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Abstract
At our university, different institutes have installed their own cluster computers. Connecting several of
these clusters to perform distributed high-performance computing requires message passing spanning
heterogeneous network structures. One problem is that private IPv4 addresses inside clusters, although
common and suitable for internal communication, preclude end-to-end connectivity. To establish
multi-cluster message passing in such a context, we propose to use MPI over IPv6. In this article, we
present our IPv6 extension to Open MPI, which is able to cope with mixed IPv4/IPv6 environments
and delivers high performance levels.

1 Introduction

The increased use of cluster computing for scientific
simulation has led over the years to the installation
of independent, small-to-medium-sized cluster com-
puters throughout the departments of our univer-
sity. Because of our high bandwidth campus net-
work with Gigabit-Ethernet-like performance, dis-
tributed high-performance computing spanning sev-
eral department clusters seems to be within reach.
This would allow programs using MPI to run on mul-
tiple clusters in parallel for very demanding jobs.

Transparent message passing between multiple
clusters requires end-to-end connectivity of some
kind throughout all nodes. However, the typical net-
working architecture of clusters at our university and
similar places fails to provide such connectivity. Due
to the shortage of IPv4 addresses, compute nodes
connected to the clusters’ internal Ethernet networks
get only private addresses [1] and are thus not reach-
able from the outside. This fundamental problem
gave rise to several different gatewaying and proxying
solutions [2]. Most of these perform message routing
at a higher level than ordinary network routing, e. g.
with user space daemons. This complicates the setup
and management of multi-clusters more than neces-
sary and also affects performance.

As a solution, we propose the use of message pass-
ing over IPv6 as a very promising alternative to cur-
rent approaches. We present an IPv6 [3] extension
to the Open MPI library [4] and our first experi-
ences with multi-cluster setups using Open MPI over
IPv6. Due to the much larger address space, every
node is now allocated a globally unique IPv6 ad-
dress. This re-establishes the end-to-end principle
and moves routing back to the place where it is done
best, namely to the TCP/IP stack of the operating
system or even specialised hardware. Since no extra
daemons are required anymore, the setup of multi-
cluster message passing is simplified. Additionally,
our Open MPI extension is fast enough to provide

near-wire-speed throughput and low latencies even
for cluster-to-cluster communication. This has been
made possible by recent IPv6 implementations like
those found in the Linux 2.6 kernel series, which of-
fer competitive performance.

This paper is organised as follows. In Section 2,
we introduce related work on multi-cluster message
passing and the general architecture of Open MPI.
Section 3 explores how the use of IPv6 simplifies the
overall setup and how Open MPI needs to be ex-
tended to accomplish this. Section 4 presents perfor-
mance measurements and Section 5 concludes with
a summary.

2 Background

2.1 Related Work

Recent advances in Grid technology provide solu-
tions for important infrastructure problems in dis-
tributed computing, like (co-)scheduling, job launch,
file access etc. Some packages, for example the
Globus Toolkit, include Grid-enabled MPI libraries
like MPICH-G2 [5]. However, these assume full IPv4
connectivity, that means public IPv4 addresses on all
participating nodes, and hence do not consider rout-
ing disruptions as found in our scenario. To deal with
such problems, several solutions have been proposed.

Some systems realise message passing over discon-
nected networks with user space daemons. Examples
include PACX, Stampi or MPICH/Madeleine [6–8].
All of these divide their universe into cells with inner
connectivity, and connect multiple cells using a gate-
way or proxy. Since the configuration of cell bound-
aries and the startup of daemons require manual in-
tervention, these solutions cannot be considered opti-
mal. Also, the obtainable performance levels of user
space daemons are generally not adequate for Giga-
bit networking [9]. Reasons for this include that one
additional kernel–user–kernel round trip is necessary
and that a daemon cannot access NIC interrupts.



Fig. 1

Open MPI’s architecture consists of the three main

modules OMPI, ORTE, and OPAL.

