
An Extensible Framework for Distributed
Testing of MPI Implementations

Joshua Hursey1, Ethan Mallove2, Jeffrey M. Squyres3, Andrew Lumsdaine1

1Indiana University 2Sun Microsystems, Inc.
Open Systems Laboratory Burlington, MA USA

Bloomington, IN USA ethan.mallove@sun.com
{jjhursey, lums}@osl.iu.edu

3Cisco, Inc.
San Jose, CA USA
jsquyres@cisco.com

Abstract. Complex code bases require continual testing to ensure that
both new development and routine maintenance do not create unin-
tended side effects. Automation of regression testing is a common mech-
anism to ensure consistency, accuracy, and repeatability of results. The
MPI Testing Tool (MTT) is a flexible framework specifically designed for
testing MPI implementations across multiple organizations and environ-
ments. The MTT offers a unique combination of features not available
in any individual testing framework, including a built-in multiplicative
effect for creating and running tests, historical correctness and perfor-
mance analysis, and support for multiple cluster resource managers.

1 Introduction
High quality MPI implementations are software packages so large and complex
that automated testing is required to effectively develop and maintain them.
Performance is just as important as correctness in MPI implementations, and
therefore must be an integral part of the regression testing assessment. However,
the number of individual tests taken in combination with portability require-
ments, scalability needs, and runtime parameters generates an enormous set of
testing dimensions. The resulting testing space is so large that no single orga-
nization can fully test an MPI implementation. Therefore, a testing framework
suitable for MPI implementations must be able to combine testing results from
multiple organizations to generate a complete view of the testing coverage.

Many MPI test suites and benchmarks already exist that can verify the cor-
rectness and performance of an MPI implementation. Additionally, MPI imple-
mentation projects tend to have their own internal collection of tests. However,
running a large set of tests manually on a regular basis is problematic; human
error and changing underlying environments will cause repeatability issues.

A good method for regression testing in large software projects is to incor-
porate automated testing and reporting, run on a regular basis. Abstractly, a



testing framework is required to: obtain and build the software to test; obtain
and build individual tests; run all tests variations; and report both detailed and
aggregated testing results. Additionally, since the High Performance Computing
(HPC) community produces open source implementations of MPI that include
contributions from many different organizations, MPI implementation testing
methodology and technology must also:

– Be freely available to minimize the deployment cost.
– Easily incorporate thousands of existing MPI tests.
– Support simultaneous distributed testing across multiple sites, including op-

erating behind organizational security boundaries (e.g., firewalls).
– Support on-demand reporting, specialization, and email reports.
– Support execution of parallel tests, and therefore also support a variety of

cluster resource managers.

We have therefore created the MPI Testing Tool (MTT), an MPI implemen-
tation-agnostic testing tool to satisfy these needs, and have prototyped its use
in the Open MPI project [1].

The rest of this paper is organized as follows: related work is presented in
Section 2. Section 3 describes the MPI Testing Tool (MTT) in more detail.
Section 4 presents MTT experiences with the Open MPI project. Finally, we
present conclusions and a selection of future work items in Section 5.

2 Related Work
There is a large field of research surrounding optimal testing techniques, but
only a few of those ideas seem to have any impact on the software engineering
process used to develop and maintain large software systems [2, 3]. To maintain
the high quality of large software systems, continual regression testing is required.
Onoma et al. [4] describe vital components of an effective software testing suite.
The MTT is designed to satisfy these requirements for MPI implementations.

TET [5] is a widely adopted tool among hundreds of free and open source
testing frameworks. However, TET does not provide mechanisms for obtaining
the software to be tested, therefore requiring an additional layer of software to
determine whether new versions are available to prevent duplicate testing results.
TET also has a crude reporting mechanism which requires searching through flat
file logs for test results. Although logs can be exported to a database for historical
data mining, no front-end is provided for querying the test results.

Perfbase [6] presents a front-end to a SQL database for storing historical
performance data. Perfbase does not provide a framework for obtaining, building,
and testing software, but rather focuses on archiving and querying test results.
Although the first generation of MTT used Perfbase as a back-end data store,
MTT evolved its own data store mechanisms due to inflexibility of Perfbase’s
storage and retrieval model.

DejaGNU [7] is a testing framework from which testing harnesses and suites
can be derived. Similar to TET, no rich reporting mechanisms are provided, and
native support for parallelism is not included. DejaGNU also requires individu-
alized test suite scripts for each test conducted.



Many other testing harnesses are available, including Kitware’s Dart system,
the Boost C++ regression testing system, Mozilla Tinderbox and Testopia, and
the buildbot project. However, none of the products and projects surveyed met
the full set of requirements needed for testing MPI implementations in a dis-
tributed, scalable fashion.

