Open MPI State of the Union
Community Meeting SC’08

Dave Montoya Jeff Squyres George Bosilca

Agenda

• Open MPI Project / Community
• Current Status: v1.3
• Los Alamos / Petaflop
• Roadmap
• Upcoming Challenges
• HPC Community Feedback
Open MPI Is…

- Evolution of several prior MPI’s
- Open source project and community
 - Production quality
 - Vendor-friendly
 - Research- and academic-friendly
- All of MPI-1 / MPI-2

15 Members, 9 Contributors, 2 Partners
Why Does Open MPI Exist?

• Maximize all MPI expertise
 ▪ Research / academia
 ▪ Industry
 ▪ …elsewhere
• HPC / MPI is not free
 ▪ Need government, academic, and industry backing
• The sum is greater than the parts

Why Does Open MPI Work?

• How does the project stay together?
 ▪ Different organizations
 ▪ Different biases
 ▪ Different goals
 ▪ …these are exactly what make us strong
• Open MPI Project is like a marriage
 ▪ It takes a lot of work
 ▪ You need to find a good balance
 ▪ But the end result can be really, really great
Current Status: v1.3

Open MPI v1.3

- Release Managers:
 - Brad Benton (IBM)
 - George Bosilca (UTK)
- Expected as soon as possible after SC’08!

- First planning meeting: Feb 2007
- Aiming for beginning of 2008
- Possible features (subject to change / light grey indicates “unlikely”)
 - ConnectX XRC support
 - End-to-end data reliability
 - More scalability improvements
 - More compiler, run-time environment support
 - Fine-grained processor affinity control
Open MPI v1.3

- MPI 2.1 compliant
- The notifier framework
- Documentation (?!)
- More architectures, more OSes and more batch schedulers, and more compilers
- Thread safety:
 - Support included for some devices
 - Only the point-to-point support have been tested
- MPI_REAL16 and MPI_COMPLEX32

Open MPI v1.3

- Many (many) improvement to the MPI C++ bindings
- Valgrind support (memchecker)
- Update ROMIO to the version from MPICH2 1.0.7
- Condensed error messages
- Many little improvements
Open MPI v1.3

- Scalability
 - Keep the same on-demand connection setup as prior version
 - Decrease the memory footprint
 - Sparse groups and communicators
 - Less data in the business card
 - And a lot of improvements in the Open MPI RTE (our runtime system).
Open MPI v1.3

- Point-to-point Message Layer (PML)
 - Improved latency
 - Better adaptive algorithms for multi-rail support
 - Smaller memory footprint
- Collective Communications
 - More algorithms, more performance
 - Special shared memory collective
 - Hierarchical Collective active by default

Open MPI v1.3 (OpenFabrics)

- Many performance enhancements
- Added iWARP support
- "Bucket" SRQ support
- XRC support
- Message coalescing
- Asynchronous error events
- Automatic Path Migration (APM)
- Improved processor / port binding
- uDAPL enhancements
 - Multi-rail support
 - Subnet checking
 - Interface include/ exclude capabilities
Low Level Devices (BTL) Status

<table>
<thead>
<tr>
<th>Network</th>
<th>Dynamic Processes</th>
<th>Threading support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shared Memory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myrinet (MX)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myrinet (GM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infiniband (openib)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infiniband (ofed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sicortex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UDAFL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCTP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• All BTL devices support MPI 1 (pt-to-pt) and MPI 2 (RDMA) communications
• All devices support PERUSE
• Table on left shows BTL dynamic / threading status

NOTE: MTL components do not support threading
 • Use BTL equiv. (if available)
 • MX, Portals, PSM

Open MPI v1.3

• Fault Tolerance
 ▪ Coordinated checkpoint/restart
 ▪ Support BLCR and self
 ▪ Able to handle real process migration (i.e. change the network during the migration)
 • MX, IB, TCP, SM, self
 ▪ Improved Message Logging (under 5% overhead).
Los Alamos + Scalability = Petaflop

Petaflop!!

- Los Alamos Road Runner
- #1 on Nov. 2008 Top500
 - 1.1 petaflops
- Powered by Open MPI
 - Significant community achievement
OMPI 1.3: Lean, Mean OMPI Machine

We Shared Your Pain

• Scalability
 ▪ Reduce launch times by order of magnitude
 ▪ Reliable cleanup, robustness

• User features
 ▪ Simplify & combine frequently used multiple params into one option
 ▪ Extend usability based on feedback
 ▪ Better, easier debug and error messages

• Maintainability
 ▪ Cleanup, simplify program flow
 ▪ Remove everything not required for OMPI

How Did We Do?

