b

_._J#

Open MPI
Join the Revolution

Supercomputing
November, 2005

http://www.open-mpi.org/

Open MPI Mini-Talks

* Introduction and Overview
= Jeff Squyres, Indiana University

* Advanced Point-to-Point Architecture
= Tim Woodall, Los Alamos National Lab

* Datatypes, Fault Tolerance and Other
Cool Stuff

= George Bosilca, University of Tennessee
* Tuning Collective Communications
= Graham Fagg, University of Tennessee

b

_._J#

Open MPI:

Introduction and Overview

Jeff Squyres
Indiana University

http://www.open-mpi.org/

Technical Contributors

* Indiana University
* The University of Tennessee
* Los Alamos National Laboratory

* High Performance Computing Center,
Stuttgart

* Sandia National Laboratory - Livermore

MPI From Scratch!

* Developers of FT-MPI, LA-MPI, LAM/MPI
= Kept meeting at conferences in 2003
= Culminated at SC 2003: Let’s start over
= Open MPI was born

Jan 2004 SC 2004 Today Tomorrow
1 1 1

Started Demonstrated Released World
work v1.0 peace

L

MPI From Scratch: Why?

* Each prior project had different strong points
= Could not easily combine into one code base

* New concepts could not easily be
accommodated in old code bases

* Easier to start over
= Start with a blank sheet of paper

= Decades of combined MPI implementation
experience

MPI From Scratch: Why?

* Merger of ideas from
= FT-MPI (U. of Tennessee)
= LA-MPI (Los Alamos)
= LAM/MPI (Indiana U.)
= PACX-MPI (HLRS, U. Stuttgart)

Open VPl

Open MPI Project Goals

* All of MPI-2
* Open source
= Vendor-friendly license (modified BSD)
* Prevent “forking” problem
= Community / 3rd party involvement
= Production-quality research platform (targeted)
= Rapid deployment for new platforms
* Shared development effort

Open MPI Project Goals

° Actively engage the
HPC community
. USerS Researchers
= Researchers 0 e
= System administrators
= Vendors

* Solicit feedback and ERERES fences
contributions

Open MPI

= True open source
model

Design Goals

* Extend / enhance previous ideas

= Component architecture

= Message fragmentation / reassembly

= Design for heterogeneous environments
 Multiple networks (run-time selection and striping)
* Node architecture (data type representation)

= Automatic error detection / retransmission

= Process fault tolerance

= Thread safety / concurrency

Design Goals

* Design for a changing environment
= Hardware failure
= Resource changes
= Application demand (dynamic processes)
* Portable efficiency on any parallel resource
= Small cluster
= “Big iron” hardware
= “Grid” (everyone a different definition)

Plugins for HPC (!)

* Run-time plugins for combinatorial
functionality
= Underlying point-to-point network support
= Different MPI collective algorithms
= Back-end run-time environment / scheduler
support
* Extensive run-time tuning capabilities

= Allow power user or system administrator to
tweak performance for a given platform

Plugins for HPC (!)

Run-time

environments
YourMPI'application

Plugins for HPC (!)

Run-time

environments
YourMPI'application

Plugins for HPC (!)

Run-time

environments
YourMPI'application

Plugins for HPC (!)

Run-time

environments
YourMPI'application

Plugins for HPC (!)

Run-time

environments
YourMPI'application

Plugins for HPC (!)

Run-time

environments
YourMPI'application

p4
28
ES
5
]
Py
]

Plugins for HPC (!)

Run-time

environments
YourMPI'application

Plugins for HPC (!)

Run-time

environments
YourMPI'application

Plugins for HPC (!)

Run-time

environments
YourMPI'application

Plugins for HPC (!)

Run-time

environments
YourMPI'application

Plugins for HPC (!)

Run-time

environments
YourMPI'application

Plugins for HPC (!)

