
presented by

MPI Forum:
 Preview of the MPI 3 Standard

Richard L. Graham- Chairman

George Bosilca

2

Outline

•  Goal

•  Forum Structure

•  Meeting Schedule

•  Scope

•  Voting Rules

3

Goal

To produce new versions of the MPI
standard that better serves the
needs of the parallel computing

user community

4

Structure

•  Chairman and Convener: Rich Graham

•  Secretary: Jeff Squyres
•  Steering committee:

Jack Dongarra
Al Geist
Rich Graham
Bill Gropp
Andrew Lumsdaine
Rusty Lusk
Rolf Rabenseifner

presented by

MPI 2.2 Standad

6

MPI 2.2 - Scope

Scope: Small changes to the standard. A small change
is defined as one that does not break existing user
code - either by interface changes or semantic
changes - and does not require large implementation
changes.

Lead: Bill Gropp

•  Released Sept 4th, 2009 in Helsinki, Finland

•  Highlights
- Modernize C and Fortran language support
- Deprecate C++ bindings
- Fix graph interface scalability issues
- Allowing concurrent read access to user send

buffers
- Many miscellaneous corrections

7

8

presented by

MPI-3 Progress

10

MPI 3.0 - Scope

Additions to the standard that are needed for better platform and
application support. These are to be consistent with MPI being
a library providing of parallel process management and data
exchange. This includes, but is not limited to, issues associated
with scalability (performance and robustness), multi-core
support, cluster support, and application support.

Lead: Rich Graham

Backwards compatibility maybe
maintained - Routines may be

deprecated

•  Target release date: Still being release
- Considering Sept, 2011, with incremental draft

standard releases

•  Comments on plan are solicited:
http://mpi‐forum.questionpro.com/
Password: mpi3

Mailing list: mpi‐comments@mpi‐forum.org

Subscribe at: http://lists.mpi-forum.org/

11

12

Current Active Working Groups

•  Collective Operations and Topologies : Torsten Hoefler Andrew
Lumsdaine - Indiana University

•  Backwards Compatibility – David Solt, HP

•  Fault Tolerance : Richard Graham - Oak Ridge National
Laboratory

•  Fortran Bindings : Craig Rasmussen - Los Alamos National
Laboratory

•  Remote Memory Access : Bill Gropp, University of Ilinois
Champaign/Urbana - Rajeev Thakur, Argonne National
Laboratory

•  Tools support: Martin Schulz and Bronis de Supinski, Lawrence
Livermore National Laboratory

•  Hybrid Programming: Pavan Balaji, Argonne National
Laboratory

Backward Compatibility - Charter

-  Address backward compatibility issues
-  The goal is to provide recommendations to MPI 3.0

proposals and introduce new proposals when
appropriate to provide a reasonable transition of
MPI 2.x users and the implementations that
support those users to MPI 3.0 without hindering
the general goals of MPI 3.0.

Backward Compatibility Premises

-  MPI-2 code should run on MPI-3 implementations
without substantial source code changes
-  substantial == ? not easily automated

-  3.0 document must not require indefinite support for
multiple versions of the standard.
-  a transition period may be acceptible

Backward Compatibility Current Idea

•  Use symbol-specific version numbering, with macro
(or weak symbol?) mapping the “best” name to most
current name, by default.

•  Use a global preprocessor macro to map all versioned
symbols to the version provided by a particular
version of MPI standard.

•  Use symbol-specific macro to override version
mapping for a particular symbol.

Backward Compatibility - Examples

•  Size of the count argument in interface functions
-  int MPI_Isend(void *buf, int count, MPI_Datatype

datatype, int dest, int tag, MPI_Comm comm,
MPI_Request *request)
- Maybe add MPI_Count handle
- Do we add a 2nd set of interface functions ?

•  int MPI_Isend_ex(void *buf, MPI_Count count,
MPI_Datatype datatype, int dest, int tag, MPI_Comm
comm, MPI_Request *request)

- Do we break backward compatibility ?
•  int MPI_Isend(void *buf, MPI_Count count, MPI_Datatype

datatype, int dest, int tag, MPI_Comm comm,
MPI_Request *request)

- Do we just leave this as is ?

