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Goal 

To produce new versions of the MPI 
standard that better serves the 
needs of the parallel computing 

user community 
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Structure 

•  Chairman and Convener: Rich Graham 

•  Secretary: Jeff Squyres 
•  Steering committee: 

Jack Dongarra 
Al Geist 
Rich Graham 
Bill Gropp 
Andrew Lumsdaine 
Rusty Lusk 
Rolf Rabenseifner 
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MPI 2.2 Standad 
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MPI 2.2 - Scope 

Scope: Small changes to the standard.  A small change 
is defined as one that does not break existing user 
code - either by interface changes or semantic 
changes - and does not require large implementation 
changes. 

Lead: Bill Gropp 



•  Released Sept 4th, 2009 in Helsinki, Finland 

•  Highlights 
- Modernize C and Fortran language support 
- Deprecate C++ bindings 
- Fix graph interface scalability issues 
- Allowing concurrent read access to user send 

buffers 
- Many miscellaneous corrections 
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MPI-3 Progress 
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MPI 3.0 - Scope 

Additions to the standard that are needed for better platform and 
application support.  These are to be consistent with MPI being 
a library providing of parallel process management and data 
exchange.  This includes, but is not limited to, issues associated 
with scalability (performance and robustness), multi-core 
support, cluster support, and application support. 

Lead: Rich Graham 

Backwards compatibility maybe 
maintained - Routines may be 

deprecated 



•  Target release date: Still being release 
- Considering Sept, 2011, with incremental draft 

standard releases 

•  Comments on plan are solicited: 
http://mpi‐forum.questionpro.com/ 
Password: mpi3 

Mailing list: mpi‐comments@mpi‐forum.org 

Subscribe at: http://lists.mpi-forum.org/ 
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Current Active Working Groups 

•  Collective Operations and Topologies : Torsten Hoefler Andrew 
Lumsdaine - Indiana University 

•  Backwards Compatibility – David Solt, HP 

•  Fault Tolerance : Richard Graham - Oak Ridge National 
Laboratory 

•  Fortran Bindings : Craig Rasmussen - Los Alamos National 
Laboratory 

•  Remote Memory Access : Bill Gropp, University of Ilinois 
Champaign/Urbana - Rajeev Thakur, Argonne National 
Laboratory 

•  Tools support: Martin Schulz and Bronis de Supinski, Lawrence 
Livermore National Laboratory 

•  Hybrid Programming: Pavan Balaji, Argonne National 
Laboratory 



Backward Compatibility - Charter 

-  Address backward compatibility issues 
-  The goal is to provide recommendations to MPI 3.0 

proposals and introduce new proposals when 
appropriate to provide a reasonable transition of 
MPI 2.x users and the implementations that 
support those users to MPI 3.0 without hindering 
the general goals of MPI 3.0.  

Backward Compatibility Premises 

-  MPI-2 code should run on MPI-3 implementations 
without substantial source code changes  
-  substantial == ? not easily automated 

-  3.0 document must not require indefinite support for 
multiple versions of the standard. 
-  a transition period may be acceptible 



Backward Compatibility Current Idea 

•  Use symbol-specific version numbering, with macro 
(or weak symbol?) mapping the “best” name to most 
current name, by default. 

•  Use a global preprocessor macro to map all versioned 
symbols to the version provided by a particular 
version of MPI standard. 

•  Use symbol-specific macro to override version 
mapping for a particular symbol. 

Backward Compatibility - Examples 

•  Size of the count argument in interface functions 
-  int MPI_Isend( void *buf, int count, MPI_Datatype 

datatype, int dest, int tag, MPI_Comm comm, 
MPI_Request *request )  
- Maybe add MPI_Count handle 
- Do we add a 2nd set of interface functions ? 

