
Memory Debugging of MPI-Parallel Applications in Open
MPI

Rainer Keller, Shiqing Fan, and Michael Resch

High-Performance Computing Center, University of Stuttgart,
E-mail: {keller, fan, resch}@hlrs.de

In this paper we describe the implementation of memory checking functionality based on in-
strumentation using valgrind. The combination of valgrind based checking functions within
the MPI-implementation offers superior debugging functionality, for errors that otherwise are
not possible to detect with comparable MPI-debugging tools. The functionality is integrated
into Open MPI as the so-called memchecker-framework. This allows other memory debug-
gers that offer a similar API to be integrated. The tight control of the user’s memory passed
to Open MPI, allows not only to find application errors, but also helps track bugs within Open
MPI itself.

We describe the actual checks, classes of errors being found, how memory buffers internally
are being handled, show errors actually found in user’s code and the performance implications
of this instrumentation.

1 Introduction

Parallel programming with the distributed memory paradigm using the Message Passing
Interface MPI1 is often considered as an error-prone process. Great effort has been put into
parallelizing libraries and applications using MPI. However when it comes to maintaining
the software, optimizing for new hardware or even porting the code to other platforms and
other MPI implementations, the developers face additional difficulties2. They may experi-
ence errors due to implementation-defined behavior, hard-to-track timing-critical bugs or
deadlocks due to communication characteristics of the MPI-implementation or even hard-
ware dependent behavior. One class of bugs, that are hard-to-track are memory errors,
specifically in non-blocking communication.

This paper introduces a debugging feature based on instrumentation functionality of-
fered by valgrind3, that is being employed within the Open MPI-library. The user’s
parameters, as well as other non-conforming MPI-usage and hard-to-track errors, such as
accessing buffers of active non-blocking operations are being checked and reported. This
kind of functionality would otherwise not be possible within traditional MPI-debuggers
based on the PMPI-interface.

This paper is structured as follows: Section 2 gives an introduction into the design and
implementation, sec. 3 shows the performance implications, sec. 4 shows the errors, that
are being detected. Finally, sec. 5 gives a comparison of other available tools and concludes
the paper with an outlook.

2 Design and Implementation

The tool suite valgrind3 may be employed on static and dynamic binary executables on
x86/x86 64/amd64- and PowerPC32/64-compatible architectures. It operates by inter-
cepting the execution of the application on the binary level and interprets and instruments

1

the instructions. Using this instrumentation, the tools within the valgrind-suite then
may deduce information, e. g. on the allocation of memory being accessed or the defined-
ness of the content being read from memory. Thereby, the memcheck-tool may detect
errors such as buffer-overruns, faulty stack-access or allocation-errors such as dangling
pointers or double frees by tracking calls to malloc, new or free. Briefly, the tool
valgrind shadows each byte in memory: information is kept whether the byte has been
allocated (so-called A-Bits) and for each bit of each byte, whether it contains a defined
value (so-called V-Bits).

As has been described on the web-page4 for MPIch since version 1.1, valgrind can
be used to check MPI-parallel applications. For MPIch-15 valgrind has to be declared
as debugger, while for Open MPI, one only prepends the application with valgrind
and any valgrind-parameters, e. g. mpirun -np 8 valgrind --num callers=20
./my app inputfile.

As described, this may detect memory access bugs, such as buffer overruns and more,
but also by knowledge of the semantics of calls like strncpy. However, valgrind
does not have any knowledge of the semantics of MPI-calls. Also, due to the way, how
valgrind is working, errors due to undefined data may be reported late, way down in
the call stack. The original source of error in the application therefore may not be obvious.

In order to find MPI-related hard-to-track bugs in the application (and within
Open MPI for that matter), we have taken advantage of an instrumentation-API of-
fered by memcheck. To allow other kinds of memory-debuggers, such as bcheck
or Totalview’s memory debugging features6, we have implemented the functional-
ity as a module into Open MPI’s Modular Component Architecture7. The mod-
ule is therefore called memchecker and may be enabled with the configure-option
--enable-memchecker.