17

Collective Operations

Goals:
-  update the collective communication functions based on our

experience since MPI-2.1
-  enable more scalable design and more flexible specification

of application communication patterns
-  enable intelligent mapping and optimization strategies for

application communications
-  explore new ways to express application communication

(beyond point-to-point)
-  discuss possible scalability issues (communicator and group

management)
-  collective communication support for higher-level libraries

18

Collective Operations

•  Assumption:
-  the scale of systems increases steadily
-  hierarchical (e.g., multi-core) systems will become more

common
-  capabilities of network interfaces increase
-  future network might be sparse and with lower effective

bisection bandwidth
-  higher-level languages become more important in parallel

programming

19

Collective Operations

Done:

•  Nonblocking Collectives: part of MPI-3 draft standard
- MPI_Ibcast(&buf, 1, MPI_INT, 0, comm, &req)
-  /* compute */
- MPI_Wait(&req, MPI_STATUS_IGNORE);
-  reference/preview implementation: LibNBC

20

Collective Operations

Under consideration:

•  Topological Collectives
- MPI_Neighbor_reduce(), MPI_Neighbor_alltoall(),

MPI_Neighbor_gather()
-  Hoefler, Traeff: “Sparse Collective Operations for MPI”

•  Streaming Collectives
-  react to data as it comes in
-  not decided yet, is there a need for this?

•  Persistent Collectives
-  persistent P2P does not seem to be used much

21

Fault Tolerance

•  Goal: To define any additional support needed in the MPI
standard to enable implementation of portable Fault Tolerant
solutions for MPI based applications.

•  Assumptions:
•  Backward compatibility is required.
•  Errors are associated with specific call sites.
•  An application may choose to be notified when an error

occurs anywhere in the system.
•  An application may ignore failures that do not impact its MPI

requests.
•  An MPI process may ignore failures that do not impact its

MPI requests
•  An application that does not use collective operations will not

require collective recovery
•  Byzantine failures are not dealt with

22

Fault Tolerance

•  Goal: To define any additional support needed in the MPI
standard to enable implementation of portable Fault Tolerant
solutions for MPI based applications.
•  Support restoration of consistent internal state
•  Add support to for building fault-tolerant “applications” on top

of MPI (piggybacking)

23

Fault Tolerance

Items being discussed
•  Define consistent error response and reporting across the

standard
•  Clearly define the failure response for current MPI dynamics

- master/slave fault tolerance
•  Recovery of

•  Communictors
•  File handles
•  RMA windows

•  Data piggybacking
•  Dynamic communicators
•  Asynchronous dynamic process control

24

Remote Memory Access

•  Goal: To provide improved support for Remote
Memory Access.
- Read-Modify-Write operations
- Flexible RMA synchronization
- Scalable (not global) completion
- Registration of data for one-sided operations
- Support for non-contiguous data, and for

overlapping regions

Just getting off the ground

•  Current “proposals”
- Fix performance issues within the current standard

specification
- New interface where users can specify

•  Completion semantics
•  Synchronous/Asynchronous
•  Ordering

- Simplified implementation
•  Restricting use support (predefined data types)
•  User responsible for data consistency

25

Tools

•  The goal of the tools WG are interfaces to
-  Ease and standardize tool deployment and control
-  Enable more introspection into the internals of an MPI

implementation

•  Support for wide range of tools, including, but not limited to
-  Performance measurements tools
-  Debuggers
-  Correctness checkers

•  Motivation:
-  Provide reliable and portable interfaces
-  Ability to create cross-platform tools

•  All efforts are complimentary to the existing PMPI interface

26

Tools

•  A Process Acquisition Interface close to the MPIR pseudo standard
-  Locate all MPI tasks for external tools

•  A Performance Information Interface providing low level performance
details
-  Access to configuration variables and MPI internal performance

counters

•  Symbol Detection Interface
-  Enable the dynamic detection of debugger extensions

•  The existing Message Queue Interface with extensions for Collectives
-  Introspection of the messages queues during debugging.

