•  Prototype available to interested application developers
!  Contact: Josh Hursey jjhursey@open-mpi.org

Hursey, J., Graham, R., “Analyzing Fault Aware Collective Performance in a Process Fault
Tolerant MPI,” Elsevier Journal of Parallel Computing Special Issue, 2011 (in press).

Hursey, J., Naughton, T., Valle, G., Graham, R., “A Log-Scaling Fault Tolerant Agreement
Algorithm for a Fault Tolerant MPI,” EuroMPI, 2011.

Point-to-point communications

Open MPI for Cray XE Systems

•  uGNI and Vader BTLs provide point-to-point and shared-memory

communication functionality

•  uGNI BTL implements three protocols for Internode communication

!  Eager protocol for short message transfer

•  Send/Recv for short message (SMSG)
!  Rendezvous protocol for long message transfer

•  RDMA Read/Write for medium message (FMA)

•  Offloaded RDMA/Write for long message (BTE)
•  Vader BTL provides protocols for Intranode communication

!  Single copy between source and destination buffers using Cray
xpmem

!  Nemesis-style lock free fifos for small message delivery

Open MPI uGNI BTL Latency and Bandwidth
(Preliminary Results)

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 5 10 15 20 25 30 35

La
te

nc
y

(U
se

c)

MPI Processes

 Open MPI uGNI

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+06

M
by

te
s/

se
c

Message size (bytes)

 32 procs

 Open MPI uGNI
 Cray MPI

Project members :
ORNL : Richard Graham, Manjunath Gorentla Venkata
LANL : Samuel Gutierrez, Nathan Hjelm
SNL : Brain Barrett

Adapting to NUMA architectures

CPU locality btl_eager_limit pipe_size use_knem DMA_min

Tigerton No shared L2 2k 0.5 * L1 size true 2MB

Nehalem EP No shared L2 4k 0.5 * L1 size false 0

Tigerton Shared L2 2k L1 size true 4MB

Collective communications

Hierarchical Collectives Software
Layers - Cheetah

Basic Collectives Framework Subgroup Framework

IB IB

OFFLOAD
Pt2Pt SM Socket IBNET Shared

Memory

Collective Framework

Tuned (pt2pt)
Collectives Comp.

MLNX
OFED

ML – Hierarchical
Collectives Comp.

MLNX
OFED

Module Component Architecture

OMPI

Barrier – Comparison with Native
MPI

0
20
40
60
80

100
120

0 1000 2000 3000 4000 5000 6000 7000

La
te

nc
y

(m
ic

ro
se

c.
)

Processor Cores

Cray MPI
Cheetah radix 3
Cheetah radix 6

50
100
150
200
250
300
350

0 10000 20000 30000 40000 50000

La
te

nc
y

(m
ic

ro
se

c.
) Cray MPI

Cheetah radix 3
Cheetah radix 6

Native MPI

Native MPI

Large-Scale Broadcast Performance:
OMPI vs Native MPI large message 16 MBytes

50000

100000

150000

200000

250000

0 5000 10000 15000 20000 25000

La
ten

cy
 (m

icr
os

ec
.)

Processor cores

Cray MPI
Cheetah three-level known k-nomial

Cheetah three-level unknown k-nomial
Cheetah three-level known n-ary

Cheetah sequential bcast

Native MPI

Non-blocking Bcast Overlap – IB CORE-
Direct

0%

20%

40%

60%

80%

100%

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07 1.6e+07 1.8e+07

Ov
er

lap

Message Size (bytes)

 OMPI Cheetah Offloaded Bcast Min (iboffload)
 OMPI Cheetah Offloaded Bcast Max (iboffload)
 OMPI Cheetah Offloaded Bcast Avg (iboffload)

 OMPI Cheetah Host Bcast Min (p2p)
 OMPI Cheetah Host Bcast Max (p2p)
 OMPI Cheetah Host Bcast Avg (p2p)

Architecture aware collective

0
20
40
60
80

100
120
140
160
180
200

4096 8192 16384 32768 65536 131072 262144 524288 1048576 2097152 4194304 8388608 16777216 33554432 67108864

B
W

(G
B

/s
)

Message Size(Bytes)