The instrumentation for the valgrind-parser uses processor instructions that do not
otherwise change the semantics of the application. By this special instruction preamble,
valgrind detects commands to steer the instrumentation. On the x86-architecture, the
right-rotation instruction ror is used to rotate the 32-bit register edi, by 3, 13, 29 and
19, aka 64-Bits, leaving the same value in edi; the actual command to be executed is then
encoded with an register-exchange instruction (xchgl) that replaces a register with itself
(in this case ebx):
#define __SPECIAL_INSTRUCTION_PREAMBLE \

"roll $3, %%edi ; roll $13, %%edi\n\t" \
"roll $29, %%edi ; roll $19, %%edi\n\t" \
"xchgl %%ebx, %%ebx\n\t"

In Open MPI objects such as communicators, types and requests are declared as point-
ers to structures. These objects when passed to MPI-calls are being immediately checked
for definedness and together with MPI Status are checked upon exita. Memory being
passed to Send-operations is being checked for accessibility and definedness, while point-
ers in Recv-operations are checked for accessibility, only.

Reading or writing to buffers of active, non-blocking Recv-operations and writing to
buffers of active, non-blocking Send-operations are obvious bugs. Buffers being passed
to non-blocking operations (after the above checking) is being set to undefined within the
MPI-layer of Open MPI until the corresponding completion operation is issued. This set-

aE. g. this showed up uninitialized data in derived objects, e. g. communicators created using MPI Comm dup

2

ting of the visibility is being set independent of non-blocking MPI Isend or MPI Irecv
function. When the application touches the corresponding part in memory before the com-
pletion with MPI Wait, MPI Test or multiple completion calls, an error message will
be issued. In order to allow the lower-level MPI-functionality to send the user-buffer as
fragment, the so-called lower layer Byte Transfer Layer (BTLs) are adapted to set the frag-
ment in question to accessible and defined, as may be seen in Fig. 1. Care has been taken
to handle derived datatypes and it’s implications.

MPI_Isend

MPI_Wait
MPI_Wait

MPI_Irecv

Proc1

Undefined
&

Proc0

Inaccessible

Frag

Frag

0

1

Inaccessible

Undefined
& *

Fragn
BTL

Application

MPI

PML

Buffer

Figure 1. Fragment handling to set accessibility and definedness

For Send-operations, the MPI-1 standard also defines, that the application may not ac-
cess the send-buffer at all (see1, p. 30). Many applications do not obey this strict policy,
domain-decomposition based applications that communicate ghost-cells, still read from
the send-buffer. To the authors’ knowledge, no existing implementation requires this pol-
icy, therefore the setting to undefined on the Send-side is only done with strict-checking
enabled (see Undefined? in Fig. 1).

3 Performance Implications

Adding instrumentation to the code does induce a slight performance hit due to the as-
sembler instructions as explained above, even when the application is not run under
valgrind. Tests have been done using the Intel MPI Benchmark (IMB), formerly known
as Pallas MPI Benchmark (PMB) and the BT-Benchmark of the NAS parallel benchmark
suite (NPB) all on the dgrid-cluster at HLRS. This machine consists of dual-processor
Intel Woodcrest, using Infiniband-DDR network with the OpenFabrics stack.

For IMB, two nodes were used to test the following cases: with&without
--enable-memchecker compilation and with --enable-memchecker but with-
out MPI-object checking (see Fig. 2) and with&without valgrind was run (see Fig. 3).
We include the performance results on two nodes using the PingPong test. In Fig. 2
the measured latencies (left) and bandwidth (right) using Infiniband (not running with
valgrind) shows the costs incurred by the additional instrumentation, ranging from 18
to 25% when the MPI-object checking is enabled as well, and 3-6% when memchecker
is enabled, but no MPI-object checking is performed. As one may note, while latency is
sensitive to the instrumentation added, for larger packet-sizes, it is hardly noticeable any-
more (less than 1% overhead). Figure 3 shows the cost when additionally running with
valgrind, again without further instrumentation compared with our additional instru-
mentation applied, here using TCP connections employing the IPoverIB-interface.

3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 0 50 100 150 200 250

La
te

nc
y

in
 u

se
c

Message Length

compiled w/o instrumentation
compiled w/ instrumentation

compiled w/ instrumentation - no MPI-object checking

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10 12 14 16

B
an

dw
id

th
 [M

B
/s

]

Message Length

compiled w/o instrumentation
compiled w/ instrumentation

compiled w/ instrumentation - no MPI-object checking

Figure 2. Latencies and bandwidth with&without memchecker-instrumentation over Infiniband, running without
valgrind.