3 The MPI Testing Tool (MTT)
The MTT was created to solve many of the issues cited above.

At its core, the MTT is a testing engine that executes the following phases:

1. MPI Get: Obtain MPI implementations. Implementations are obtained
from the Internet (via HTTP/S, FTP, Subversion), local copies (e.g., tarball
or directory), or by reference to a working installation.

2. MPI Install: Specify how to build/install MPI implementations.
3. Test Get: Obtain test suite source codes, similar to the MPI Get phase.
4. Test Build: Compile test suites against all successfully installed MPI im-

plementations.
5. Test Run: Run individual tests in each successfully built test suite.

The MPI Install, Test Build, and Test Run phase results are stored in a central
database (or other user specified mechanism). All MTT tests will generate one
of four possible results: pass, fail, timeout, or skip. Each test defines specific
criteria indicating success. For example, an MPI implementation must compile
and install successfully to qualify as “pass.” A test is “failed” if the test completes
but the “pass” criteria is not met. A test is killed and declared a “timeout” if
its execution did not finish within the allotted time period. A test is declared
“skip” if it elects not to run. For example, an InfiniBand-specific test may opt
to be skipped if there are no InfiniBand networks available.

Phases are templates which allow multiple executions of each step based on
parametrization. Later phases are combined with all successful invocations of
prior phase invocations, creating a natural multiplicative effect.

– M : MPI implementations
– I: MPI installations, each of which are applied against all M MPI imple-

mentations.
– Nt: Individual tests, grouped by test suite (t), each of which is compiled

against all (M × I) MPI installations.
– Rt: Run parameters specified for tests, each of which is applied against (M×

I ×Nt) tests.

Fig. 1 shows the general sequence of the phases as well as their relation-
ships to each other and the natural multiplicative effect. The figure shows one
MPI implementation that is installed two different ways (e.g., with two different
compiler suites). Each installation is then used to build two tests; each test is
run two different ways. Hence, the total number of reported tests will follow the
equation:

num MPI installs + num test builds + num test runs

(M × I) + (M × I ×Nt) + (M × I ×Nt ×Rt)



Reporter
MPI Get MPI Install Test Get Test Build Test Run

MPI #1

Reporter

Netpipe
Intel Tests

Configuration #2
Configuration #1

Fig. 1. MTT phase relationship diagram. Phases labeled with “Reporter” contain tests
that are saved to a back-end data store such as a database.

Therefore Fig. 1 shows a total of 14 tests (2 MPI installs + 4 test builds + 8
test runs). While the multiplicative effect is a deliberate design decision, users
must be careful to not create test sets that incur prohibitively long run times.

3.1 Configuration

The MTT test engine is configured by an INI-style text file specified on the
command line. In the INI file format, sections are denoted with strings inside
brackets and parameters are specified as key = value pairs. Fig. 2 shows a
sample fragment of an MTT INI configuration file.

A typical configuration file contains a global parameters section, one or more
MPI Details sections, and one or more sections for each of the execution phases.

1 [MPI Get: Open MPI nightly trunk]
2 module = SVN
3 svn url = http://svn.open−mpi.org/svn/ompi/trunk
4

5 [MPI Get: Open MPI v1.2 snapshots]
6 module = OMPI Snapshot
7 ompi snapshot url = http://www.open−mpi.org/nightly/v1.2
8

9 [MPI Install: GNU compilers]
10 mpi get = Open MPI nightly trunk,Open MPI v1.2 snapshots
11 module = OMPI
12

13 [MPI Install: Intel compilers]
14 mpi get = Open MPI nightly trunk,Open MPI v1.2 snapshots
15 module = OMPI
16 ompi configure arguments = CC=icc CXX=icpc F77=ifort FC=ifort CFLAGS=−g
17

18 [MPI Details: Open MPI]
19 exec = mpirun −−mca btl self,&enumerate(‘‘tcp’’, ‘‘openib’’) \
20 −np &test np() &test executable()

Fig. 2. Fragment of a simplified MTT configuration file. Two MPI Get phases are paired
with two MPI Install phases, resulting in four MPI installations. The MPI Details section
templates an execution command for invoking MPI tests. This example shows at least
two executions for each test: one each for TCP and OpenFabrics networks.



The global parameters section is used to specify testing parameters and user
preferences across an entire run of the MTT. MPI Details sections specify how to
run executables for a specific MPI. For example, these sections contain nuances
such as whether mpirun or mpiexec should be used, what command line options
to use, etc. Each execution phase will also be specified by at least one section
in the configuration file. The phase INI sections are comprised of phase-specific
parameters, the designation of a plugin module to use, and module-specific pa-
rameters. Fig. 2 shows an INI file example that downloads two different versions
of Open MPI detailed in the MPI Get phases and compiles both of them with
two different compilers (GNU, Intel) detailed in the two MPI Install phases.

