
Finding Memory errors in
MPI applications

Rainer Keller – HLRS
Shiqing Fan – HLRS

Michael Resch – HLRS

Cisco Booth Talk, SC2010, New Orleans

Overview

• Introduction to

§ MPI 2.2

§ Open MPI

§ Valgrind

• Memchecker Component for Memory checking in Open MPI

• MPI application Checks available

• Conclusion

Introduction to MPI-2.2

• MPI is the standard for efficient, scalable parallelization paradigm and has
been shown to worn on PFlops machines (IBM BlueGene, Cray XEs, Linux)

• The current official standard version is MPI-2.2.

• E.g.: Usage of buffers, that are to be send immediately (non-blocking):
§ Old: may not be read or written to by the application.
§ New: may be read from by the application.

• This affects the usage of the memchecker tool, as we will see.

• Features of Open MPI:
§ Full MPI-2.1 implementation,
§ Fast, reliable and extensible,
§ Production-grade code quality

as a base for research.
• Current status:

§ Stable: v1.4.3 since Oct. 5th.
§ Feature: v1.5 since Oct. 10th.

About Open MPI

PACX-MPI
LAM/MPI

LA-MPI
FT-MPI

Open MPI Architecture

• The Modular Component Architecture (MCA -- think plugin) allows:
§ Dynamically load available modules and check for hardware
§ Select best modules and unload others (e.g. if hw not available)
§ Fast indirect calls into each component.

MPI-Layer

PML

BML

OpenIB
BTL

Rcache

MPool

Rcache

MPool...
BTL

SM
BTL

• Very versatile setup for varying installations (ship one RPM)

• Allows easy integration of new functionality

Introduction into Valgrind

• An Open-Source Debugging & Profiling tool

• Works with dynamically & statically linked applications

• Emulates CPU:
i.e. executes instructions on a synthetic x86/Opteron/Power

• It‘s easily configurable to ease debugging & profiling through tools:
§ Cachegrind: A memory & cache profiler
§ Helgrind: Find Races in multithreaded programs
§ Callgrind: A Cache & Call-tree profiler
§ Memcheck: Every memory access is being checked…

Introduction into Valgrind

• Memcheck tool scans for:
§ Use of uninitialized memory
§ Malloc Errors:

• Usage of free‘d memory
• Double free
• Reading/writing past malloc’d memory
• Lost memory pointers
• Mismatched malloc/new & free/delete

§ Stack write errors
§ Overlapping arguments to system functions like memcpy.

• Why not use this functionality for MPI checking purposes?

Open MPI valgrind extension

• Detect application’s memory violation of MPI-standard:
§ Application’s usage of undefined data
§ Application’s memory access due to MPI-semantics

• Detect Non-blocking/One-sided communication errors:
§ Functions in BTL layer for both communications
§ Set memory accessibility independent of MPI operations
§ i.e. only set accessibility for the fragment to be sent/received

• MPI object checking:
§ Check definedness of MPI objects that passing to MPI API
§ MPI_Status, MPI_Comm, MPI_Request and MPI_Datatype
§ Could be disabled for better performance

Open MPI memchecker

• Non-blocking send/receive buffer error checking

MPI-Layer

PML
P2P Management Layer

BML
BTL Management Layer

BTL
Byte Transfer Layer

Buffer

not accessible

not accessible

Fragn

MPI_Isend

Proc0 Proc1

MPI_Irecv

MPI_Wait
MPI_Wait

Inaccessible

unaddressable

Frag1

Frag0

Fragn

Inaccessible

unaddressable

Open MPI memchecker

• Access to buffer under control of MPI:
MPI_Irecv (buffer, SIZE, MPI_CHAR, …, &request);

buffer[1] = 4711;

MPI_Wait (&request, &status);

• Side note: CRC-based methods do not reliably catch these cases.

• Memory that is outside receive buffer is overwritten :
buffer = malloc(SIZE * sizeof(MPI_CHAR));

memset (buffer, SIZE * sizeof(MPI_CHAR), 0);

MPI_Recv(buffer, SIZE+1, MPI_CHAR, …, &status);

• Side note: MPI-1, p21, rationale of overflow situations: “no memory that
outside the receive buffer will ever be overwritten.”

Open MPI memchecker

• Side note: This field should remain undefined.

§ MPI-1, p22 (not needed for calls that return only one status)

§ MPI-2, p24 (Clarification of status in single-completion calls).

• Usage of the Undefined Memory passed from Open MPI
MPI_Wait(&request, &status);

if (status.MPI_ERROR != MPI_SUCCESS)

• Write to buffer before accumulate is finished :
MPI_Accumulate(A, NROWS*NCOLS, MPI_INT, 1, 0, 1,

expose, MPI_SUM, win);

A[0][1] = 4711;

MPI_Win_fence(0, win);

Open MPI memchecker

• Non-blocking buffer accessed/modified before finished
MPI_Isend (buffer, SIZE, MPI_INT, …, &request);

buffer[1] = 4711;

MPI_Wait (&req, &status);

• Historic side note:

§ MPI-1, p30, Rationale for restrictive access rules; “allows better
performance on some systems”.

MPI_Isend (buffer, SIZE, MPI_INT, …, &request);

result[1] = buffer[1];

MPI_Wait (&request, &status);

• The standard does now allow read access:

Open MPI memchecker extension

• To allow this checking (and more), valgrind extensions:

MPI_Isend (buffer, SIZE, MPI_INT, …, &request);

result[1] = buffer[1];

MPI_Wait (&request, &status);

buffer[1]

Thank You

• Thank You very much!