VPN-based solutions yield improved performance
at least for kernel-based implementations, but also
face management difficulties [10]. Problems include
that administrators need to coordinate private ad-
dress spaces for all clusters to prevent overlaps. Con-
necting multiple clusters via VPNs is still a viable
solution in some cases.

The research works most similar to ours are the
IPv6 extension to PVM [11] and the MPICH/IPv6
experiments [12]. Replacing all network calls with
their IPv6 equivalents, as seen in these two cases,
breaks backward compatibility with existing IPv4 in-
stallations. Although this approach is adequate for
a proof of concept, it is not sufficient for software
intended to run in production environments.

2.2 Architecture of Open MPI

The main reason why we chose Open MPI is its
carefully designed Modular Component Architecture
(MCA), which breaks all of the functionality into
narrowly scoped modules that can be modified in-
dependently [13]. Our implementation is based on
Open MPI 1.2, which itself already supports multi-
protocol communication and thus allows to include
support for both TCP/IPv4 and TCP/IPv6 without
major architectural changes.

To identify the relevant parts for our IPv6 ex-
tension, we have to consider all three layers of
the Open MPI architecture, as shown in Figure 1:
the Open Portable Access Layer (OPAL), the Open
Run-Time Environment (ORTE) and the Open MPI
functionality (OMPI). OPAL is a collection of sup-
porting functions providing hardware and OS ab-
stractions. ORTE is a generic run-time layer pro-
viding infrastructure for process management and
I/O-handling via its own communication channel,
the Out-of-Band Communication (OOB). An im-
portant use of the OOB is the wire-up, which is
the initial establishment of OOB channels between
all participating processes. OMPI contains its own
high performance communication, the Byte Trans-
fer Layer (BTL). The BTL is independent of the
OOB, since BTL selects the “best” network trans-
port in case there are several (i. e. Myrinet, Infini-
band), while OOB always opens a standard TCP
connection. If there are multiple network paths be-

tween any two nodes, Open MPI optionally uses
striping to maximise throughput. With striping,
Open MPI fragments big messages and sends them
in parallel through several interfaces.

3 Networking Implications

Message passing for distributed high-performance
computing can be set up by using IPv6 with signif-
icantly lower administrative overhead compared to
other current solutions. Once IPv6 has been de-
ployed in a campus network, a suitably extended
MPI implementation is able to run on a large va-
riety of distributed setups without requiring manual
configuration. The main goal for our IPv6 extension
to Open MPI is to make it “just work” regardless
of the network context. To achieve this, modifica-
tions on all three layers are necessary: for OPAL,
the interface handling code has to be adapted; ORTE
and OMPI require enhancements to their respective
TCP implementations, which are the OOB/TCP and
BTL/TCP components. The last two are described
in the following.

3.1 Out-of-Band Communication and
Wire-Up

During wire-up, before any MPI communication
takes place, all processes must establish an out-
of-band channel to exchange run-time information
with ORTE’s General Purpose Registry (GPR). The
first running process is called Head Node Process
(HNP). As the process launching mechanism is user-
configurable, and hence Open MPI cannot control it,
the HNP passively waits for all clients to call back.
Information about HNP’s listening ports, called con-
nection string, is passed to the clients on the com-
mand line.

To simplify wire-up, we assume a single cell setup.
The single cell concept means that all participat-
ing nodes support at least one kind of uniform and
unique network addressing. In contrast, multi cell
concepts rely on the notion of multiple disjointed
networks which need to be connected via gateways.
It is easier—although not necessary—to realise such
a single cell setup with IPv6, because IPv6 is not
short of available global addresses like IPv4. Un-
fortunately, we cannot expect IPv6 to be always
available, as this would break backward compati-
bility with legacy (IPv4-only) networks. The IPv6-
extended library is required to run in environments
with and without IPv6 support. As a further compli-
cation, most of today’s operating systems are IPv6-
enabled, but only few networks have a working IPv6
configuration. That is why simply replacing all oc-
currences of AF INET with AF INET6, as it has
been done in early experiments, is not sufficient. To
ensure backward compatibility, we must consider dif-
ferent address classes: First, there are IPv6 global
unicast addresses (i. e., 2001:638:906:1::1). Although



IPv6 also defines other address classes like site-local
or link-local [14], these are not useful for our pur-
pose. Second, IPv4 public unicast addresses (i. e.,
141.35.14.189) provide the same global connectiv-
ity, but may not be available in sufficient quanti-
ties. Third, IPv4 private addresses (i. e., 192.168.1.1)
are widely used in cluster setups, but are neither
routable nor unique.