Any number of MPI implementations can be specified for download in MPI
Get sections. Since each MPI Get section will potentially download a different
MPI implementation (and therefore require a different installation process), MPI
Install sections must specify which MPI Get section(s) to install.

Phases are linked together in the configuration file by back-referencing one
or more prior phase names. For example, lines 10 and 14 in Fig. 2 show the two
MPI Install sections back-referencing the “Open MPI nightly trunk” and “Open
MPI v1.2 snapshots” MPI Get sections. Hence, these two MPI Install sections will
be used to install both MPI Get sections. Similar back-referencing mechanisms
are used for the other phases.

MTT will conditionally execute phases based on the outcome of prior phases.
For example, the MPI Install phase is only executed in the case where the prior
execution of the corresponding MPI Get phase was both successful and yielded a
new version of the MPI implementation (unless otherwise specified). Similarly,
Test Run sections will only execute tests where all prior phases were successful:
a new MPI implementation was obtained and successfully installed, and tests
were successfully obtained and compiled against the MPI installation.

3.2 Funclets
Additional combinations of testing parameters can be specified via “funclets” in
the configuration file. “Funclets” are Perl-like function invocations that provide
both conditional logic and and text expansion capabilities in the configuration
file, enabling it to serve as a template that is applicable to a variety of different
scenarios.

A common use of funclets is to expand a configuration parameter to be an
array of values. For example, the np parameter in Test Run sections specifies how
many processes to run in the test. np can be set to one or more integer values.
The following example assigns an array of values to the np parameter by using
three funclets:

np = &pow(2, 0, &log(2, &env_max_procs()))

– &env max procs(): Returns the maximum number of processes allowed in
this environment (e.g., number of processors available in a SLURM or Torque
job, the number of hosts in a hostfile, etc.).

– &log(): Returns the log of the first parameter to the second parameter.



– &pow(): Returns an array of integer values. The first parameter is the base,
the second and third parameters are the minimum and maximum exponents,
respectively.

In the above example, when running in a SLURM job of 32 processors, np
would be assigned an array containing the values 2, 4, 8, 16, and 32. This causes
the MTT execution engine to run each test multiple times: one for each value in
the array.

3.3 Test Specification
The MTT supports adding tests in a modular and extensible manner. The pro-
cedures to obtain and build test suites (or individual tests) are specified in the
configuration file. Although the MTT can execute arbitrary shell commands from
the configuration file to build test suites, complex build scenarios are typically
better performed via MTT plugin modules. Tests to run are also specified in the
configuration file; the MTT provides fine-grained control over grouping of tests,
pass/fail conditions, timeout values, and other run-time attributes.

3.4 Test Execution
The MPI Details section tells the MTT how to run an executable with a particular
MPI implementation. Each MPI Get section forward-references an MPI Details
section that describes how to run executables for that MPI. This feature allows
the MTT to be MPI-implementation-agnostic.

For example, line 18 in Fig. 2 shows an MPI Details section for Open MPI.
The exec parameter provides a command line template to run tests. The funclets
&test np() and &test executable() are available to “paste in” the values spe-
cific to the individual test being invoked. Note, too, the use of the &enumerate()
funclet. This funclet will return an array of all of the values passed as parame-
ters, effectively causing the exec parameter to expand into at least two mpirun
command lines: one with the string “--mca btl self,tcp” and another with
the string “--mca btl self,openib” (forcing Open MPI to use the TCP and
OpenFabrics network transports, respectively).

Combining the use of multiple funclets can result in a multiplicative effect.
For example, using the same 32 processor SLURM job and funclet-driven np
value from Section 3.2, the exec parameter from Fig. 2 will expand to invoke
ten command lines for each test: five with the TCP transport (with 2, 4, 8, 16,
and 32 processes), and five with the OpenFabrics transport.

3.5 Reporting Testing Results
Fig. 1 illustrates that the Reporter phase is run after the MPI Install, Test Build,
and Test Run phases. The Reporter phase writes testing results to a back-end
data store such as a central database, but may also log information to local text
files (or a terminal).

The MTT features a web interface to the central database to facilitate com-
plex interactive explorations of the testing data, including comparisons of per-
formance and correctness over multiple versions of an MPI implementation. The



web interface is specifically designed to aggregate the testing results into high
level summary reports that can be used to repetitively narrow searches in order
to find specific data points. Such “drill down” methods are commonly used to aid
in discovering trends in test failures, displaying historical performance results,
comparing results between different configurations, etc.

Additionally the web-based reporter interface provides custom stored queries,
allowing developers to easily share views of the testing data. Absolute and rela-
tive date range reports are useful when citing a specific testing result and tracking
its progress over time, respectively.

