A Resilient Runtime Environment for HPC and Internet Core Router Systems

Tim Mattox, Ph.D. (timattox@cisco.com)
Technical Leader, Engineering
SPRTG Projects

A Multiple Institution Project

- Cisco Team
 - Ralph Castain
 - Timothy I. Mattox
 - Robert M. Broberg
 - Jeffrey M. Squyres

- University Collaborators
 - Joshua Hursey, Indiana University
 - Chase Cotton, University of Delaware
 - Jonathan M. Smith, University of Pennsylvania

- Open MPI Project, http://www.open-mpi.org/
HPC and Internet Core Router Systems

- Highly parallel with various processor interconnects
- Trends that lower the whole system MTBF
 - Systems are growing in size and complexity
 - Increasing demands for new features
- Different fault tolerance needs
 - HPC Systems need long uptimes to effectively run large parallel applications
 - Internet Core Routers need non-stop operation to not disrupt services
 - IP Telephony
 - Video Conferencing

HPC System Architecture Slice

Node A

Node B

Node C

Node D

Node E

Node F
Internet Core Router Control Plane

Processor A
- BGP 0
- IS-IS 1

Processor B
- IS-IS 0
- BGP 2

Processor C
- BGP 1
- IS-IS 2

Processor D

Processor E

Processor F

Common Infrastructure

Node A
- Proc 0
- Proc 0
- RTE

Node B
- Proc 0
- Proc 1
- RTE

Node C
- Proc 1
- Proc 2
- RTE

Node D
- Proc 1
- Parent/Child Relationship
- RTE

Node E
- Proc 2
- RTE

Node F
- Proc 2
- RTE
Open MPI's Runtime Environment (ORTE)

- Open Source (New BSD License)
 - 27 total Member, Partner, and Contributor organizations
- Modular Component Architecture (MCA)
 - Provides flexibility
 - Supports good software engineering practice

A Resilient Runtime Environment Needs

- Fault Detection
- Fault Recovery
- Fault Prediction
- Fault Group Model
Our Additions/Enhancements to ORTE

- Sensor Framework
- Recovery Service (RecoS) Framework
- Resilient Mapper Component
- ClusterManager Routed Component

Example Fault Detection
Example Fault Detection

Example Fault Recovery
Example Fault Recovery

Example Fault Prediction
Example Fault Prediction

Node A: BGP 0, DHT 0
Node B: BGP 1, DHT 2
Node C: BGP 1, DHT 0
Node D: IS-IS 1, ORTED
Node E: BGP 2, IS-IS 0
Node F: IS-IS 2, ORTED

Example Fault Prediction

Node A: BGP 0, DHT 0
Node B: BGP 1, DHT 1
Node C: BGP 1, DHT 2
Node D: IS-IS 1, ORTED
Node E: BGP 2, IS-IS 0
Node F: IS-IS 2, DHT 1

Migrate to Node C...
Preliminary Results

- **Non-MPI process restart in ~6 milliseconds**
 - Local shell script takes ~3 milliseconds to start a process
 - Remote shell script takes ~80 milliseconds via ssh

- **MPI process migration vs. checkpoint/restart**
 - 128 process LAMMPS metallic solid benchmark
 - 6 GB of state distributed on 32 nodes
 - Factor of five reduction in overhead migrating 4 processes vs. checkpoint/restart
Example MPI Process Migration

Example MPI Process Migration
Example MPI Process Migration

Example MPI Process Migration
Some Planned Future Extensions

- More sensor components
- More and better fault prediction algorithms
- More fault detection techniques
- Interface with more external fault notification systems

Conclusions

The overlap of goals for HPC and Internet Core Router System resiliency has resulted in a synergistic advancement in the Open MPI Runtime Environment software.

For more information:
See our poster (#47) in the Oregon Ballroom Lobby
Visit the Reliable Router Research (R3) website
http://r3.cis.upenn.edu/