
1

Open MPI
Join the Revolution

Supercomputing
November, 2005

http://www.open-mpi.org/

Open MPI Mini-Talks

• Introduction and Overview
 Jeff Squyres, Indiana University

• Advanced Point-to-Point Architecture
 Tim Woodall, Los Alamos National Lab

• Datatypes, Fault Tolerance and Other
Cool Stuff
 George Bosilca, University of Tennessee

• Tuning Collective Communications
 Graham Fagg, University of Tennessee

Open MPI:
Introduction and Overview

Jeff Squyres
Indiana University

http://www.open-mpi.org/

Technical Contributors

• Indiana University
• The University of Tennessee
• Los Alamos National Laboratory
• High Performance Computing Center,

Stuttgart
• Sandia National Laboratory - Livermore

MPI From Scratch!

• Developers of FT-MPI, LA-MPI, LAM/MPI
 Kept meeting at conferences in 2003
 Culminated at SC 2003: Let’s start over
 Open MPI was born

Jan 2004

Started
work

SC 2004 Today Tomorrow

Demonstrated Released
v1.0

World
peace

MPI From Scratch: Why?

• Each prior project had different strong points
 Could not easily combine into one code base

• New concepts could not easily be
accommodated in old code bases

• Easier to start over
 Start with a blank sheet of paper
 Decades of combined MPI implementation

experience

2

MPI From Scratch: Why?

• Merger of ideas from
 FT-MPI (U. of Tennessee)
 LA-MPI (Los Alamos)
 LAM/MPI (Indiana U.)
 PACX-MPI (HLRS, U. Stuttgart)

PACX-MPI
LAM/MPI

LA-MPI
FT-MPI

Open MPIOpen MPI

Open MPI Project Goals

• All of MPI-2
• Open source

 Vendor-friendly license (modified BSD)
• Prevent “forking” problem

 Community / 3rd party involvement
 Production-quality research platform (targeted)
 Rapid deployment for new platforms

• Shared development effort

Open MPI Project Goals

• Actively engage the
HPC community
 Users
 Researchers
 System administrators
 Vendors

• Solicit feedback and
contributions

 True open source
model

Open MPIOpen MPI

ResearchersResearchers

Sys.Sys.
AdminsAdminsUsersUsers

DevelopersDevelopers VendorsVendors

Design Goals

• Extend / enhance previous ideas
 Component architecture
 Message fragmentation / reassembly
 Design for heterogeneous environments

• Multiple networks (run-time selection and striping)
• Node architecture (data type representation)

 Automatic error detection / retransmission
 Process fault tolerance
 Thread safety / concurrency

Design Goals

• Design for a changing environment
 Hardware failure
 Resource changes
 Application demand (dynamic processes)

• Portable efficiency on any parallel resource
 Small cluster
 “Big iron” hardware
 “Grid” (everyone a different definition)
 …

Plugins for HPC (!)

• Run-time plugins for combinatorial
functionality
 Underlying point-to-point network support
 Different MPI collective algorithms
 Back-end run-time environment / scheduler

support
• Extensive run-time tuning capabilities

 Allow power user or system administrator to
tweak performance for a given platform

3

Plugins for HPC (!)

Shmem

MX

TCP

OpenIB

mVAPI

GM

Networks

rsh/ssh

SLURM

PBS

BProc

Xgrid

Run-time
environments

Your MPI applicationYour MPI application

Plugins for HPC (!)

Shmem

MX

TCP

OpenIB

mVAPI

GM

Networks

rsh/ssh

SLURM

PBS

BProc

Xgrid

Run-time
environments

Your MPI applicationYour MPI application

Shmem

TCP
rsh/ssh

Plugins for HPC (!)

Shmem

MX

TCP

OpenIB

mVAPI

GM

Networks

rsh/ssh

SLURM

PBS

BProc

Xgrid

Run-time
environments

Your MPI applicationYour MPI application

Shmem

TCP
rsh/ssh

GM

Plugins for HPC (!)

Shmem

MX

TCP

OpenIB

mVAPI

GM

Networks

rsh/ssh

SLURM

PBS

BProc

Xgrid

Run-time
environments

Your MPI applicationYour MPI application

Shmem

TCP
rsh/ssh

GM

Plugins for HPC (!)

