
A Case for New MPI Fortran Bindings

C. E. Rasmussen1, J. M. Squyres2

Advanced Computing Laboratory, Los Alamos National Lab
crasmussen@lanl.gov

Open Systems Laboratory, Indiana University
jsquyres@open-mpi.org

Abstract. The Fortran language has evolved substantially from the For-
tran 77 bindings defined in the MPI-1 (Message Passing Interface) stan-
dard. Fortran 90 introduced interface blocks; subsequently, the MPI-2
standard defined Fortran 90 bindings with explicit Fortran interfaces to
MPI routines. In this paper, we describe the Open MPI implementation
of these two sets of Fortran bindings and point out particular issues re-
lated to them. In particular, we note that strong typing of the Fortran 90
MPI interfaces with user-choice buffers leads to an explosion of interface
declarations; each choice buffer must be expanded to all possible combi-
nations of Fortran type, kind, and array dimension. Because of this (and
other reasons outlined in this paper), we propose a new set of Fortran
MPI bindings that uses the intrinsic ISO C BINDING module in For-
tran 2003. These new bindings will allow MPI interfaces to be defined
in Fortran that directly invoke their corresponding MPI C implementa-
tion routines – no additional layer of software to marshall parameters
between Fortran and C is required.

1 Introduction

The MPI-1 (Message Passing Interface) standard [5] has been very successful, in
part, because it provided MPI bindings in both C and Fortran. Thus, program-
mers were able to write parallel message passing applications in the language
of their choice. Most implementations of MPI are written in C (or C++) and
provide a thin translation layer to effect the Fortran bindings.

The MPI-2 standard [4] continued this successful treatment of language in-
teroperability by tracking the Fortran standard as it evolved by defining Fortran
90 bindings using explicit interfaces. Similar to the benefits enjoyed by C and
C++ programmers, these new Fortran bindings allow the Fortran compiler to
fail to compile a program if actual procedure arguments do not conform to the
dummy arguments specified by the standard. This level of type safety (at the
procedure call) is not possible with the original implicit Fortran 77 bindings.

Section 2 provides a brief overview of common implementation techniques
and problems associated with the Fortran 77 bindings. Section 3 discusses the
Open MPI [3] approach to implementing the Fortran 90 MPI bindings. It also
includes details of automatic code generation techniques as well as practical prob-
lems that arise from the Fortran 90 MPI bindings specification. In particular,

the strong typing of the Fortran 90 explicit interfaces require the specification
of a separate interface for each potential type, kind, and array dimension that
could be specified by a user for an MPI user-choice buffer argument. This in-
terface explosion for generic MPI procedures with choice buffer arguments is
unattractive and can lead to extremely long build times for the MPI library. In
response to new advances in the Fortran language standard [2], and to specific
problems with the existing Fortran bindings discussed in Section 3, new Fortran
MPI bindings are proposed in Section 4.

2 Open MPI Fortran 77 Bindings

Before the 1990 Fortran standard was introduced, Fortran did not provide the
ability to explicitly define interfaces describing external procedures (functions
and subroutines). In Fortran 77, external interfaces must be inferred from the
parameters provided in the call to the external procedure. Thus, while the MPI
Fortran 77 bindings define standard Fortran interfaces for calling the MPI li-
brary, the Fortran compiler does not check to ensure that correct types are
supplied to the MPI routines by the programmer.

This lack of type safety actually makes it easier for an MPI implementation
to provide a layer of code bridging between user Fortran and an MPI C imple-
mentation. Many MPI routines take the address of a data buffer as a parameter
and a count, representing the length of the buffer (e.g., MPI SEND). Since the
Fortran convention is to pass arguments by address, virtually any Fortran type
can be supplied as the data buffer, including basics scalar types (e.g., real) and
arrays of these types.

In most MPI implementations, the Fortran bindings are a thin translation
layer that marshals parameters between Fortran and C and invokes correspond-
ing back-end C MPI functions. For scalar types, this only requires dereferencing
pointers from Fortran before passing to the C implementation routines; array-
valued parameters may be passed directly. MPI handle parameters must also
be converted (typically either by pointer dereferencing or table lookup) to the
back-end C MPI objects.

2.1 Issues

The primary difficulty in developing MPI Fortran 77 bindings is that Fortran
does not define a standard for compiler generated symbols, For example, the
symbol for MPI SEND may be MPI SEND or mpi send, followed by one or two
underscores (it will likely not be the C symbol MPI Send). However this uncer-
tainty is relatively easy to overcome and various strategies have evolved over
time.