As the HNP has no way to determine upon startup
which addresses are likely to work, we have extended
ORTE to search for all locally configured addresses
falling into one of these three classes. Now the HNP
uses the retrieved list to construct the connection
string by concatenating either “tcp” or “tcp6” to de-
note the address family, the IP address, and the port
number. An example connection string looks now
like:

0.0.0; tcp6://2001:638:906:2::1:52032;
tcp6://2001:638:906:1::1:52032;
tcp://141.35.14.189:57990;
tcp://192.168.1.1:57990

The HNP sorts its public addresses to define prior-
ity. To maximise chances to establish a connection,
clients first eliminate all non-locally-present address
classes and then try to connect the remaining ad-
dresses in order until one succeeds. Thus, private
addresses are only used between two nodes if they
do not share any public address class. Otherwise,
in multi-cluster setups with duplicated private IPv4
addresses the wrong node could be contacted.

The example above shows different port numbers
for IPv4 and IPv6. This indicates that the HNP
needs separate sockets for each address family, be-
cause the socket API requires to explicitly specify the
address family on opening a listening socket. Unfor-
tunately, the original OOB implementation was not
designed to operate on multiple sockets, and required
some code modifications to be able to process events
coming from multiple channels. Although this com-
plicates relevant code parts significantly, the only
other option, IPv4-mapped IPv6 addresses [15], is
worse. IPv4-mapped IPv6 addresses would allow to
use only one AF INET6 socket for both IPv4 and
IPv6 connections. But this would limit the appli-
cability of Open MPI to systems where both IPv6
support is enabled and IPv4-mapped IPv6 addresses
have not been switched off, as it is commonly the
case on BSD-derived systems.

With all of the above mentioned enhancements
and modifications, we have extended Open MPI’s
OOB component to cope with as many different IP
network setups as possible to perform a reliable wire-
up.

3.2 Byte Transfer Layer

Various BTL components provide communication
channels for MPI message transfer. Open MPI dy-
namically chooses a selection of components depend-
ing on detected network adapters. Each module

is then responsible for connections to remote nodes
reachable via one particular link. For TCP, the orig-
inal implementation used to create one BTL/TCP
instance per kernel interface, relying on the assump-
tion that each NIC has exactly one IPv4 address con-
figured and can thus be represented by it. If multiple
addresses are found both locally and for a given peer,
Open MPI assumes that both ends share multiple
network connections and uses striping to distribute
messages over all available transports concurrently.

In IPv6-enabled systems, it is common for sin-
gle interfaces to have more than one address con-
figured. Simply extending the existing concept to
create one module per address might lead to su-
perfluous message striping between IPv4 and IPv6
modules on the same link, thus causing NIC over-
subscription, increasing overhead and finally reduc-
ing overall throughput. To circumvent this prob-
lem, our implementation still instantiates one mod-
ule per interface, but manages 1-to-n associations
between interfaces and addresses, hence preventing
local oversubscription. Unfortunately, it is still pos-
sible to overload remote nodes’ NICs by opening mul-
tiple connections to different peer addresses ending
on the same remote interface. We therefore do not
only exchange addresses but also their correspond-
ing kernel interface numbers, thus enabling peers to
identify which remote addresses reside on the same
device. As a consequence, we establish at most
min{#local interfaces,#remote interfaces} connec-
tions between peers.

