Why MPI Makes You *Scream!* And How Can We Simplify Parallel Debugging?

Jayant DeSouza, Intel Corporation
Jeff Squyres, Indiana University

Goals of This BOF
- List what *we* think are the problems
- And some possible solutions
- Hear what *you* think are the problems
 - Why are they problems for you?
 - How do you solve them now?
 - …?
- Next steps

Classification of Errors in MPI

User Survey

State of the Tools Address
- Compile time lint tool for MPI?
 - MPI-Check?
- printf/write is a difficult debugging model
 - Requires many iterations to narrow down the error
 - But:
 - available on every system
 - real easy to "Install", "learn", and get started
- Debuggers
 - Commercial ones may cost a lot (home equity loan)
 - It's hard to scale debugging and debuggers
 - Requires user to do the heavy lifting
State of the Tools Address
- Automated tools can help some
 - Umpire, Marmot, MPI-Check, Intel Message Checker, NEC Collectives, MPICH2 collectives
 - Still in infancy, but I believe it’s the way to go
- A combination of tools would be best
- Why do users resist tools?

MPI Implementations
- No general test suite to validate/evaluate MPI implementations
 - Is ping-pong all that matters?
- Why won’t users share their bad code? Hmm, I wonder
- Should the standard be improved?

Summary
- Productivity is important
 - Programming models and tools matter
- Is there a need for more than printf?
- What are the next steps?

 Professor, I left the printf in there because it fixed the bug.

Jeff Squyres
- Research associate, Indiana University
- MPI user (years ago)
- MPI implementer
 - LAM/MPI
 - Open MPI

Jeff’s View: MPI Is Great / Horrible
- MPI does some things really well
 - “6 function MPI” (2% of MPI!)
 - Simple user models, simple MPI
- MPI does some things really poorly
 - Doing complex things can be hard
 - Datatypes can be great, but complex to setup
 - Some of MPI-2 is… er… complex
 - Performance portability can be… a challenge
- MPI implementations are not created equal

Jeff’s View: User Problems
- Startup / compile problems
 - “Dot” file issues / authentication
 - Mixing compiler suites
 - Mixing MPI implementations
- Run-time problems
 - Simple message passing issues
 - Assuming MPI implementation behavior
 - Memory problems (buffer overflow, etc.)
 - Heisenbugs
- Law of Least Astonishment
Jeff’s View: User Solutions

- Three kinds of users:
 - I’ll do it myself (printf debugging)
 - I can figure out the code (debuggers)
 - I can refactor the algorithm (tracing/perf. tools)
- The parallel learning curve can be steep
 - Many expect it to be identical to serial
 - Not enough people use tools
- Not all tools are free
 - …but is there something better?

Community’s View

- What about MPI makes you scream?
- How can we simplify parallel debugging?

Conclusions

- We believe (but are biased):
 - Use the tools!
- Users need to tell us what you want
 - We want to hear the whacky ideas
 - Sign up on the sheet to continue this discussion in e-mail

Resources (Google for These)

- Correctness tools
 - Umpire, Marmot, MPI-Check, Intel Message Checker, NEC Collectives, MPICH2 collectives
- Tracing / performance tools
 - Vampir, Intel Trace Analyzer, TAU, MPE/Jumpshot, XMPI
- Debuggers
 - FX2, Totalview, DDT, PGDBG
 - Gdb, Valgrind, … other serial debuggers
- …and probably others!

Horror Stories

- What horror stories do you have?
 - What took forever to track down?
 - How could MPI or a tool helped?

Scalability

- How many people run with:
 - 4, 8, 16, 32, 64, 256, 512, …more processes
- What problems do you run into with scalability?
 - How can MPI or a tool help?
Multiple MPI Implementations

- How many people use the same application with different MPI implementations?
- Do you have specific code paths for specific implementations? Why?
- Is performance *always* the most important thing?
- What other problems have you run into?

How do You Debug?

- How do you debug your parallel applications?
 - printf / trial and error
 - Performance / correctness / tracing tools
 - Serial debuggers
 - Parallel debuggers
 - Memory-checking debuggers
 - ...something else?

Do You Use MPI-2?

- What parts?
 - Dynamic processes
 - One-sided communication
 - MPI_THREAD_MULTIPLE
 - Extended collective operations
 - External interfaces
 - Parallel I/O
 - C++ / F90 bindings
- How well supported are these features?
- What is missing from MPI?

Do You Want / Need Heterogeneous?

- Architecture
 - Data size
 - Data layout (e.g., endian)
 - Processor type / speed
 - Multi-process or multi-thread?
- Multiple networks
 - Non-uniform networks