Run-time

environments
YourMPI'application

p4
28
ES
5
]
Py
]

Current Status

* v1.0 released (see web site)

* Much work still to be done
= More point-to-point optimizations
= Data and process fault tolerance
= New collective framework / algorithms
= Support more run-time environments
= New Fortran MPI bindings

* Come join the revolution!

Open MPI: Advanced Point-to-

Point Architecture

Tim Woodall
Los Alamos National Laboratory

http://www.open-mpi.org/

Advanced Point-to-Point Architecture

* Component-based
* High performance
* Scalable
* Multi-NIC capable
* Optional capabilities
= Asynchronous progress
= Data validation / reliability

Component Based Architecture

* Uses Modular Component Architecture
(MCA)
= Plugins for capabilities (e.g., different
networks)
= Tunable run-time parameters

Point-to-Point

Component Frameworks

° Byte Transfer Layer ° BTL Management

(BTL) Layer (BML)
= Abstracts lowest native * Multiplexes access to
BTL's

network interfaces

* Point-to-Point ®/Memory Pool

= Provides for memory

Messaging Layer management /

(PML) registration

= Implements MPI ° Registration Cache
semantics, message = Maintains cache of
fragmentation, and most recently used

striping across BTLs memory registrations

Point-to-Point Component
Frameworks

I PML |
BML]
— == —
OpeniB OpenlB SM
BTL BTL BTL
n 18 n 18 M
MPool MPool MPool
Rcache Rcache

Network Support

* Native support for: ° Planned support for:
= Infiniband: Mellanox = |IBM LAPI
Verbs = DAPL
= Infiniband: OpenIB = Quadrics Elan4
Gen2
= Myrinet: GM , I
« Myrinet: MX Third party contributions
. Portals welcome!
= Shared memory
= TCP

High Performance

* Component-based architecture does not
impact performance

* Abstractions leverage network capabilities
= RDMA read / write
= Scatter / gather operations
= Zero copy data transfers

* Performance on par with (and exceeding)
vendor implementations

Performance Results: Infiniband

Open MP! over Infiniband
1000 T T T T T T T

900 - NETPIPE - OpeniB
800 Open MPI/OpenIB

Open MPI/Mvapi Fd
£ 700 - Mvapich/Mvapi f’ i
= 600 [,{7 g
£ A
£ s00f ya 1
3 400 | / .
2
& 300 1
200 | R
100 | R
o . A A . :
1 10 100 1000 10000 100000 1e+06 1e+07

Message Size in Bytes

Performance Results: Myrinet

Open MPI over Myrinet (GM)
250 T T T T T T T

NetPIPE - GM ——
200 | Open MPI -------
" MPIGH/GM -eeeer
2
[+3])
= 150 E
£
£
B
£ 100 .
2
5
]
50 - g
° : . . .) L
1 10 100 1000 10000 100000 1e+06 1e+07

Size in Bytes

Scalability

* On-demand connection establishment
= TCP
= Infiniband (RC based)
* Resource management
= Infiniband Shared Receive Queue (SRQ) support
= RDMA pipelined protocol (dynamic memory
registration / deregistration)
= Extensive run-time tuneable parameters:
+ Maximum fragment size
+ Number of pre-posted buffers

Memory Usage Scalability

Open MPI, MVAPICH Memory Utilization - Ping-Pong 0 bytes
500 T T T T T

MVAPICH - Small -
[MVAPICH - Medium -
n MP1 —_—

pet -
Open MPI - No SRQ -

Memory Usage (MBytes)

L
0 50 100 150 200 250 300
Number of peers

Latency Scalability

Open MPI, MVAPICH - Latency - Multiple peers
10 T T T T T

Latency (uSec)

o} 50 100 150 200 250 300
Number of peers

Multi-NIC Support

* Low-latency interconnects used for short
messages / rendezvous protocol

* Message stripping across high bandwidth
interconnects

* Supports concurrent use of heterogeneous
network architectures

* Fail-over to alternate NIC in the event of
network failure (work in progress)