4 Case Study: The Open MPI Project
The Open MPI project relies on the MTT for daily correctness and performance
regression testing. Open MPI is a portable implementation of the MPI standard
that can run in a wide variety of environments; testing it entails traversing a
complex parameter space due to the enormous number of possible environments,
networks, configurations, and run-time tunable parameters supported.

The enormous parameter space, in combination with limited available testing
resources, prevents any one member organization from achieving complete code
coverage in their testing. By running the MTT at each Open MPI member orga-
nization, the project effectively pools the resources of all members and is able to
achieve an adequate level of testing code coverage. This scheme naturally allows
each organization to test only the specific configurations that are important to
their goals.

Member testing resources range from small to large collections of machines;
unscheduled and scheduled environments; with and without firewall restrictions.
Each organization has their own site-specific MTT configuration files that detail
exactly which scenarios and environments to test.

The Open MPI project has two distinct testing schedules (weekday for “short”
24-hour testing, and weekend for longer / higher process count testing); both fol-
low the same general format: Open MPI snapshot tarballs are generated from the
Open MPI Subversion development trunk and release branches and are posted
on the Open MPI website. Member organizations use the MTT to download and
test the snapshots on their local testing resources.

Several well-known MPI test suites are run against Open MPI via the MTT,
including the Intel MPI test suite, the LAM/IBM MPI test suite, the Notre
Dame C++ MPI test suite, the Intel MPI Benchmarks (IMB), NetPIPE, etc.
Many tests internal to the Open MPI project are also run via the MTT.

As each member’s testing completes, results are uploaded to a central database
hosted by Indiana University and made available through the MTT’s web-based
reporter interface. On weekdays, rollup summary reports are e-mailed to the
Open MPI development team 12 and 24 hours after the daily cycle begins. Sum-
mary reports of weekend-long testing are sent on Monday morning. The e-mail
reports, combined with detailed drill-down queries, form the basis of daily dis-
cussions among developers, corrections and modifications to recent changes, and
decisions about release schedules.



Using the MTT, the Open MPI project has accumulated over 7 million test
results between November 2006 and May 2007. Approximately 100,000 tests are
run each weekday/weekend cycle, spanning six platforms, six compiler suites,
and seven network transports.

5 Conclusions
The MTT successfully supports the active development of the Open MPI project
providing correctness and performance regression testing. The MTT provides a
full suite of functionality useful in the automated routine testing required of
a high quality MPI implementation. By fully automating the testing process,
developers spend more time developing software than routinely testing it. Al-
though this paper has focused on the MTT’s testing of Open MPI, the MTT
is MPI implementation agnostic, and has been used to test other MPI imple-
mentations, such as LAM/MPI [8] and MPICH2 [9]. The MTT is available at:

http://www.open-mpi.org/projects/mtt/

5.1 Future Work
While the MTT currently supports many modes of operation, there are sev-
eral areas where its support could be expanded, including: supporting testing in
heterogeneous environments, supporting complex “disconnected” scenarios for
environments not directly (or even indirectly) connected to the Internet, ex-
ploiting the natural parallelism exhibited by orthogonal steps within the MTT
testing cycle to make more efficient use of testing resources, and expanding the
MTT to support general middleware testing.

References
[1] Gabriel, E., et al.: Open MPI: Goals, concept, and design of a next generation

MPI implementation. In: Proceedings, 11th European PVM/MPI Users’ Group
Meeting, Budapest, Hungary (2004) 97–104

[2] Osterweil, L.: Strategic directions in software quality. ACM Comput. Surv. 28(4)
(1996) 738–750

[3] Harrold, M.J.: Testing: a roadmap. In: ICSE ’00: Proceedings of the Conference
on The Future of Software Engineering, New York, NY, USA, ACM Press (2000)
61–72

[4] Onoma, A.K., Tsai, W.T., Poonawala, M., Suganuma, H.: Regression testing in an
industrial environment. Commun. ACM 41(5) (1998) 81–86

[5] TET Team: TETware white paper. Technical report, The Open Group (2005)
http://tetworks.opengroup.org/Wpapers/TETwareWhitePaper.htm.

[6] Worringen, J.: Experiment management and analysis with perfbase. In: IEEE
Cluster Computing 2005, IEEE Computer Society (2005) 1–11

[7] Free Software Foundation: DejaGnu (2006)
http://www.gnu.org/software/dejagnu/.

[8] Squyres, J.M., Lumsdaine, A.: A Component Architecture for LAM/MPI. In:
Proceedings, 10th European PVM/MPI Users’ Group Meeting. Number 2840 in
Lecture Notes in Computer Science, Venice, Italy, Springer-Verlag (2003) 379–387

[9] Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable im-
plementation of the MPI message passing interface standard. Parallel Computing
22(6) (1996) 789–828