 240

 250

 260

 270

 280

 290

 300

 310

 320

 330

 340

 350

 0 50 100 150 200 250

La
te

nc
y

in
 u

se
c

Message Length

compiled w/o instrumentation
compiled w/ instrumentation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10 12 14 16

B
an

dw
id

th
 [M

B
/s

]

Message Length

compiled w/o instrumentation
compiled w/ instrumentation

Figure 3. Latencies and bandwidth with&without memchecker-instrumentation using IPoverIB, running with
valgrind.

The large slowdown of the MPI-object checking is due to the tests of every argument
and its components, i. e. the internal data structures of an MPI Comm consist of checking
the definedness of 58 components, checking an MPI Request involves 24 components,
while checking MPI Datatype depends on the number of the base types.

The BT-Benchmark has several classes, which have different complexity, and data size.
The algorithm of BT-Benchmark solves three sets of uncoupled systems of equations, first
in the x, then in the y, and finally in the z direction. The tests are done with sizes Class A
and Class B. Figure 4 shows the time in seconds for the BT Benchmark. The Class A (size
of 64x64x64) and Class B (size of 102x102x102) test was run with the standard parameters
(200 iterations, time-step dt of 0.0008).

Again, we tested Open MPI in the following three cases: Open MPI without mem-
checker component, running under valgrind with the memchecker component disabled
and finally with --enable-memchecker.

As may be seen and is expected this benchmark does not show any performance im-
plications whether the instrumentation is added or not. Of course due to the large memory
requirements, the execution shows the expected slow-down when running under valgrind,
as every memory access is being checked.

4

 0

 50

 100

 150

 200

 250

 300

Class A, 4 Class A, 9 Class B, 4 Class B, 9

NAS Parallel Benchmarks 2.3 -- BT Benchmark, Time in seconds

plain
memchecker/No MPI object checking

memchecker/MPI objects

 1000

 1500

 2000

 2500

 3000

 3500

 4000

Class A, 9 Class B, 9

NAS Parallel Benchmarks 2.3 -- BT Benchmark, Time in seconds

plain with valgrind
memchecker/no MPI-object checking with valgrind

Figure 4. Time of the NPB/BT benchmark for different classes running without (left) and with (right)
valgrind.

4 Detectable error classes and findings in actual applications

The kind of errors, detectable with a memory debugging tool such as valgrind in con-
junction with instrumentation of the MPI-implementation are:

• Wrong input parameters, e. g. undefined memory passed into Open MPIb:

char * send_buffer;
send_buffer = (char *) malloc (5);
memset (send_buffer, 0, 5);
MPI_Send (send_buffer, 10, MPI_CHAR, 1, 0, MPI_COMM_WORLD);

• Wrong input parameters, wrongly sized receive buffers:

char * recv_buffer;
recv_buffer = (char*) malloc(SIZE-1);
memset (buffer, SIZE-1, 0);
MPI_Recv (buffer, SIZE, MPI_CHAR, ..., &status);

• Uninitialized input buffers:

char * buffer;
buffer = (char *) malloc (10);
MPI_Send (buffer, 10, MPI_INT, 1, 0, MPI_COMM_WORLD);

• Usage of the uninitialized MPI ERROR-field of MPI Statusc:

bThis could be found with a BTL such as TCP, however not with any NIC using RDMA.
cThe MPI-1 standard defines the MPI ERROR-field to be undefined for single-completion calls such as MPI
Wait or MPI Test (p. 22).

5

MPI_Wait (&request, &status);
if(status.MPI_ERROR != MPI_SUCCESS)

return ERROR;

• Writing into the buffer of active non-blocking Send or Recv-operation or persistent
communication:

int buf = 0;
MPI_Request req;
MPI_Status status;
MPI_Irecv (&buf, 1, MPI_INT, 1, 0, MPI_COMM_WORLD, &req);
buf = 4711; /* Will produce a warning */
MPI_Wait (&req, &status);

• Read from the buffer of active non-blocking Send-operation in strict-mode:

int inner_value = 0, shadow = 0;
MPI_Request req;
MPI_Status status;
MPI_Isend (&shadow, 1, MPI_INT, 1, 0, MPI_COMM_WORLD, &req);
inner_value += shadow; /* Will produce a warning */
MPI_Wait (&req, &status);

• Uninitialized values, e. g. MPI-objects from within Open MPI.