If there are now several matching address pairs
available for a given interface pair between two
nodes, each BTL/TCP module must select the peer
address which is most likely to work. These addresses
are determined in the same way it is done in the
OOB component: prefer public address classes and
only use private IPv4 addresses as last resort. Ad-
ditionally, each module is constrained to remote in-
terfaces not already in use by other local BTL/TCP
instances.

The resulting enhanced BTL component provides
TCP message transport for a wide range of IP net-
work configurations and uses the available bandwith
via message striping while preventing link oversub-
scription.

3.3 Infrastructure Issues

Beyond the direct implementation consequences, the
transition towards IPv6 to perform multi-clustering
on a campus network has several side effects which
should also be considered. In the following we will
discuss two important ones, IPsec support and LAN
routing.

By using IPv6, we can take advantage of the
widespread availability of the IP security protocol
suite (IPsec) as a standard encryption option [16].
Since the IPv6 specifications recommend IPsec, it
can be expected to be widely available. Thus, IPsec
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Intra-cluster ping-pong benchmarks for IPv4 and IPv6 show hardly any difference for (a) throughput and

(b) latency.

is a good candidate for a default data authentica-
tion and encryption protocol to protect inter-cluster
traffic. Besides its good availability, IPsec supports
automatic key exchange via IKE, and therefore re-
quires little administration. It is still left to further
research to evaluate the general feasibility, best mode
of operation, and performance of the use of IPsec in
such a context.

Obviously, native IPv6 connectivity on a campus
network requires IPv6 support on local routers. Al-
though IPv6 is well known for years, some router
manufacturers still do not support it by default. For
example, to use IPv6 on popular Cisco routers, one
has to acquire the costly “Advanced IP Services” fea-
ture set. However, we expect especially U. S. based
vendors to change their product strategy in near fu-
ture as IPv6 is gaining acceptance. For example, the
Pentagon is planning a transition to IPv6 for military
networks beginning in 2008 [17].

Although the deployment of IPv6 and the adap-
tation of applications requires some effort, we think
that the gained advantages outweigh the costs. This
section has shown that a MPI implementation can
be extended in such a way that it allows to con-
nect multiple clusters easily. In the next section,
we investigate the performance of our IPv6-extended
Open MPI in typical situations.

4 Performance Evaluation

IPv6 message passing delivers decent performance
and is therefore worth considering in multi-cluster
setups. It is justified to expect good results since
IPv6 routing is done at kernel level. Proxy- or
gateway-based solutions are facing an additional
overhead of handling packets in user space, which
not only includes traversing the TCP/IP stack twice,
but also lacks interrupt-driven access to network
adapters.

The performance evaluation is done in two steps:
first we compare intra-cluster performance of IPv6
with IPv4, followed by determining the efficiency in
a typical multi-cluster environment using Open MPI
with IPv6.

4.1 IPv4 Versus IPv6

Due to the increased size of IPv6 headers compared
to IPv4 headers, IPv6 performance will naturally be
below that of IPv4. To evaluate Ethernet perfor-
mance of IPv6 in comparison to IPv4, we measure
throughput and latency between two compute nodes
on the same cluster using the Intel MPI Benchmark
Suite (IMB) 2.3. The benchmarks have been ex-
ecuted on two identical machines with dual AMD
Opteron 250 processors running Linux 2.6.18.6 con-
nected via Broadcom BCM5704 Gigabit Ethernet
adapters to a Netgear ProSafe GS724T switch.

Figure 2 shows the throughput and latency for
the IMB ping-pong micro-benchmark. The results
indicate that IPv6 throughput is almost on par
with IPv4, maxing out at 110.0 MiB/s whereas IPv4
reaches its maximum at 111.5 MiB/s. The measured
drop of 1.4% is very close to the expected loss of
1.37% caused by the decreased maximum segment
size (1460 B for IPv4 vs. 1440 B for IPv6) resulting
from larger IP headers. The latency figures do not
show any noticeable difference beyond the precision
of measurement, making IPv6 a competitive solution
even for intra-cluster communication.