Shmem

MX

TCP

OpenIB

mVAPI

GM

Networks

rsh/ssh

SLURM

PBS

BProc

Xgrid

Run-time
environments

Your MPI applicationYour MPI application

Shmem

TCP
SLURM

GM

Plugins for HPC (!)

Shmem

MX

TCP

OpenIB

mVAPI

GM

Networks

rsh/ssh

SLURM

PBS

BProc

Xgrid

Run-time
environments

Your MPI applicationYour MPI application

Shmem

TCP
SLURM

GM

4

Plugins for HPC (!)

Shmem

MX

TCP

OpenIB

mVAPI

GM

Networks

rsh/ssh

SLURM

PBS

BProc

Xgrid

Run-time
environments

Your MPI applicationYour MPI application

Shmem

TCP
PBS

GM

Plugins for HPC (!)

Shmem

MX

TCP

OpenIB

mVAPI

GM

Networks

rsh/ssh

SLURM

PBS

BProc

Xgrid

Run-time
environments

Your MPI applicationYour MPI application

Shmem

TCP
PBS

GM

Plugins for HPC (!)

Shmem

MX

TCP

OpenIB

mVAPI

GM

Networks

rsh/ssh

SLURM

PBS

BProc

Xgrid

Run-time
environments

Your MPI applicationYour MPI application

Shmem

TCP
PBS

TCP

GM

Plugins for HPC (!)

Shmem

MX

TCP

OpenIB

mVAPI

GM

Networks

rsh/ssh

SLURM

PBS

BProc

Xgrid

Run-time
environments

Your MPI applicationYour MPI application

Shmem

TCP
PBS

TCP

GM

Plugins for HPC (!)

Shmem

MX

TCP

OpenIB

mVAPI

GM

Networks

rsh/ssh

SLURM

PBS

BProc

Xgrid

Run-time
environments

Your MPI applicationYour MPI application

Shmem

TCP
BProc

TCP

GM

Plugins for HPC (!)

Shmem

MX

TCP

OpenIB

mVAPI

GM

Networks

rsh/ssh

SLURM

PBS

BProc

Xgrid

Run-time
environments

Your MPI applicationYour MPI application

Shmem

TCP
BProc

TCP

GM

5

Current Status

• v1.0 released (see web site)
• Much work still to be done

 More point-to-point optimizations
 Data and process fault tolerance
 New collective framework / algorithms
 Support more run-time environments
 New Fortran MPI bindings
 …

• Come join the revolution!

Open MPI: Advanced Point-to-
Point Architecture

Tim Woodall
Los Alamos National Laboratory

http://www.open-mpi.org/

Advanced Point-to-Point Architecture

• Component-based
• High performance
• Scalable
• Multi-NIC capable
• Optional capabilities

 Asynchronous progress
 Data validation / reliability

Component Based Architecture

• Uses Modular Component Architecture
(MCA)
 Plugins for capabilities (e.g., different

networks)
 Tunable run-time parameters

Point-to-Point
Component Frameworks

• Byte Transfer Layer
(BTL)
 Abstracts lowest native

network interfaces

• Point-to-Point
Messaging Layer
(PML)
 Implements MPI

semantics, message
fragmentation, and
striping across BTLs

• BTL Management
Layer (BML)
 Multiplexes access to

BTL's
• Memory Pool

 Provides for memory
management /
registration

• Registration Cache
 Maintains cache of

most recently used
memory registrations

Point-to-Point Component
Frameworks

6

Network Support

• Native support for:
 Infiniband: Mellanox

Verbs
 Infiniband: OpenIB

Gen2
 Myrinet: GM
 Myrinet: MX
 Portals
 Shared memory
 TCP

• Planned support for:
 IBM LAPI
 DAPL
 Quadrics Elan4

Third party contributions
welcome!

High Performance

• Component-based architecture does not
impact performance

• Abstractions leverage network capabilities
 RDMA read / write
 Scatter / gather operations
 Zero copy data transfers

• Performance on par with (and exceeding)
vendor implementations

Performance Results: Infiniband Performance Results: Myrinet

Scalability

• On-demand connection establishment
 TCP
 Infiniband (RC based)

• Resource management
 Infiniband Shared Receive Queue (SRQ) support
 RDMA pipelined protocol (dynamic memory

registration / deregistration)
 Extensive run-time tuneable parameters:

• Maximum fragment size
• Number of pre-posted buffers
•

Memory Usage Scalability

7

Latency Scalability Multi-NIC Support

• Low-latency interconnects used for short
messages / rendezvous protocol

• Message stripping across high bandwidth
interconnects

• Supports concurrent use of heterogeneous
network architectures

• Fail-over to alternate NIC in the event of
network failure (work in progress)

Multi-NIC Performance Optional Capabilities
(Work in Progress)

• Asynchronous Progress
 Event based (non-polling)
 Allows for overlap of computation with communication
 Potentially decreases power consumption
 Leverages thread safe implementation

• Data Reliability
 Memory to memory validity check (CRC/checksum)
 Lightweight ACK / retransmission protocol
 Addresses noisy environments / transient faults
 Supports running over connectionless services

(Infiniband UD) to improve scalability

Open MPI: Datatypes, Fault
Tolerance, and Other Cool Stuff

George Bosilca
University of Tennessee

http://www.open-mpi.org/ TimelinePack Network transfer Unpack

User Defined Data-type

• MPI provides many functions allowing users to
describe non-contiguous memory layouts
 MPI_Type_contiguous, MPI_Type_vector,

MPI_Type_indexed, MPI_Type_struct

• The send and receive type must have the same
signature, but not necessary have the same
memory layout

• The simplest way to handle such data is to …

8

Problem With the Old Approach

• [Un]packing: intensive CPU operations.
 No overlap between these operations and the

network transfer
 The requirement in memory is larger

• Both the sender and the receiver have to
be involved in the operation
 One to convert the data from its own memory

representation to some standard one
 The other to convert it from this standard

representation in it’s local representation.

How Can This Be Improved?

• No conversion to standard representation
(XDR)
 Let one process convert directly from the remote

representation into its own
• Split the packing / unpacking into small parts

 Allow overlapping between the network transfer
and the packing

• Exploit gather / scatter capabilities of some
high performance networks

TimelinePack Network transfer Unpack

Timeline

Timeline

Improvement

Open MPI Approach

• Reduce the memory pollution by
overlapping the local operation with the
network transfer

Improving Performance

• Others questions:
 How to adapt to the network layer?
 How to support RDMA operations?
 How to handle heterogeneous communications?
 How to split the data pack / unpack?
 How to correctly convert between different data

representations?
 How to realize data type matching and transmission

checksum?
• Who handles all this?

 MPI library can solve these problems
 User-level applications cannot

MPI 2 Dynamic Processes

• Increasing the number of processes in an
MPI application:
 MPI_COMM_SPAWN
 MPI_COMM_CONNECT /

MPI_COMM_ACCEPT
 MPI_COMM_JOIN

• Resource discovery and diffusion
 Allows the new universe to use the “best”

available network(s)

MPI universe 1MPI universe 1
Shmem

TCP
BProc

TCP
GM

MPI universe 2MPI universe 2
Shmem BProc

TCP
GM

mVAPI

Ethernet switch

Myrinet switch

MPI 2 Dynamic processes

• Discover the common interfaces
 Ethernet and Myrinet switches

• Publish this information in the public registry

9

MPI 2 Dynamic processes

• Retrieve information about the remote
universe

• Create the new universe

MPI universe 1MPI universe 1
Shmem

TCP
BProc

TCP
GM

MPI universe 2MPI universe 2
Shmem BProc

TCP
GM

mVAPI

Ethernet switch

Myrinet switch

Fault Tolerance Models Overview

• Automatic (no application involvement)
 Checkpoint / restart (coordinated)
 Log Based (uncoordinated)

• Optimistic, Pessimistic, Casual

• User-driven
 Depends on application specifications, then

the application recover the algorithmic
requirements

 Communication mode: rebuild, shrink, blank
 Message mode: reset, continue

Open Questions

• Detection
 How can we detect that a fault happens?
 How can we globally decide the faulty processes?

• Fault management
 How to propagate this information to everybody

involved?
 How to handle this information in a dynamic MPI-2

application?
• Recovery

 Spawn new processes
 Reconnect the new environment (scalability)

• How can we handle the additional entities required by the
FT models (memory channels, stable storages …) ?

Open MPI: Tuning Collective
Communications; Managing the Choices

Graham Fagg
Innovative Computing Laboratory

University of Tennessee

http://www.open-mpi.org/

Overview

• Why collectives are so important
• One size doesn’t fit all
• Tuned collectives component

 Aims / goals
 Design
 Compile and run time flexibility

• Other tools
 Custom tuning

• The Future

Why Are Collectives So Important?