•  int MPI_Isend_ex( void *buf, MPI_Count count, 
MPI_Datatype datatype, int dest, int tag, MPI_Comm 
comm, MPI_Request *request )  

- Do we break backward compatibility ? 
•  int MPI_Isend( void *buf, MPI_Count count, MPI_Datatype 

datatype, int dest, int tag, MPI_Comm comm, 
MPI_Request *request )  

- Do we just leave this as is ? 
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Collective Operations 

Goals: 
-  update the collective communication functions based on our 

experience since MPI-2.1  
-  enable more scalable design and more flexible specification 

of application communication patterns  
-  enable intelligent mapping and optimization strategies for 

application communications  
-  explore new ways to express application communication 

(beyond point-to-point)  
-  discuss possible scalability issues (communicator and group 

management)  
-  collective communication support for higher-level libraries  

18 

Collective Operations 

•  Assumption:  
-  the scale of systems increases steadily  
-  hierarchical (e.g., multi-core) systems will become more 

common  
-  capabilities of network interfaces increase  
-  future network might be sparse and with lower effective 

bisection bandwidth  
-  higher-level languages become more important in parallel 

programming  
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Collective Operations 

Done: 

•  Nonblocking Collectives: part of MPI-3 draft standard 
- MPI_Ibcast(&buf, 1, MPI_INT, 0, comm, &req) 
-  /* compute */ 
- MPI_Wait(&req, MPI_STATUS_IGNORE); 
-  reference/preview implementation: LibNBC 
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Collective Operations 

Under consideration: 

•  Topological Collectives 
- MPI_Neighbor_reduce(), MPI_Neighbor_alltoall(), 

MPI_Neighbor_gather() 
-  Hoefler, Traeff: “Sparse Collective Operations for MPI” 

•  Streaming Collectives 
-  react to data as it comes in 
-  not decided yet, is there a need for this? 

•  Persistent Collectives 
-  persistent P2P does not seem to be used much 
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Fault Tolerance 

•  Goal: To define any additional support needed in the MPI 
standard to enable implementation of portable Fault Tolerant 
solutions for MPI based applications. 

•  Assumptions: 
•  Backward compatibility is required. 
•  Errors are associated with specific call sites. 
•  An application may choose to be notified when an error 

occurs anywhere in the system. 
•  An application may ignore failures that do not impact its MPI 

requests. 
•  An MPI process may ignore failures that do not impact its 

MPI requests  
•  An application that does not use collective operations will not 

require collective recovery 
•  Byzantine failures are not dealt with 

22 

Fault Tolerance 

•  Goal: To define any additional support needed in the MPI 
standard to enable implementation of portable Fault Tolerant 
solutions for MPI based applications. 
•  Support restoration of consistent internal state 
•  Add support to for building fault-tolerant “applications” on top 

of MPI (piggybacking) 
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Fault Tolerance 

Items being discussed 
•  Define consistent error response and reporting across the 

standard 
•  Clearly define the failure response for current MPI dynamics 

- master/slave fault tolerance 
•  Recovery of 

•  Communictors 
•  File handles 
•  RMA windows  

•  Data piggybacking  
•  Dynamic communicators 
•  Asynchronous dynamic process control 
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Remote Memory Access 

•  Goal: To provide improved support for Remote 
Memory Access. 
- Read-Modify-Write operations 
- Flexible RMA synchronization 
- Scalable (not global) completion 
- Registration of data for one-sided operations 
- Support for non-contiguous data, and for 

overlapping regions 

Just getting off the ground 



•  Current “proposals” 
- Fix performance issues within the current standard 

specification 
- New interface where users can specify 

•  Completion semantics 
•  Synchronous/Asynchronous 
•  Ordering 

- Simplified implementation 
•  Restricting use support (predefined data types) 
•  User responsible for data consistency 
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Tools 

•  The goal of the tools WG are interfaces to 
-   Ease and standardize tool deployment and control 
-   Enable more introspection into the internals of an MPI 

implementation 

•  Support for wide range of tools, including, but not limited to 
-   Performance measurements tools 
-   Debuggers 
-   Correctness checkers 

•  Motivation: 
-   Provide reliable and portable interfaces 
-   Ability to create cross-platform tools 

•  All efforts are complimentary to the existing PMPI interface 
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Tools 

•  A Process Acquisition Interface close to the MPIR pseudo standard 
-  Locate all MPI tasks for external tools 

•  A Performance Information Interface providing low level performance  
details 
-  Access to configuration variables and MPI internal performance  

counters 

•  Symbol Detection Interface 
-  Enable the dynamic detection of debugger extensions 

•  The existing Message Queue Interface with extensions for Collectives 
-  Introspection of the messages queues during debugging. 