During the course of development, several software packages have been tested with the
memchecker functionality. Among them problems showed up in Open MPI itself (failed
in initialization of fields of the status copied to user-space), an MPI testsuite8, where tests
for the MPI ERROR triggered an error. In order to reduce the number of false positives
Infiniband-networks, the ibverbs-library of the OFED-stack9 was extended with instru-
mentation for buffer passed back from kernel-space.

5 Conclusion

We have presented an implementation of memory debugging features into Open MPI, using
the instrumentation of the valgrind-suite. This allows detection of hard-to-find bugs in
MPI-parallel applications, libraries and Open MPI itself2. This is new work, up to now, no
other debugger is able to find these kind of errors.

With regard to related work, debuggers such as Umpire10, Marmot11 or the Intel Trace
Analyzer and Collector2, actually any other debugger based on the Profiling Interface of
MPI, may detect bugs regarding non-standard access to buffers used in active, non-blocking
communication without hiding false positives of the MPI-library itself.

In the future, we would like to extend the checking for other MPI-objects, extend for
MPI-2 features, such as one-sided communication, non-blocking Parallel-IO access and
possibly other error-classes.

6

References

1. Message Passing Interface Forum, MPI: A Message Passing Interface Standard, June
1995, http://www.mpi-forum.org.

2. Jayant DeSouza, Bob Kuhn, and Bronis R. de Supinski, Automated, scalable debug-
ging of MPI programs with Intel message checker, in: Proceedings of the 2nd inter-
national workshop on Software engineering for high performance computing system
applications, vol. 4, pp. 78–82, ACM Press, NY, USA, 2005.

3. Julian Seward and Nicholas Nethercote, Using Valgrind to detect undefined value
errors with bit-precision, in: Proceedings of the USENIX’05 Annual Technical Con-
ference, Anaheim, CA, USA, Apr. 2005.

4. Rainer Keller, “Using Valgrind with MPIch”, Internet, http://www.hlrs.de/
people/keller/mpich valgrind.html.

5. William Gropp, Ewin Lusk, Nathan Doss, and Anthony Skjellum, A high-
performance, portable implementation of the MPI message passing interface stan-
dard, Parallel Computing, 22, no. 6, 789–828, Sept. 1996.

6. “Totalview Memory Debugging capabilities”, Internet, http://www.etnus.
com/TotalView/Memory.html.

7. T.S. Woodall, R.L. Graham, R.H. Castain, D.J. Daniel, M.W. Sukalski, G.E. Fagg,
E. Gabriel, G. Bosilca, T. Angskun, J.J. Dongarra, J.M. Squyres, V. Sahay, P. Kam-
badur, B. Barrett, and A. Lumsdaine, Open MPI’s TEG Point-to-Point Communica-
tions Methodology: Comparison to Existing Implementations, in: Proceedings of the
11th European PVM/MPI Users’ Group Meeting, D. Kranzlmüller, P. Kacsuk, and
J.J. Dongarra, (Eds.), vol. 3241 of Lecture Notes in Computer Science (LNCS), pp.
105–111, Springer, Budapest, Hungary, Sept. 2004.

8. Rainer Keller and Michael Resch, Testing the correctness of MPI implementations,
in: Proceedings fo the 5th Int. Symp. on Parallel and Distributed Computing (ISDP),
Timisoara, Romania, July 2006.

9. “The OpenFabrics project webpage”, Internet, 2007, https://www.
openfabrics.org.

10. Jeffrey S. Vetter and Bronis R. de Supinski, Dynamic software testing of MPI appli-
cations with Umpire, in: Proceedings of SC’00, 2000.

11. Bettina Krammer, Matthias S. Müller, and Michael M. Resch, Runtime checking of
MPI applications with Marmot, in: Proceedings of PARCO’05, Malaga, Spain, Sept.
2005.

7