<table>
<thead>
<tr>
<th>#procs</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>256</td>
<td></td>
</tr>
<tr>
<td>512</td>
<td></td>
</tr>
<tr>
<td>1024</td>
<td></td>
</tr>
<tr>
<td>2048</td>
<td></td>
</tr>
<tr>
<td>4096</td>
<td></td>
</tr>
<tr>
<td>8192</td>
<td></td>
</tr>
<tr>
<td>12288</td>
<td></td>
</tr>
</tbody>
</table>

- mpi_no_op
Old vs. New (rrz)

 mpi_no_op

 RR 18CU’s = ~50s

#sec

#procs (8ppn)

Old vs. New (rrz)

 mpi_no_op

 RR 18CU’s = ~100s

#sec

#nodes (8ppn)
Runtime New Features

• New mapping algorithms
 ▪ Sequential
 ▪ Loadbalanced
 ▪ Rank/slot direct mapping of ranks to sockets and cores

• Resource Definition
 ▪ Clarified hostfile, -host, RM-allocation interactions
 ▪ Relative node indexing

Runtime New Features

• --display-map
 ▪ Displays map of nodes and ranks

• --display-allocation
 ▪ What nodes have been allocated to job

• --leave-session-attached
 ▪ Maintains connection to daemons without ORTE diagnostic output
Runtime New Features

• Routed out-of-band communications
 ▪ MPI remains point-to-point
 ▪ OOB routes all messages through local daemon
 ▪ Connection count on node
 • 1.2.x: #procs_on_node x #procs_in_job
 • 1.3: #nodes_in_job
 • Example: 1024 procs on 256 nodes (4ppn)
 ▪ 4096 connections => 256 connections
• -mca ompi_show_mca_param
 ▪ Shows what mca params are being seen by the MPI ranks themselves, and where they were set

Roadmap
Possible Future Features

- **BIG** disclaimer
 - We are in the planning phase of v1.4 only
 - Features discussed here are *possible*
 - Nothing has been fully decided yet

- Not seeing something you want?
 - Come join us!

Possible Future Features

- Run-time parameter usability options
 - So many parameters, so little time…
 - Ability to sysadmin “lock” parameter values
 - Spelling checks, validity checks

- Run-time system improvements
 - Next generation launcher
 - Integration with other run-time system
Possible Future Features

• More processor and memory affinity support
 ▪ Usability features (a la Sun ClusterTools 6)
 ▪ Automatic mappings, cartography discovery
 ▪ “Topology awareness”
 ▪ …? (manycore / networking kinds of issues)

• [More] Shared memory improvements
 ▪ Allocation sizes, sharing
 ▪ Scalability to manycore

Possible Future Features

• I/O redirection features
 ▪ Line-by-line tagging
 ▪ Output multiplexing
 ▪ “Screen”-like features

• Error message notification flexibility
 ▪ Communicate with network / cluster monitoring systems
 ▪ Multiple degrees of warnings / errors
Possible Future Features

- OpenFabrics
 - Asynchronous progress for long messages
 - IBCM support (scalability)
 - Investigate UD (e.g., collectives)
 - Combine shared memory + verbs for on-host communications
 - Relaxed PCIe ordering

Possible Future Features

- Blocking progress
- MPI connectivity map
- Refresh included software
 - Libevent, ROMIO, …
- Separate BTL’s into standalone entities
 - Build something other than MPI…?
- Progress thread / asynchronous progress
Upcoming Challenges

Challenges

• Fault Tolerance
 ▪ Uncoordinated + Message Logging
 ▪ Similar with FT-MPI approach
 • Or try to stay in sync with the MPI Forum

• Scalability
 ▪ At the runtime level
 ▪ And at the MPI level
Challenges

• Collective Communications
 ▪ Deal with the size
 ▪ Take advantage of the physical topology
 ▪ Figure out when to switch between collective algorithms

• Point-to-point
 ▪ Even more performance
 ▪ And scalability (shared memory and all)

HPC Community Feedback
What do You Want From MPI?

• MPI-2.1 is complete
 ▪ Merged MPI-1 and MPI-2 documents (yay!)
 ▪ $22 printed books (586 pages!), HLRS booth #1353
• The MPI Forum needs your help!
 ▪ What do you want to see in MPI-3.0?
 ▪ What do you *not* want to see in MPI-3.0?

Ernest Hemingway:

When people talk, listen completely.
Most people never listen.

(we’re listening; you talk now)
What do You Want From MPI?

Franklin D. Roosevelt:

Be sincere; be brief; be seated.

(we’re listening; you talk now)

How Important Is…

• Thread safety
 ▪ Multiple threads making simultaneous MPI calls
• Parallel I/O
 ▪ Working with parallel file systems
• Dynamic processes
 ▪ Spawn, connect / accept
• One-sided operations
 ▪ Put, get, accumulate
Come Join Us!

http://www.open-mpi.org/