4.2 End-to-End Communication

To evaluate the end-to-end communication perfor-
mance of our IPv6 implementation in a realistic
multi-cluster scenario, we employ two separate clus-
ters A and B, as shown in Figure 4. Both head
nodes are connected to the faculty network through a
layer 3 switch, a Cisco Catalyst 6509. Cluster A con-
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End-to-end ping-pong performance is compared to the performance of the individual links with regard to

(a) throughput and (b) latency.

Fig. 4

Clusters A and B with private IPv4 addresses inside

are connected to a public network.

tains AMD Opteron 250 compute nodes connected
by Broadcom BCM5704 Gigabit Ethernet adapters,
and an identical head node connecting to both the
intra-cluster-network and the faculty network using
the same Broadcom Ethernet adapters. Both nodes
are running Linux 2.6.18.6. Cluster B contains a
head node identical to the head node of cluster A,
and compute nodes with 3 GHz Intel Pentium 4 pro-
cessors running Linux 2.6.18.1, connected to the net-
work using Intel 82547EI Gigabit Ethernet adapters.
A message sent from a compute node of cluster A to
a compute node of cluster B is passed via the intra-
cluster network to the head node of cluster A, then
traverses the faculty network to the head node of
cluster B and finally reaches its destination via the
intra-cluster network of cluster B. The IMB ping-
pong benchmark has been used to provide latency
and throughput figures. In addition to the per-
formance measurements for the connection between
two compute nodes (end-to-end communication), we
have also measured each link independently.

The maximum throughput achieved by the IPv6
end-to-end link, as shown in Figure 3(a), is very

close to the maximum throughput of the weakest
link, which is the connection between the head nodes
over the faculty network.

Figure 3(b) shows the latency for end-to-end com-
munication and for each network connection sepa-
rately. Additionally, the latencies of the three indi-
vidual links are summed up. The end-to-end latency
is lower than the sum of the individual latencies, be-
cause measurements for each link include TCP and
MPI processing overheads. These overheads are in-
cluded three times when adding the values, whereas
they account only once for the end-to-end latency.
However, any solution employing user space gate-
ways does not have this advantage. We expect the
latency in such a scenario to be higher than the sum
of the individual links’ latencies. Because of the de-
creased overhead, in-kernel routing performs inher-
ently better than even well tuned gatewaying. Fur-
thermore, connecting clusters using Virtual Private
Networks generally yields higher latency and lower
throughput on comparable hardware [10].

The measurements show that message passing
based on IPv6 is worth further consideration. The
performance penalty compared to IPv4 is barely no-
ticeable, and due to efficient IPv6 routing, inter-
cluster communication via IPv6 is expected to out-
perform solutions run in user space.

5 Conclusions

We have outlined that message passing over IPv6 is
a promising approach to distributed computing on
multi-clusters in a campus network. One big advan-
tage compared to other solutions, which often involve
user space gateways, is the simplified setup. Once
IPv6 routing has been established, it is achievable
to get multi-cluster message passing that works “out
of the box.” As another advantage, we are able to
obtain low end-to-end latencies and throughput of



more than 100 MB/s by relying on built-in kernel
routing. Our IPv6-extended version of Open MPI
is fast enough to saturate connections crossing clus-
ter boundaries at Gigabit Ethernet speed. Thus, we
would like IPv6 to get more attention in the high
performance community, as it reveals a great poten-
tial for fast and easy multi-clustering. This could in
turn have positive effects on Grid Computing.

Currently, we are gathering more experiences how
IPv6-enabled Open MPI behaves in various network
setups. This concerns also our work on integrat-
ing our changes into the official Open MPI code
base. Furthermore, still unresolved issues include
costs with IPv6 deployment on popular router hard-
ware and a lack of experience with IPsec regarding
the best mode of operation. In the future, MPI de-
velopment should focus more on topology aware im-
plementations of MPI’s collectives (i. e., Open MPI’s
coll hierarch component) to fully take advantage of
hierarchical network structures like local Infiniband
and campus-wide Ethernet.
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