Bcast Aggregate BW on parapluie(27 nodes, 24 cores/node,20 G IB)

HierKNEM Open MPI Tuned(KNEM) MVAPICH2_LIMIC

0

20

40

60

80

100

120

140

160

180

4096 8192 16384 32768 65536 131072 262144 524288 1048576 2097152 4194304 8388608 16777216 33554432 67108864

B
W

(G
B

/s
)

message size(Bytes)

Reduce Aggregate BW on parapluie(27 nodes, 24core/node, 20 G IB)

HierKNEM Open MPI Tuned(KNEM) MVAPICH2_LIMIC

Jeff Squyres

Cisco

Cisco 1st Gen. Ethernet MPI Transport
Technology Preview

•  Demo in Cisco booth (#1317)
! New Open MPI BTL (point-to-point transport)

!  Ethernet NetPIPE latency: 5.17us

•  Using Linux VFIO technology
! NOTE: VFIO is not upstream yet

•  This is not RoCE, not iWARP

•  Cisco 2nd generation NIC coming “soon”
!  Latency will be significantly lower than 5.17us

Processor Affinity

•  Core counts are rising

•  Users are asking for powerful, flexible
affinity controls
!  Bind processes to an entire sockets

!  Bind processes to half the cores in a socket

!  Bind processes to a NUMA locality

! …etc.

•  Joint work between Cisco, Oracle, ORNL

Processor Affinity

•  Processor affinity revamp
! Overview presented at SC’10 SoU BOF

!  Took a loooong time to implement

•  Branched for this work last year
!  Just folded first major part back to SVN trunk

! More coming soon (still testing)

•  Slated for v1.7
! We need real-world feedback

Processor Affinity

•  mpirun reads from
compute nodes
!  Sockets, cores,

threads, caches,
NUMA, etc.

!  Maps MPI processes
according to what
exists

•  Useful for:
!  Dissimilar head node

!  Heterogeneous

mpirun

Compute nodes

Processor Affinity

•  Clarified, fixed mpirun affinity options
!  --map-by <entity>
!  --bind-to <entity>

•  New options for flexible mapping / binding
!  Inspired by Blue Gene XYZ specification

!  --map <letter sequence>
!  --bind <letter sequence>
!  Letters for thread, core, socket, NUMA node,

caches, server node

Jeff Squyres

The (Continuing) Road to MPI-3

MPI-3 Prototyping Work

•  MPI-3 has a “freely available
implementation” requirement
! Much work being prototyped in Open MPI

! Will help speed our final implementation

MPI-3 Prototyping Work

•  New Fortran ‘08 bindings
! Compile-time sub. parameter type safety

! Unique types for MPI handles

!  Safe non-blocking MPI functionality (when
compilers support it)

•  Better “use mpi” implementation
! …except for gfortran $

•  Craig Rasmussen (Los Alamos National
Labs), Jeff Squyres (Cisco)

MPI-3 Prototyping Work

•  MPI_MPROBE
! Matched probe

! Helpful for threaded MPI apps

! Helpful for upper-level bindings (e.g., Python)

•  Almost ready to be folded back to SVN
trunk

•  Brian Barrett (Sandia National Labs)

MPI-3 Prototyping Work

•  Run-through stabilization prototype
! Gracefully allow for process failure(s)

! New MPI API functions

!  Adapt underlying MPI run-time to not
automatically kill the entire job

! Define what happens in the MPI layer

•  Josh Hursey (Oak Ridge National Labs)

MPI-3 Prototype Work

•  New one-sided / RMA chapter
!  Implementation on Portals

!  Tweaking of infrastructure for other underlying
transports

•  Almost ready to be folded back to SVN
trunk

•  Brian Barrett (Sandia National Labs)

MPI Forum = Needs Feedback

•  MPI Forum BOF tonight
!  5:30pm, TCC 301/302

!  Slides to be posted on meetings.mpi-forum.org

•  PLEASE send your feedback
! Many of the Forum are implementers

! Need real world user feedback

•  Next face-to-face meeting:
! Cisco, San Jose, CA, USA, Jan. 9-11, 2012

George Bosilca

Community Questions

•  Community questions
!  Feedback: http://www.open-mpi.org/sc2011

Come Join Us!

http://www.open-mpi.org/