Multi-NIC Performance

Open MPI over Myrinet + Infiniband

Bandwidth in MB/s

0 L L L s s L L L s
0 1e+062e+063e+064e+065e+066e+067e+068e+069e+061e+07
Message Size in Bytes

Optional’ Capabilities

(Work in Progress)

* Asynchronous Progress
= Event based (non-polling)
= Allows for overlap of computation with communication
= Potentially decreases power consumption
= Leverages thread safe implementation
° Data Reliability
= Memory to memory validity check (CRC/checksum)
= Lightweight ACK / retransmission protocol
= Addresses noisy environments / transient faults

= Supports running over connectionless services
(Infiniband UD) to improve scalability

Open MPI: Datatypes, Fault

Tolerance, and Other Cool Stuff

George Bosilca
University of Tennessee

http://www.open-mpi.org/

User Defined Data-type

° MPI provides many functions allowing users to
describe non-contiguous memory layouts
= MPI_Type_contiguous, MPI_Type_vector,
MPI_Type_indexed, MPI_Type_struct

* The send and receive type must have the same
signature, but not necessary have the same
memory layout

° The simplest way to handle such data is to ...

Fm Timeline

Problem With the Old Approach

* [Un]packing: intensive CPU operations.

= No overlap between these operations and the
network transfer

= The requirement in memory is larger
* Both the sender and the receiver have to
be involved in the operation
= One to convert the data from its own memory
representation to some standard one
= The other to convert it from this standard
representation in it's local representation.

How Can This Be Improved?

* No conversion to standard representation
(XDR)
= Let one process convert directly from the remote
representation into its own

* Split the packing / unpacking into small parts
= Allow overlapping between the network transfer
and the packing
* Exploit gather / scatter capabilities of some
high performance networks

Open MPI Approach

Timeline

Timeline

mprovemen[

* Reduce the memory pollution by
overlapping the local operation with the
network transfer

Improving Performance

¢ Others questions:

How to adapt to the network layer?

How to support RDMA operations?

How to handle heterogeneous communications?
How to split the data pack / unpack?

How to correctly convert between different data
representations?

How to realize data type matching and transmission
checksum?

* Who handles all this?
= MPI library can solve these problems
= User-level applications cannot

MPI1 2 Dynamic Processes

* Increasing the number of processes in an
MPI application:
= MPI_COMM_SPAWN

= MPI_COMM_CONNECT /
MPI_COMM_ACCEPT

= MPI_COMM_JOIN
* Resource discovery and diffusion

= Allows the new universe to use the “best”
available network(s)

MPI1 2 Dynamic processes

MPIuniversed Ethernet switch VPlluniverse 2

X,

N

B 4 Yo
Myrinet switch® «

* Discover the common interfaces
= Ethernet and Myrinet switches
* Publish this information in the public registry

MPI1 2 Dynamic processes

MPIuniversed Ethernet switch VPIlluniverse 2
P—

» (e
Myrinet switch

* Retrieve information about the remote
universe

* Create the new universe

Fault Tolerance Models Overview

* Automatic (no application involvement)
= Checkpoint / restart (coordinated)
= Log Based (uncoordinated)
+ Optimistic, Pessimistic, Casual
* User-driven

= Depends on application specifications, then
the application recover the algorithmic
requirements

= Communication mode: rebuild, shrink, blank
= Message mode: reset, continue

Open Questions

* Detection

= How can we detect that a fault happens?
= How can we globally decide the faulty processes?
° Fault management
= How to propagate this information to everybody
involved?
= How to handle this information in a dynamic MPI-2
application?
* Recovery
= Spawn new processes
= Reconnect the new environment (scalability)
* How can we handle the additional entities required by the
FT models (memory channels, stable storages ...) ?