•  An interface to query information about opaque MPI handles 
-  Ability for debuggers to show context for datatypes,  

communicators, ... 
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There are Severe Problems with the Existing 
MPI Fortran Interfaces 

•  Use of “mpif.h” provides no type checking. 

•  The MPI Fortran module is impossible to fully 
implement in a standards-compliant way. 

•  Very scary issues with compiler optimizations: 
- The Fortran compiler may employ copyin/copyout 

semantics, thus completely interfering with 
asynchronous MPI calls. 
- The Fortran compiler can legally move code 

statements surrounding MPI_Wait calls.  This may 
break code in an unpredictable fashion. 



Goals of the MPI-3 Fortran Effort 

•  Provide a Fortran standards-compliant mechanism to 
suppress copy-in/copy-out semantics and code motion for 
MPI asynchronous operations. 

•  Provide explicit interfaces that suppress argument 
checking for MPI choice buffers (C (void *) formal 
parameters). 

•  Allow vendors to take advantage of the Fortran 2003 
interoperability standard with C. 

•  Examine the feasibility of simplifying the Fortran interfaces 
by making some of the arguments optional. 

•  Design a palatable application migration path from older 
MPI Fortran bindings to the new/proposed MPI-3 bindings. 

Highlight of things to come 

•  New syntax has been added to the Fortran language, 
specifically for MPI interfaces using void * buffers, 
indicating any type, any rank: 
- TYPE(*), DIMENSION(..) :: buffer


•  Derived types have been defined to enhance type safety: 
- MPI_Comm, MPI_Datatype, MPI_Errhandler, 
MPI_Info, MPI_Request, and MPI_Status


•  The ierr argument in Fortran calls is optional. 

•  TARGET and ASYNCHRONOUS attributes are to be 
employed by users to inhibit compiler optimizations. 



Hybrid Programming 

• Goals: 
- Ensure that MPI has the features necessary to 

facilitate efficient hybrid programming  
- Investigate what changes are needed in MPI to 

better support:  
•  Traditional thread interfaces (e.g., Pthreads, OpenMP) 
•  Emerging interfaces (like TBB, OpenCL, CUDA, and Ct) 
•  PGAS (UPC, CAF, etc.) 

Example issues being addressed 

•  Threads as first-class citizens (rank != process) 
- Lockless Communication for MPI+threads 
- Allow MPI implementations to avoid internal locks when 

multiple threads communicate using MPI 
- Useful to boost performance on multi- and many-core 

architectures 

•  Interoperating MPI with PGAS languages 
- Hybrid programs that can make MPI and/or PGAS calls 

•  Additional API to improve programmability for MPI 
+ threads applications 
- E.g., allowing a thread to receive the data related to a 

request that it probed 
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Example Proposal: Threads with 
Endpoints 

MPI_COMM_EWORLD 

•  Each MPI Endpoint has unique rank in 
MPI_COMM_EWORLD 
-  rank in derived communicators computed using MPI rules 

•  MPI code executed by thread(s) attached to endpoint 
-  Including collectives 
-  thread is attached to at most one endpoint 
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On Line Information 

 meetings.mpi-forum.org 

 Meeting Schedule 

 Meeting logistics 

 Mailing list signup 

 Mail archives 

 Wiki pages for each working group 

•  Comments on plan are solicited: 
http://mpi‐forum.questionpro.com/ 
Password: mpi3 

Mailing list: mpi‐comments@mpi‐forum.org 

Subscribe at: http://lists.mpi-forum.org/ 
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