While type safety is still an issue (a programmer may mistakenly supply a
real type for a buffer count parameter, for example), the Fortran 77 bindings have
been successfully used in practice for many years. However, it should be noted
that these bindings are implemented outside of the Fortran language specification

and may fail in future compiler versions. For example, an MPI subroutine with
choice arguments may be called with different arguments types. This violates the
letter of the Fortran standard, although such a violation is common practice [5].

3 Open MPI Fortran 90 Bindings

Several enhancements were made to Fortran in the 1990 standard. MPI-2 de-
fined a Fortran 90 module and support for additional Fortran intrinsic numeric
types. MPI interfaces could therefore both be defined for and expressed in For-
tran. High-quality MPI implementations are encouraged to provide strong type
checking in the MPI module, allowing the compiler to enforce consistency be-
tween the parameters supplied by the programmer and those defined in the MPI
standard.

While this enhances type safety, there is no Fortran equivalent of the C (void
*) data type used by the MPI C standard to declare a generic data buffer. Every
data type that could conceivably be used as a data buffer must be declared in an
explicit Fortran interface. The only fallback, for instance for user-defined data
types, is for the programmer to resort to the older Fortran 77 implicit interfaces.

Not only must interfaces be defined for arrays of each intrinsic data type,
but for each array dimension as well. Depending on the compiler, there may be
approximately 15 type / size combinations.1 Each of these combinations can be
paired with up to a maximum of seven array dimensions. With approximately
50 MPI functions that have one choice buffer, this means that 5,250 interface
declarations must be specified (i.e., 15 types × 7 dimensions × 50 functions).
Note that this does not include the approximately 25 MPI functions with two
choice buffers. This leads to an additional 6.8M interface declarations (i.e., (15×
7 × 25)2). Currently, no Fortran 90 compilers can compile a module with this
many interface functions.

3.1 Code Generation

Because of the large number of separate interfaces that the MPI standard re-
quires, automatic generation of this code is an attractive option. Chasm [6] was
used to accomplish this task.

Chasm is a toolkit providing language interoperability between Fortran 90
and C / C++. It uses static analysis to produce a translation layer between
language pairs by first parsing source files to produce an XML representation of
existing interfaces and then using XSLT stylesheets to generate the final bridging
code. Fig. 1 depicts the code generation process.

There are several different types of files generated by the Chasm XSLT
stylesheets. The primary file is the MPI module declaring explicit Fortran inter-
faces for each MPI function. Similar to a C header file, this file allows the Fortran

1 Assuming the compiler supports CHARACTER, LOGICAL{1,2,4,8}, INTEGER{1,2,4,8},
REAL{4,8,16}, and COMPLEX{8,16,32}.

m p i . h m p i . h . x m l m p i . f 9 0
M P I _ S e n d(m p i _ s e n d _ f 9 0 . f 9 0)...

M P I m o d u l e

5 0 i n t e r f a c ef u n c t i o n s
M P I _ S e n dt e s t m a i nM P I _ S e n dt e s t F 9 0u n i t t e s t s

C h a s mH a n de d i t s X L S T
X L S TX L S TX L S T

Fig. 1. Code generation for Fortran 90 MPI bindings in Open MPI.

compiler to check the actual parameter types supplied by user applications to
make sure they conform to the interface. The actual Open MPI implementation
of these interfaces is Fortran 77 binding layer (see Section 2). In addition, there
are separate files generated to test each MPI function.

MPI functions with choice parameters are handled somewhat differently.
They require an additional translation layer to convert Fortran array-valued
parameters to C pointers when invoking the corresponding Fortran 77 binding.

All of the XSLT stylesheets take the XML file mpi.h.xml as input. This
file was created by the Chasm tools from the Open MPI mpi.h header file and
subsequently altered by hand to add additional information. An example of the
annotations make to mpi.h.xml was the addition of the name ierr to MPI
functions returning an error parameter. This gave notice to the Chasm XSLT
stylesheets to create an interface for a subroutine rather than a function, with the
ierr return value as the last parameter to the procedure (Fortran intent(out))
as defined by the MPI Fortran bindings. Another example of the modifications
to mpi.h.xml was the “choice” tag added to given to MPI choice (void *)
arguments. This allowed the XSLT stylesheets to create explicit interfaces for
each possible type provided by the programmer.