•  An interface to query information about opaque MPI handles
-  Ability for debuggers to show context for datatypes,

communicators, ...

27

There are Severe Problems with the Existing
MPI Fortran Interfaces

•  Use of “mpif.h” provides no type checking.

•  The MPI Fortran module is impossible to fully
implement in a standards-compliant way.

•  Very scary issues with compiler optimizations:
- The Fortran compiler may employ copyin/copyout

semantics, thus completely interfering with
asynchronous MPI calls.
- The Fortran compiler can legally move code

statements surrounding MPI_Wait calls. This may
break code in an unpredictable fashion.

Goals of the MPI-3 Fortran Effort

•  Provide a Fortran standards-compliant mechanism to
suppress copy-in/copy-out semantics and code motion for
MPI asynchronous operations.

•  Provide explicit interfaces that suppress argument
checking for MPI choice buffers (C (void *) formal
parameters).

•  Allow vendors to take advantage of the Fortran 2003
interoperability standard with C.

•  Examine the feasibility of simplifying the Fortran interfaces
by making some of the arguments optional.

•  Design a palatable application migration path from older
MPI Fortran bindings to the new/proposed MPI-3 bindings.

Highlight of things to come

•  New syntax has been added to the Fortran language,
specifically for MPI interfaces using void * buffers,
indicating any type, any rank:
- TYPE(*), DIMENSION(..) :: buffer

•  Derived types have been defined to enhance type safety:
- MPI_Comm, MPI_Datatype, MPI_Errhandler,
MPI_Info, MPI_Request, and MPI_Status

•  The ierr argument in Fortran calls is optional.

•  TARGET and ASYNCHRONOUS attributes are to be
employed by users to inhibit compiler optimizations.

Hybrid Programming

• Goals:
- Ensure that MPI has the features necessary to

facilitate efficient hybrid programming
- Investigate what changes are needed in MPI to

better support:
•  Traditional thread interfaces (e.g., Pthreads, OpenMP)
•  Emerging interfaces (like TBB, OpenCL, CUDA, and Ct)
•  PGAS (UPC, CAF, etc.)

Example issues being addressed

•  Threads as first-class citizens (rank != process)
- Lockless Communication for MPI+threads
- Allow MPI implementations to avoid internal locks when

multiple threads communicate using MPI
- Useful to boost performance on multi- and many-core

architectures

•  Interoperating MPI with PGAS languages
- Hybrid programs that can make MPI and/or PGAS calls

•  Additional API to improve programmability for MPI
+ threads applications
- E.g., allowing a thread to receive the data related to a

request that it probed

Process Process Process

appl
thread

NI

appl
thread

NI

Process

appl
thread

NI

appl
thread

NI

appl
thread

Node Node

Process

appl
thread

NI

appl
thread

NI

Process

appl
thread

NI

appl
thread

NI

appl
thread

Node Node

Current Design

Proposed Design

Example Proposal: Threads with
Endpoints

MPI_COMM_EWORLD

•  Each MPI Endpoint has unique rank in
MPI_COMM_EWORLD
-  rank in derived communicators computed using MPI rules

•  MPI code executed by thread(s) attached to endpoint
-  Including collectives
-  thread is attached to at most one endpoint

Process

appl
thread

NI

appl
thread

NI

Process

appl
thread

NI

appl
thread

NI

appl
thread

0 1 2 3

35

On Line Information

 meetings.mpi-forum.org

 Meeting Schedule

 Meeting logistics

 Mailing list signup

 Mail archives

 Wiki pages for each working group

•  Comments on plan are solicited:
http://mpi‐forum.questionpro.com/
Password: mpi3

Mailing list: mpi‐comments@mpi‐forum.org

Subscribe at: http://lists.mpi-forum.org/

36