Y

Open MPI: Tuning Collective

o

Communications; Managing the Choices

Graham Fagg
Innovative Computing Laboratory
University of Tennessee

http://www.open-mpi.org/

Overview

* Why collectives are so important
* One size doesn't fit all
° Tuned collectives component
= Aims / goals
= Design
= Compile and run time flexibility
¢ Other tools
= Custom tuning
* The Future

Why Are Collectives So Important?

* Most applications use collective
communication
= Stuttgart HLRS profiled T3E/MPI applications
= 95% used collectives extensively (i.e. more

time spent in collectives than point to point)

* The wrong choice of a collective can
increase runtime by orders of magnitude

* This becomes more critical as data and
node sizes increase

One Size Does Not Fit All

Tuned Collective Component:
Aims and Goals

° Many implementations perform a run-time
decision based on either communicator size or
data size (or layout, etc.)

Reduce - myrinet - 16 nodes

The reduce shown for just a single
small communicator size has
multiple ‘cross over points’ where
one method performs better than
the rest

(note the LOG scales)

Minimum Duration [sec]

e 10
Total Message Size (oyte]

* Provide a number of methods for each of the MPI
collectives
= Multiple algorithms/topologies/segmenting methods
= Low overhead efficient call stack
= Support for low level interconnects (i.e. RDMA)
* Allow the user to choice the best collective
= Both at compile time and at runtime
Provide tools to help users understand which, why and
how some collectives methods are chosen (including
application specific configuration)

Four Part Design

* The MCA framework

= The tuned collectives behaves as any other
Open MPI component

* The collectives methods themselves
= The MPI collectives backend
= Topology and segmentation utilities

* The decision function

* Utilities to help users tune their system /
application

Implementation

1. MCA framework

User application
[wmPiAPL |

= Has normal priority and verbose (Architecture services)
controls via MCA parameters e a]

2. MPI collectives backend III

= Supports: Barrier, Bcast, Reduce, Allreduce, etc.
= Topologies: Trees (binary, binomial, multi-fan in/out,
k-chains, pipleines, Nd grids etc)
K-Chain Tree
Flat tree/Linear

. Pipeline / Ring

Implementation

3. Decision functions

= Decided which algorithm to invoke based on:
« Data previously provided by user (e.g.,
configuration)
« Parameters of the MPI call (e.g., datatype, count)
« Specific run-time knowledge (e.g., interconnects
used)
= Aims to choose the optimal (or best
available) method

* Open MPI communicators each have a
function pointer to the backend collective
implementation

[)
[Aecresenin |

Inside each communicators
collectives module

10

Method Invocation

* The tuned collective component changes
the method pointer to a decision pointer

User application

[]
[Architecure services |

decision

lI l Inside each communicators

collectives module

How to Tune?

User application
[MmPiAPI |
[Architecture services]

Single decision function
difficult to change once
Open MPI has loaded it

One decision function per
Communicator per MPI call

How to Tune?

User application
[wmPiAPL |

User application

Single decision function
difficult to change once
Open MPI has loaded it

One decision function per
Communicator per MPI call

Fixed Decision Function

« Fixed means the decision
functions are as the
module was compiled

* You can change the
component, recompile it
and rerun the application
if you want to change it

User application
[wmPiAPL |
(Architecture services)

= Since this is a plugin, ><' /
there is no need to re- II I

compile or re-link the
application

Fixed Decision Function

The fixed decision functions must decide a method for all
possible [valid] input parameters (i.e., ALL communicator

and message SIZeS) S
if (gcommode 1= FT_MODE_BLANK) {
if (commute) {
1* for small messages use linear algorithm */
if (msgsize <= 4096)
mode = REDUCE_LINEAR;
*segsize = 0;
}else if (msgsize <= 65536 {
mode = REDUCE_CHAIN;
*segsize = 32768;

“fanout = §;
}else if (msgsize < 524288) {
mode = REDUCE_BINTREE;
*segsize = 1024;
“fanout = 2;
Yelse {
mode = REDUCE_PIPELINE;
*segsize = 1024;
“fanout = 1;
}

