

Outline

- Goal
- Forum Structure
- · Meeting Schedule
- Scope
- Voting Rules

LEADERSHIP COMPUTING FACILITY

Goal

To produce new versions of the MPI standard that better serves the needs of the parallel computing user community

COMPUTING FACILIT

Structure

- · Chairman and Convener: Rich Graham
- · Secretary: Jeff Squyres
- · Steering committee:

Jack Dongarra

Al Geist

Rich Graham

Bill Gropp

Andrew Lumsdaine

Rusty Lusk

Rolf Rabenseifner

LEADERSHIP COMPUTING FACILITY U.S. Department of Energy 4

Oak Ridge National Laborator

MPI 2.2 - Scope

Scope: Small changes to the standard. A small change is defined as one that does not break existing user code - either by interface changes or semantic changes - and does not require large implementation changes.

Lead: Bill Gropp

LEADERSHIP COMPUTING FACILITY

((5)

- Released Sept 4th, 2009 in Helsinki, Finland
- Highlights
 - Modernize C and Fortran language support
 - Deprecate C++ bindings
 - Fix graph interface scalability issues
 - Allowing concurrent read access to user send buffers
 - Many miscellaneous corrections

LEADERSHIP

Oak Ridge National Laboratory

MPI 3.0 - Scope

Additions to the standard that are needed for better platform and application support. These are to be consistent with MPI being a library providing of parallel process management and data exchange. This includes, but is not limited to, issues associated with scalability (performance and robustness), multi-core support, cluster support, and application support.

Lead: Rich Graham

Backwards compatibility maybe maintained - Routines may be deprecated

LEADERSHIP

((5)

- Target release date: Still being release
 - Considering Sept, 2011, with incremental draft standard releases
- Comments on plan are solicited:

http://mpi-forum.questionpro.com/

Password: mpi3

Mailing list: mpi-comments@mpi-forum.org

Subscribe at: http://lists.mpi-forum.org/

LEADERSHIP

Oak Ridge National Laboratory

U.S. Department of Energy

Current Active Working Groups

- Collective Operations and Topologies: Torsten Hoefler Andrew Lumsdaine - Indiana University
- Backwards Compatibility David Solt, HP
- Fault Tolerance : Richard Graham Oak Ridge National Laboratory
- Fortran Bindings: Craig Rasmussen Los Alamos National Laboratory
- Remote Memory Access: Bill Gropp, University of Ilinois Champaign/Urbana - Rajeev Thakur, Argonne National Laboratory
- Tools support: Martin Schulz and Bronis de Supinski, Lawrence Livermore National Laboratory
- Hybrid Programming: Pavan Balaji, Argonne National Laboratory

LEADERSHIP

ment of Energy

Oak Ridge National Laboratory

Backward Compatibility - Charter

- Address backward compatibility issues
- The goal is to provide recommendations to MPI 3.0 proposals and introduce new proposals when appropriate to provide a reasonable transition of MPI 2.x users and the implementations that support those users to MPI 3.0 without hindering the general goals of MPI 3.0.

Backward Compatibility Premises

- MPI-2 code should run on MPI-3 implementations without substantial source code changes
 - substantial == ? not easily automated
- 3.0 document must not require indefinite support for multiple versions of the standard.
 - a transition period may be acceptible

LEADERSHIP

U.S. Department of Energ

Backward Compatibility Current Idea

- Use symbol-specific version numbering, with macro (or weak symbol?) mapping the "best" name to most current name, by default.
- Use a global preprocessor macro to map all versioned symbols to the version provided by a particular version of MPI standard.
- Use symbol-specific macro to override version mapping for a particular symbol.

LEADERSHIP

OLDIL N. C. H. L.

Oak Ridge National Laboratory

Backward Compatibility - Examples

- Size of the count argument in interface functions
 - int MPI_Isend(void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm, MPI_Request *request)
 - Maybe add MPI_Count handle
 - Do we add a 2nd set of interface functions?
 - int MPI_Isend_ex(void *buf, MPI_Count count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm, MPI_Request *request)
 - Do we break backward compatibility?
 - int MPI_Isend(void *buf, MPI_Count count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm, MPI_Request *request)
 - Do we just leave this as is?

LEADERSHIP

(65)

Collective Operations

Goals:

- update the collective communication functions based on our experience since MPI-2.1
- enable more scalable design and more flexible specification of application communication patterns
- enable intelligent mapping and optimization strategies for application communications
- explore new ways to express application communication (beyond point-to-point)
- discuss possible scalability issues (communicator and group management)
- collective communication support for higher-level libraries

Oak Ridge National Laboratory

Collective Operations

- Assumption:
 - the scale of systems increases steadily
 - hierarchical (e.g., multi-core) systems will become more common
 - capabilities of network interfaces increase
 - future network might be sparse and with lower effective bisection bandwidth
 - higher-level languages become more important in parallel programming

LEADERSHIP

(65

Collective Operations

Done:

- Nonblocking Collectives: part of MPI-3 draft standard
 - MPI_lbcast(&buf, 1, MPI_INT, 0, comm, &req)
 - /* compute */
 - MPI_Wait(&req, MPI_STATUS_IGNORE);
 - reference/preview implementation: LibNBC

Collective Operations

Under consideration:

- Topological Collectives
 - MPI_Neighbor_reduce(), MPI_Neighbor_alltoall(), MPI_Neighbor_gather()
 - Hoefler, Traeff: "Sparse Collective Operations for MPI"
- Streaming Collectives
 - react to data as it comes in
 - not decided yet, is there a need for this?
- · Persistent Collectives
 - persistent P2P does not seem to be used much