3.2 Issues

While the Fortran 90 MPI bindings allow explicit type checking, there are a
number of issues with these bindings and with the Open MPI implementation.
No explicit interfaces were created for MPI functions with multiple choice pa-
rameters (e.g., MPI ALLREDUCE), because this would have exploded the type

system to unmanageable proportions. User application utilizing these functions
access the Fortran 77 layer directly with no type checking.

4 Proposed MPI Fortran BIND(C) Interfaces

The Fortran 2003 standard [2] contains a welcome addition that vastly improves
language interoperability between Fortran and C. These additions are summa-
rized in this section and a new set of Fortran MPI bindings based on this standard
is proposed.

4.1 Fortran 2003 C Interoperability Standard

The Fortran 2003 standard includes the ability to declare interfaces to C pro-
cedures within Fortran itself. This is done by declaring procedure interfaces
as BIND(C) and employing only interoperable arguments. It allows C function
names to be given explicitly and removes the mismatch between procedure sym-
bols generated by the C and Fortran compilers. Fortran BIND(C) interoperable
types include primitive types, derived types or C structures (if all attributes
are interoperable), C pointers, and C function pointers. BIND(C) interfaces are
callable from either Fortran or C and may be implemented in either language.

This standard greatly simplifies language interoperability because it places
the burden on the Fortran compiler to marshall procedure arguments and to
create interoperable symbols for the linker, rather than placing the burden on
the programmer. This includes the ability to use pass arguments by value. For
MPI, this means that MPI C functions may be called directly from Fortran
rather than from an intermediate layer. No additional work is needed other than
to declare Fortran interfaces to the MPI C functions.

4.2 MPI C Type Mappings

The intrinsic ISO C BINDING module in the Fortran 2003 standard provides map-
pings between Fortran and C types. This mapping includes Fortran equivalents
for the C types commonly used in MPI functions. For example, C integers, null-
terminated character strings, and function pointers are declared in Fortran as
INTEGER(C INT), CHARACTER(C CHAR), and TYPE(C FUNPTR), respectively.

Most importantly, the ISO C BINDING module defines a Fortran equivalent
to MPI choice (void *) buffers (TYPE(C PTR)). This directly solves the interface
explosion problem. It also allows interfaces to be declared for MPI functions
with multiple choice buffers. In addition, the ISO C BINDING module provides
functions for converting between Fortran pointers (including pointers associated
with arrays) and the C PTR type.

4.3 MPI Send Example

An example of the proposed BIND(C) interface for MPI SEND is shown in Fig-
ure 2.

1 interface

2 function MPI_Send(buf, count, datatype, dest, tag, comm) &

3 BIND(C, name=’MPI_Send’)

4 use, intrinsic :: ISO_C_BINDING

5 use MPI_C_BINDING

6 type(C_PTR), value, intent(in) :: buf

7 integer(C_INT), value, intent(in) :: count

8 integer(kind=MPI_HANDLE_KIND), value, intent(in) :: datatype

9 integer(C_INT), value, intent(in) :: dest

10 integer(C_INT), value, intent(in) :: tag

11 integer(kind=MPI_HANDLE_KIND), value, intent(in) :: comm

12 integer(C_INT) :: MPI_Send

13 end function MPI_Send

14 end interface

Fig. 2. BIND(C) interface declaration for MPI SEND.

Note the explicit name attribute given to the BIND(C) declaration in line 3
of Fig. 2. This attribute instructs the Fortran compiler to create the equivalent
C symbol of the provided name. The MPI C BINDING module name is proposed
in line 5 to distinguish it from the Fortran 90 MPI module name. The value
attribute used in lines 6-11 instructs the Fortran compiler to use pass-by-value
semantics and means that no dereferencing of the arguments need be done on
the C side.

The TYPE(C PTR) declaration in line 6 is the Fortran BIND(C) equivalent
of a C (void *) parameter. The usage of this generic C pointer declaration
removes the interface explosion for the Fortran 90 MPI SEND implementation,
as described in the previous section. A C PTR can be obtained from a Fortran
scalar or array variable that has the TARGET attribute via the C LOC() intrinsic
function. The TARGET attribute must be used in Fortran to specify any variable
to which a Fortran pointer may be associated.