• Most applications use collective
communication
 Stuttgart HLRS profiled T3E/MPI applications
 95% used collectives extensively (i.e. more

time spent in collectives than point to point)
• The wrong choice of a collective can

increase runtime by orders of magnitude
• This becomes more critical as data and

node sizes increase

10

One Size Does Not Fit All

• Many implementations perform a run-time
decision based on either communicator size or
data size (or layout, etc.)

The reduce shown for just a single
small communicator size has
multiple ‘cross over points’ where
one method performs better than
the rest

(note the LOG scales)

Tuned Collective Component:
Aims and Goals

• Provide a number of methods for each of the MPI
collectives
 Multiple algorithms/topologies/segmenting methods
 Low overhead efficient call stack
 Support for low level interconnects (i.e. RDMA)

• Allow the user to choice the best collective
 Both at compile time and at runtime

• Provide tools to help users understand which, why and
how some collectives methods are chosen (including
application specific configuration)

Four Part Design

• The MCA framework
 The tuned collectives behaves as any other

Open MPI component
• The collectives methods themselves

 The MPI collectives backend
 Topology and segmentation utilities

• The decision function
• Utilities to help users tune their system /

application

Implementation

1. MCA framework
 Has normal priority and verbose

controls via MCA parameters

2. MPI collectives backend
 Supports: Barrier, Bcast, Reduce, Allreduce, etc.
 Topologies: Trees (binary, binomial, multi-fan in/out,

k-chains, pipleines, Nd grids etc)

User application
MPI API

Architecture services
Coll decision

bi
na

ry
.

bi
no

m
ia

l.

lin
ea

r

…

K-Chain Tree
Flat tree/Linear

Pipeline / Ring

Implementation

3. Decision functions
 Decided which algorithm to invoke based on:

• Data previously provided by user (e.g.,
configuration)

• Parameters of the MPI call (e.g., datatype, count)
• Specific run-time knowledge (e.g., interconnects

used)
 Aims to choose the optimal (or best

available) method

Method Invocation

• Open MPI communicators each have a
function pointer to the backend collective
implementation

User application

MPI API

Architecture services

Coll framework

M
C

W

co
m

.

co
m…

Bcast
Barrier

Reduce

Alltoall

Inside each communicators
collectives module

method
method

method

method

11

Method Invocation

• The tuned collective component changes
the method pointer to a decision pointer

User application

MPI API

Architecture services

Coll framework

M
C

W

co
m

.

co
m…

Bcast
Barrier

Reduce

Alltoall

Inside each communicators
collectives module

decision
decision

decision

decision

How to Tune?

User application
MPI API

Architecture services
Coll decision

bi
na

ry
.

bi
no

m
ia

l.

lin
ea

r

…

Single decision function
difficult to change once
Open MPI has loaded it

One decision function per
Communicator per MPI call

How to Tune?

User application
MPI API

Architecture services
Coll decision

bi
na

ry
.

bi
no

m
ia

l.

lin
ea

r

…

Single decision function
difficult to change once
Open MPI has loaded it

One decision function per
Communicator per MPI call

User application
MPI API

Architecture services

Coll decision
Fixed

bi
na

ry
.

bi
no

m
ia

l.

lin
ea

r

…

Coll decision
Dynamic

Fixed Decision Function

User application
MPI API

Architecture services

Coll decision
Fixed

bi
na

ry
.

bi
no

m
ia

l.

lin
ea

r

…

Coll decision
Dynamic

• Fixed means the decision
functions are as the
module was compiled

• You can change the
component, recompile it
and rerun the application
if you want to change it

 Since this is a plugin,
there is no need to re-
compile or re-link the
application

Fixed Decision Function

bi
na

ry
.

bi
no

m
ia

l.

lin
ea

r

…

Matlab

commute = _atb_op_get_commute(op);
 if (gcommode != FT_MODE_BLANK) {
 if (commute) {
 /* for small messages use linear algorithm */
 if (msgsize <= 4096) {
 mode = REDUCE_LINEAR;
 *segsize = 0;
 } else if (msgsize <= 65536) {
 mode = REDUCE_CHAIN;
 *segsize = 32768;
 *fanout = 8;
 } else if (msgsize < 524288) {
 mode = REDUCE_BINTREE;
 *segsize = 1024;
 *fanout = 2;
 } else {
 mode = REDUCE_PIPELINE;
 *segsize = 1024;
 *fanout = 1;
 }OCC tests