LEADERSHIP

(65

Fault Tolerance

- Goal: To define any additional support needed in the MPI standard to enable implementation of portable Fault Tolerant solutions for MPI based applications.
- Assumptions:
 - Backward compatibility is required.
 - Errors are associated with specific call sites.
 - An application may choose to be notified when an error occurs anywhere in the system.
 - An application may ignore failures that do not impact its MPI requests.
 - An MPI process may ignore failures that do not impact its MPI requests
 - An application that does not use collective operations will not require collective recovery
 - · Byzantine failures are not dealt with

LEADERSHIP

Oak Ridge National Laboratory

ent of Energy

U.S. Department of Energy

Fault Tolerance

- Goal: To define any additional support needed in the MPI standard to enable implementation of portable Fault Tolerant solutions for MPI based applications.
 - Support restoration of consistent internal state
 - Add support to for building fault-tolerant "applications" on top of MPI (piggybacking)

Fault Tolerance

Items being discussed

- Define consistent error response and reporting across the standard
- Clearly define the failure response for current MPI dynamics - master/slave fault tolerance
- Recovery of
 - Communictors
 - File handles
 - RMA windows
- Data piggybacking
- Dynamic communicators
- · Asynchronous dynamic process control

Oak Ridge National Laboratory

Remote Memory Access

- Goal: To provide improved support for Remote Memory Access.
 - Read-Modify-Write operations
 - Flexible RMA synchronization
 - Scalable (not global) completion
 - Registration of data for one-sided operations
 - Support for non-contiguous data, and for overlapping regions

Just getting off the ground

LEADERSHIP

- Current "proposals"
 - Fix performance issues within the current standard specification
 - New interface where users can specify
 - Completion semantics
 - Synchronous/Asynchronous
 - Ordering
 - Simplified implementation
 - Restricting use support (predefined data types)
 - User responsible for data consistency

LEADERSHIP

OLDIL N. C. III.

ment of Energy 2

Tools

- · The goal of the tools WG are interfaces to
 - Ease and standardize tool deployment and control
 - Enable more introspection into the internals of an MPI implementation
- · Support for wide range of tools, including, but not limited to
 - Performance measurements tools
 - Debuggers
 - Correctness checkers
- Motivation:
 - Provide reliable and portable interfaces
 - Ability to create cross-platform tools
- · All efforts are complimentary to the existing PMPI interface

LEADERSHIP

(6)

Oak Ridge National Laborator

Tools

- A Process Acquisition Interface close to the MPIR pseudo standard
 - Locate all MPI tasks for external tools
- A Performance Information Interface providing low level performance details
 - Access to configuration variables and MPI internal performance counters
- Symbol Detection Interface
 - Enable the dynamic detection of debugger extensions
- The existing Message Queue Interface with extensions for Collectives
 - Introspection of the messages queues during debugging.
- An interface to query information about opaque MPI handles
 - Ability for debuggers to show context for datatypes, communicators, ...

LEADERSHIP

Oak Ridge National Laboratory

U.S. Department of Energy

Oak Riuge National Laboratory

There are Severe Problems with the Existing MPI Fortran Interfaces

- Use of "mpif.h" provides no type checking.
- The MPI Fortran module is impossible to fully implement in a standards-compliant way.
- Very scary issues with compiler optimizations:
 - The Fortran compiler may employ copyin/copyout semantics, thus completely interfering with asynchronous MPI calls.
 - The Fortran compiler can legally move code statements surrounding MPI_Wait calls. This may break code in an unpredictable fashion.

LEADERSHIP

(

Goals of the MPI-3 Fortran Effort

- Provide a Fortran standards-compliant mechanism to suppress copy-in/copy-out semantics and code motion for MPI asynchronous operations.
- Provide explicit interfaces that suppress argument checking for MPI choice buffers (C (void *) formal parameters).
- Allow vendors to take advantage of the Fortran 2003 interoperability standard with C.
- Examine the feasibility of simplifying the Fortran interfaces by making some of the arguments optional.
- Design a palatable application migration path from older MPI Fortran bindings to the new/proposed MPI-3 bindings.

Oak Ridge National Laboratory

Highlight of things to come

- New syntax has been added to the Fortran language, specifically for MPI interfaces using void * buffers, indicating any type, any rank:
 - TYPE(*), DIMENSION(..) :: buffer
- Derived types have been defined to enhance type safety:
 - -MPI Comm, MPI Datatype, MPI Errhandler, MPI Info, MPI Request, and MPI Status
- The ierr argument in Fortran calls is optional.
- TARGET and ASYNCHRONOUS attributes are to be employed by users to inhibit compiler optimizations.

LEADERSHIP

Hybrid Programming

- Goals:
 - -Ensure that MPI has the features necessary to facilitate efficient hybrid programming
 - -Investigate what changes are needed in MPI to better support:
 - Traditional thread interfaces (e.g., Pthreads, OpenMP)
 - Emerging interfaces (like TBB, OpenCL, CUDA, and Ct)
 - PGAS (UPC, CAF, etc.)

Example issues being addressed

- Threads as first-class citizens (rank != process)
 - Lockless Communication for MPI+threads
 - Allow MPI implementations to avoid internal locks when multiple threads communicate using MPI
 - Useful to boost performance on multi- and many-core architectures
- Interoperating MPI with PGAS languages
 - Hybrid programs that can make MPI and/or PGAS calls
- Additional API to improve programmability for MPI
 - + threads applications
- E.g., allowing a thread to receive the data related to a LEADER SAPULTY

On Line Information

meetings.mpi-forum.org

Meeting Schedule

Meeting logistics

Mailing list signup

Mail archives

Wiki pages for each working group

· Comments on plan are solicited:

http://mpi-forum.questionpro.com/

Password: mpi3

Mailing list: mpi-comments@mpi-forum.org

Subscribe at: http://lists.mpi-forum.org/

LEADERSHIP COMPUTING FACILITY

(65