Open MPI Community Meeting

Jeff Squyres

Rainer Keller

International Supercomputer Conference (ISC) 2007
Dresden, Germany

Overview

• Introduction to Open MPI
• Current status
• Future directions
• Audience feedback
Open MPI Is…

- Open source
 - Started with expertise from 4 MPI implementations
 - Has grown into a full community
- Features of Open MPI:
 - Full MPI-2 implementation
 - Fast, reliable and extensible
 - Production-grade code quality as a base for research
 - BSD license

Why Does Open MPI Exist?

- Maximize all MPI expertise
 - Research / academia
 - Industry
 - …elsewhere
- Capitalize on [literally] years of MPI research and implementation experience
- The sum is greater than the parts
Why Separate From MPICH / MVAPICH?

- Open, inclusive community
- Support for more networks
- Support for many resource managers
- MPICH / MVAPICH have different project goals
 - They both chose to remain separate

Current Membership

- 14 members, 6 contributors
 - 4 US DOE labs
 - 8 universities
 - 7 vendors
 - 1 individual
Sponsors

Current Status

- Stable release version: v1.2.3
- Source code
 - tarballs
 - SRPM
 - Subversion repository
- Binaries available for
 - OpenSuse
 - Mandriva

- Binaries included in
 - RHEL, Fedora, Scientific Linux, ...
 - Debian (just saw posting this past weekend)
 - Gentoo
 - OFED
 - Sun ClusterTools 7
 - OS X Leopard (*)
Current Status

- Networks
 - Shared memory
 - Infiniband:
 - OpenFabrics
 - UDAPL
 - mVAPI (deprecated)
 - InfiniPath
 - Myrinet
 - gm
 - MX
 - Portals
 - TCP

- Resource managers
 - Clustermatic Bproc
 - LoadLeveler
 - PBS / Torque
 - POE
 - rsh/ssh
 - SGE / N1GE
 - SLURM
 - Xgrid
 - LSF (coming soon)

Features

- Plugins: “MCA”
 - Plugins auto-select based on environment
 - Selectable by user/admin

- ISVs may
 - Distribute binary plugins
 - Redistribute Open MPI

- Run-time tunable values
 - MPI layer parameters
 - Per plugin parameters
 - Change behavior of code at run-time
 - Does not require recompiling / re-linking

- Simple example
 - Choose which network to use for MPI communications
Point to Point Architecture

• Now MPI_SEND is fantastically complex!
 ▪ Fragment the message
 ▪ Select which device(s) to use
 ▪ Send each fragment on an available device
 ▪ Be careful with resource usage…etc.

<table>
<thead>
<tr>
<th>MPI-Layer</th>
<th>PML</th>
<th>BML</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenIB</td>
<td>RDMA MPool</td>
<td>MX BTL</td>
</tr>
<tr>
<td>BTL</td>
<td>RDMA MPool</td>
<td>SM BTL</td>
</tr>
<tr>
<td>Rcache</td>
<td>Rcache</td>
<td>Rcache</td>
</tr>
</tbody>
</table>

Configuration

• “Normal” GNU installation
  ```
  shell$ configure && make all install
  ```

• Can easily adapt for your site:
 ▪ Select which plugins to be compiled
 ▪ Build static libraries (including plugins)
 ▪ Deselect optional features (C++/F90 bindings)
 ▪ Enable tracing based on PERUSE
 ▪ …etc.
Open MPI IB DDR Performance

<table>
<thead>
<tr>
<th></th>
<th>µs</th>
<th>MB/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open MPI IB</td>
<td>3.23</td>
<td>1467</td>
</tr>
<tr>
<td>MvApich 0.9.7</td>
<td>3.15</td>
<td>1425</td>
</tr>
<tr>
<td>Open MPI (tcp)</td>
<td>62.6</td>
<td>221</td>
</tr>
</tbody>
</table>

Open MPI-trunk~r14000 (BTL)
ofed-1.1-stack
MvApich-0.9.7
NetPipe-3.6.2
HCA: MT25204
1 mem, 4x, 5Gbps = 20 Gbps, 8x PCIe

Open MPI Myri-10G Performance

<table>
<thead>
<tr>
<th></th>
<th>µs</th>
<th>MB/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPIch-mx</td>
<td>2.62</td>
<td>1055</td>
</tr>
<tr>
<td>Open MPI (BTL mx)</td>
<td>3.34</td>
<td>1053</td>
</tr>
<tr>
<td>Open MPI (MTL mx)</td>
<td>2.83</td>
<td>1055</td>
</tr>
</tbody>
</table>

Open MPI-trunk~r14000 (BTL)
MPIch-MX-1.2.7..1
mx-1.2.0i
NetPipe-3.6.2
NIC: Myri-10GE, 2MB mem, 8x PCIe
Success Stories

- Achieved #6 slot on Sandia Thunderbird
 - 53 tflops
 - November 2006 Top500 list
- Vendor support
 - Sun ClusterTools 7
 - OpenFabrics vendors / OFED
- Integrated in many Linux distros

COMMUNITY

Roadmap

- v1.2 series
 - Current stable version: v1.2.3
 - v1.2.4 is possible (minor bug fixes)
- v1.3 series
 - “Expected” towards end of 2007
 - Difficult to exactly predict timelines with multi-organization open source projects
Possible Upcoming Features

• v1.3 *may possibly* contain:
 ▪ Checkpoint / restart functionality
 ▪ Better mapping of IB HCA ports to processes
 ▪ Add the Portable Linux Processor Affinity (PLPA) support to portably pin processes to specific cores
 ▪ End-to-end data reliability
 ▪ Memory debugging features
 ▪ Symbol visibility, compiler attributes, Fortran fixes

• Something down the road:
 ▪ Windows CCS support
 ▪ More forms of fault tolerance

Valgrind Memory Debugging

• Work by HLRS
• Check of Open MPI memory failures:
 ▪ Parameters passed to MPI
 ▪ Definedness of MPI-internal structures
• Check of application’s MPI-conformance:
 ▪ MPI-buffers passed to MPI_Irecv, …

```c
MPI_Irecv (buffer, ... &req);
buffer[n] = 1;
MPI_Wait (&req, &status);
```
PERUSE

- Work by HLRS, U. Tennessee
- Give tools insight to MPI-internal state

Visualization:
Paraver@BSC

- # of fragments/second - congestion (top)
- # of physical concurrent transfers (bottom)

Checkpoint / Restart

- Work by Indiana University
- Added much infrastructure to Open MPI
 - Next generation beyond LAM/MPI
 - Generic process and parallel job FT support
 - Foundation for many other forms of fault tolerance
- First: LAM/MPI-like coordinated checkpoint
 - Uses BLCR or “self” plugins
OpenFabrics Features

- Work by OpenFabrics vendors, Livermore
- Better mapping of cores to HCAs (NUMA)
- Better multi-NIC fragment scheduling
- Support for asynchronous events
- Small message aggregation
- RDMA connection manager (iWARP)
- Threaded progress
- Unreliable datagram support (?)

What do You Want From MPI?

(audience -- you talk now)
How Important Is…

• Thread safety
 ▪ Multiple threads making simultaneous MPI calls
• Parallel I/O
 ▪ Working with parallel file systems
• Dynamic processes
 ▪ Spawn, connect / accept
• One-sided operations
 ▪ Put, get, accumulate
• Multi-core operations
 ▪ Fine-grained process affinity
 ▪ Internal host topology awareness

Come Join Us!

http://www.open-mpi.org/