Dynamic Decision Function

* Dynamic means the
decision functions are
changeable as each
communicator is created

[wmeiap |

(Architecture services)

* Controlled from a file or . -
MCA parameters \\/X /

= Since this is a plugin,
there is no need to re- II I
compile or re-link the h

application

11

Dynamic Decision Function

* Dynamic decision = run-time flexibility
* Allow the user to control each MPI
collective individually via:
= A fixed override (known as “forced”)
= A per-run configuration file
= Or both
* Default to fixed decision rules if neither
provided

MCA Parameters

* Everything is controlled via MCA
parameters

--mca coll_tuned_use_dynamic_rules 0

MCA Parameters

* Everything is controlled via MCA
parameters

--mca coll_tuned_use_dynamic_rules 1

User-Forced Overrides

* For each collective:

= Can choose a specific algorithm
= Can tune the parameters of that algorithm

* Example: MPI_BARRIER

= Algorithms

« Linear, double ring, recursive doubling, Bruck, two
process only, step-based bmree

= Parameters
« Tree degree, segment size

File-Based Overrides

File-Based Overrides

¢ Configuration file holds detailed rule base
= Specified for each collective
= Only the overridden collectives need be specified
° The rule base is only loaded once
= Subsequent communicators share the information
= Saves memory footprint

° Pruned set of values
= A complete set would

have to map every
possible comm size
and data size/type to a
method and its
parameters (topology,
segmentation etc)

* Lots of data! g

* And lots of measuring
to get that data

PLogP (measured)

Communicator size

107 10‘
Message size [byte]

12

Pruning Values How to Prune

° We know some things - y Each colour is a
in advance ogP (measured) different algorithm

[N—
= Communicator size 33 and parameter
R H

= 2D grid of values

32

2

Communicator
sizes

= Communicator size vs. 31

message size
= Maps to algorithm and

@
N
@
s
]
2
=
3
£
£
3
o

30

parameters Mg;sage Siz;“}by,e] Message Sizes
How to Prune How to Prune
* Select communicator size, then search all * Construct “clusters” of message sizes
elements * Linear search by cluster
= Linear: slow, but not too bad = Number of compares = number of clusters

= Binary: faster, but more complex than linear

0 X1 X2 X3

File-Based Overrides Automatic Rule Builder

* Separate fields for each MPI collective * Replaces dedicated graduate students
* For each collective: who love Matlab!
= For each communicator size: * Automatically determine which collective
- Message sizes in a run length compressed format methods you should use
* When a new communicator is created it = Performs a set of benchmarks
only needs to know its communicator size = Uses intelligent ordering of tests to prune test
rule set down to a manageable set

* Output is a set of file-based overrides

Example:

Optimized MPI_SCATTER

* Search for:

= Optimal algorithm

= Optimal segment size

= For 8 processes

= For 4 algorithms

= 1 message size (128k)
° Exhaustive search

= 600 tests

= Over 3 hours (!)

o)

Future Work

* Targeted Application tuning via Scalable
Application Instrumentation System (SAIS)
* Used on DOE SuperNova TeraGrid
application
= Selectively profiles an application
= Qutput compared to a mathematical model
= Decide if current collectives are non-optimal
= Non-optimal collective sizes can be retested

= Results then produce a tuned configuration file
for a particular application

Example:
Optimized MPI_SCATTER

* Search for:

= Optimal algorithm

= Optimal segment size

= For 8 processes

= For 4 algorithms

= 1 message size (128k)
* Intelligent search

o)

= 90 tests
= 40 seconds

Join the Revolution!

* Introduction and Overview

= Jeff Squyres, Indiana University
* Advanced Point-to-Point Architecture
= Tim Woodall, Los Alamos National Lab

° Datatypes, Fault Tolerance and Other Cool
Stuff

= George Bosilca, University of Tennessee
* Tuning Collective Communications
= Graham Fagg, University of Tennessee

http://www.open-mpi.org/

14

