A Resilient Runtime Environment for HPC and Internet Core Router Systems

Tim Mattox, Ph.D. (timattox@cisco.com)
Technical Leader, Engineering
SPRTG Projects
A Multiple Institution Project

- Cisco Team
 - Ralph Castain
 - Timothy I. Mattox
 - Robert M. Broberg
 - Jeffrey M. Squyres

- University Collaborators
 - Joshua Hursey, Indiana University
 - Chase Cotton, University of Delaware
 - Jonathan M. Smith, University of Pennsylvania

- Open MPI Project, http://www.open-mpi.org/
HPC and Internet Core Router Systems

- Highly parallel with various processor interconnects
- Trends that lower the whole system MTBF
 - Systems are growing in size and complexity
 - Increasing demands for new features
- Different fault tolerance needs
 - HPC Systems need long uptimes to effectively run large parallel applications
 - Internet Core Routers need non-stop operation to not disrupt services
 - IP Telephony
 - Video Conferencing
HPC System Architecture Slice

Node A

Node B

Node C

Node D

Node E

Node F
Internet Core Router Control Plane

- Processor A
 - BGP 0

- Processor B
 - IS-IS 0

- Processor C
 - BGP 1

- Processor D
 - IS-IS 1

- Processor E
 - BGP 2

- Processor F
 - IS-IS 2
Common Infrastructure

Diagram showing the relationships between different nodes and processes, with nodes A, B, C, D, E, and F, and processes 0, 1, and 2, illustrating parent/child relationships and RTE connections.
Open MPI's Runtime Environment (ORTE)

- Open Source (New BSD License)
 - 27 total Member, Partner, and Contributor organizations

- Modular Component Architecture (MCA)
 - Provides flexibility
 - Supports good software engineering practice
A Resilient Runtime Environment Needs

- Fault Detection
- Fault Recovery
- Fault Prediction
- Fault Group Model
Our Additions/Enhancements to ORTE

- Sensor Framework
- Recovery Service (RecoS) Framework
- Resilient Mapper Component
- ClusterManager Routed Component
Example Fault Detection
Example Fault Detection
Example Fault Recovery
Example Fault Recovery

- **Node A**: BGP 0 → DHT 0
- **Node B**: DHT 1 (Red cross)
- **Node C**: BGP 1 → DHT 2
- **Node D**: IS-IS 1
- **Node E**: BGP 2 → IS-IS 0'
- **Node F**: IS-IS 2

All nodes are in ORTED state.
Example Fault Prediction
Example Fault Prediction
Example Fault Prediction
Example Fault Prediction
Preliminary Results

- Non-MPI process restart in ~6 milliseconds
 - Local shell script takes ~3 milliseconds to start a process
 - Remote shell script takes ~80 milliseconds via ssh

- MPI process migration vs. checkpoint/restart
 - 128 process LAMMPS metallic solid benchmark
 - 6 GB of state distributed on 32 nodes
 - Factor of five reduction in overhead migrating 4 processes vs. checkpoint/restart
Example MPI Process Migration

Diagram of node connections and MPI process migration.
Some Planned Future Extensions

- More sensor components
- More and better fault prediction algorithms
- More fault detection techniques
- Interface with more external fault notification systems
Conclusions

The overlap of goals for HPC and Internet Core Router System resiliency has resulted in a synergistic advancement in the Open MPI Runtime Environment software.

For more information:
See our poster (#47) in the Oregon Ballroom Lobby
Visit the Reliable Router Research (R3) website
http://r3.cis.upenn.edu/