The fixed decision functions must decide a method for all
possible [valid] input parameters (i.e., ALL communicator
and message sizes)

Coll decision
Fixed

User application
MPI API

Architecture services

Coll decision
Fixed

bi
na

ry
.

bi
no

m
ia

l.

lin
ea

r

…

Coll decision
Dynamic

Dynamic Decision Function

• Dynamic means the
decision functions are
changeable as each
communicator is created

• Controlled from a file or
MCA parameters

 Since this is a plugin,
there is no need to re-
compile or re-link the
application

12

Dynamic Decision Function

• Dynamic decision = run-time flexibility
• Allow the user to control each MPI

collective individually via:
 A fixed override (known as “forced”)
 A per-run configuration file
 Or both

• Default to fixed decision rules if neither
provided

MCA Parameters

• Everything is controlled via MCA
parameters

Bcast
Barrier

Reduce

Alltoall

Fixed
Fixed

Fixed

Fixed

--mca coll_tuned_use_dynamic_rules 0

bmtree
Bruck

K-chain

Ngrid

MCA Parameters

• Everything is controlled via MCA
parameters

Bcast
Barrier

Reduce

Alltoall

dynamic
dynamic

dynamic

dynamic

File based
User forced

File based

Fixed

bmtree
User-dring

K-chain

Ngrid

--mca coll_tuned_use_dynamic_rules 1

• For each collective:
 Can choose a specific algorithm
 Can tune the parameters of that algorithm

• Example: MPI_BARRIER
 Algorithms

• Linear, double ring, recursive doubling, Bruck, two
process only, step-based bmree

 Parameters
• Tree degree, segment size

User-Forced Overrides

File-Based Overrides

• Configuration file holds detailed rule base
 Specified for each collective
 Only the overridden collectives need be specified

• The rule base is only loaded once
 Subsequent communicators share the information
 Saves memory footprint

File-Based Overrides

• Pruned set of values
 A complete set would

have to map every
possible comm size
and data size/type to a
method and its
parameters (topology,
segmentation etc)

• Lots of data!
• And lots of measuring

to get that data

13

Pruning Values

• We know some things
in advance
 Communicator size

• Can therefore prune
 2D grid of values
 Communicator size vs.

message size
 Maps to algorithm and

parameters

How to Prune

32

31

30

33

Communicator
sizes

Message Sizes

Each colour is a
different algorithm
and parameter

• Select communicator size, then search all
elements
 Linear: slow, but not too bad
 Binary: faster, but more complex than linear

32

How to Prune

• Construct “clusters” of message sizes
• Linear search by cluster

 Number of compares = number of clusters

32

How to Prune

0 X1 X2 X3

File-Based Overrides

• Separate fields for each MPI collective
• For each collective:

 For each communicator size:
• Message sizes in a run length compressed format

• When a new communicator is created it
only needs to know its communicator size
rule

Automatic Rule Builder

• Replaces dedicated graduate students
who love Matlab!

• Automatically determine which collective
methods you should use
 Performs a set of benchmarks
 Uses intelligent ordering of tests to prune test

set down to a manageable set
• Output is a set of file-based overrides

14

Example:
Optimized MPI_SCATTER

• Search for:
 Optimal algorithm
 Optimal segment size
 For 8 processes
 For 4 algorithms
 1 message size (128k)

• Exhaustive search
 600 tests
 Over 3 hours (!)

Example:
Optimized MPI_SCATTER

• Search for:
 Optimal algorithm
 Optimal segment size
 For 8 processes
 For 4 algorithms
 1 message size (128k)

• Intelligent search
 90 tests
 40 seconds

Future Work

• Targeted Application tuning via Scalable
Application Instrumentation System (SAIS)

• Used on DOE SuperNova TeraGrid
application
 Selectively profiles an application
 Output compared to a mathematical model
 Decide if current collectives are non-optimal
 Non-optimal collective sizes can be retested
 Results then produce a tuned configuration file

for a particular application http://www.open-mpi.org/

Join the Revolution!

• Introduction and Overview
 Jeff Squyres, Indiana University

• Advanced Point-to-Point Architecture
 Tim Woodall, Los Alamos National Lab

• Datatypes, Fault Tolerance and Other Cool
Stuff
 George Bosilca, University of Tennessee

• Tuning Collective Communications
 Graham Fagg, University of Tennessee