The Fortran equivalent of MPI handle types are declared in lines 8 and 11.
The MPI HANDLE KIND attribute must be defined by the MPI implementation
and allows flexibility in specifying the size of an MPI handle. At this point it
is uncertain if MPI handle types declared in this way will work across all MPI
implementations without the need for extra marshalling by the MPI library. The
form proposed here should be considered tentative until MPI implementors can
consider the consequences of this choice.

While not shown here, there are also interoperable equivalents for null termi-
nated C strings (CHARACTER(C CHAR), DIMENSION(*)) and C function pointers
(C FUNPTR). In addition, variables defined in the scope of the MPI C BINDING
module may interoperate with global C variables, further merging the Fortran
bindings with the MPI C implementations.

4.4 Issues

Unlike the MPI Fortran 77 and 90 bindings, the proposed bindings describe
language interoperability within the Fortran language. Therefore the proposed
bindings are guaranteed to work by the Fortran compiler (and companion C
compiler) and are not just expected to work for a particular Fortran compiler
vendor and version. Users will be expected to do some parameter conversions
themselves, as noted above in regards to the use of the C LOC intrinsic function.

In addition, the Fortran 2003 standard is new and vendors are just coming
out with ISO C BINDING module implementations. Therefore, a period of time
will be needed before one can test the proposed features against existing MPI
implementations.

5 Conclusions

Because of evolving Fortran language standards and limitations in the MPI
Fortran 77 and 90 bindings, we have proposed a new set of Fortran MPI bindings
based on the intrinsic ISO C BINDING module. These new bindings have several
distinct advantages:

1. They solve the interface explosion problem of the Fortran 90 bindings through
the use of TYPE(C PTR). This new type allows a direct mapping to and from
the C (void *) choice buffers.

2. They allow direct calls to the MPI C implementation from Fortran. This
is more efficient and is less error prone, as the MPI implementor does not
need to maintain and test an extra binding layer. The Fortran compiler is
responsible for marshalling between C and Fortran data types, not the MPI
library.

3. The names of the C functions implementing the MPI procedures can be
specified in Fortran. This means that the tricks required to create common
symbols between compilers are no longer needed.

4. The proposed bindings are defined entirely within the Fortran language and
are guaranteed to work by the Fortran compiler. The proposed bindings are
not compiler dependent. While not likely, Fortran 77 bindings are imple-
mented outside of the Fortran language specification and may fail in future
compiler versions.

It should be pointed out that as of this writing, only two major compiler
vendors support the Fortran 2003 ISO C BINDING module (others will likely do
so by the fall of 2005 [1]). However, even this support is partial. Thus, there
exists a window of opportunity to consider and modify the proposed bindings
before widespread adoption.

To this end, we will post the full set of new Fortran bindings and a reference
implementation on the Open MPI web site (http://www.open-mpi.org/) and
solicit comments and feedback from the Fortran HPC community.

Acknowledgments

This work was supported by a grant from the Lilly Endowment and National
Science Foundation grants EIA-0202048 and ANI-0330620.

Los Alamos National Laboratory is operated by the University of California
for the National Nuclear Security Administration of the United States Depart-
ment of Energy under contract W-7405-ENG-36.

References

1. Personal communication with compiler vendors. Meeting 168 of the J3 Fortran
Standards Committee, August 2004.

2. Fortran 2003 Final Committee Draft, J3/03-007R2. see www.j3-fortran.org.

3. E. Garbriel, G.E. Fagg, G. Bosilica, T. Angskun, J. J. Dongarra J.M. Squyres,
V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R.H. Castain, D.J. Daniel,
R.L. Graham, and T.S. Woodall. Open mpi: Goals, concept, and design of a next
generation mpi implementation. In Proceedings, 11th European PVM/MPI Users’
Group Meeting, 2004.

4. A. Geist, W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, W. Saphir, T. Skjel-
lum, and M. Snir. MPI-2: Extending the Message-Passing Interface. In Euro-Par
’96 Parallel Processing, pages 128–135. Springer Verlag, 1996.

5. Message Passing Interface Forum. MPI: A Message Passing Interface. In Proc. of
Supercomputing ’93, pages 878–883. IEEE Computer Society Press, November 1993.

6. Craig E Rasmussen, Matthew J. Sottile, Sameer Shende, and Allen D. Malony.
Bridging the language gap in scientific computing: The Chasm approach. Concur-
rency and Computation: Practice and Experience, 2005.

	A Case for New MPI Fortran Bindings
	 C. E. Rasmussen , J. M. Squyres

